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a b s t r a c t

Various kinds of remote sensing image classification algorithms have been developed to adapt to the
rapid growth of remote sensing data. Conventional methods typically have restrictions in either classi-
fication accuracy or computational efficiency. Aiming to overcome the difficulties, a new solution for
remote sensing image classification is presented in this study. A discretization algorithm based on in-
formation entropy is applied to extract features from the data set and a vector space model (VSM)
method is employed as the feature representation algorithm. Because of the simple structure of the
feature space, the training rate is accelerated. The performance of the proposed method is compared
with two other algorithms: back propagation neural networks (BPNN) method and ant colony optimi-
zation (ACO) method. Experimental results confirm that the proposed method is superior to the other
algorithms in terms of classification accuracy and computational efficiency.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Classification is typically regarded as one of the most essential
processes in remote sensing image processing (Wilkinson, 2005).
There are two key aspects of classification, classification accuracy
and computational efficiency. A considerable number of methods
have been researched for remote sensing image classification over
the last four decades, including statistical methods (Strahler, 1980;
Benediktsson et al., 1990; Bruzzone et al., 1999; Kerroum et al.,
2010), decision trees (DT) (Friedl and Brodley, 1997; McIver and
Friedl, 2002; Pal and Mather, 2003; Xu et al., 2005), artificial
neural networks (ANN) (Heermann and Khazenie, 1992; Bischof
et al., 1992; Miller et al., 1995; Kavzoglu, 2009; Han et al., 2012),
and other artificial intelligence algorithms (Tso and Mather, 1999;
Melgani and Bruzzone, 2004; Liu et al., 2008; Zhong and Zhang,
2012; Yang et al., 2012; Pal et al., 2013). However, these ap-
proaches have limitations in solving classification problems.

Statistical methods such as maximum likelihood classifier and
Bayesian classifier rely on the assumption that the members of
each class follow a normal distribution in the feature space (Ben-
ediktsson et al., 1990; Bruzzone et al., 1999; Pal and Mather, 2003).
The classification accuracy decreases when the dimension of fea-
tures increases. DT methods make no assumptions concerning the
distribution of the input features and are thus robust in managing
the nonlinear relationship among the class members (Friedl and
Brodley, 1997; McIver and Friedl, 2002). However, the efficiency of
DT methods is always influenced by the size of the feature space.
Pal and Mather (2003) indicated that DT methods are not re-
commended for a data set with a high-dimensional feature space.
Ant colony optimization (ACO) methods have been demonstrated
to work with remote sensing image classification in recent years
(Dai and Liu, 2007; Liu et al., 2008). ACO methods can produce
more succinct decision rules and improve the precision of classi-
fication compared to DT methods. Similar to DT methods, ACO
methods are not appropriate for a high-dimensional feature space.
ANN methods demonstrate superior performance with a high-di-
mensional feature space compared to statistical methods because
they are distribution-free (Benediktsson et al., 1990; Heermann
and Khazenie, 1992; Shao and Lunetta, 2012). However, ANN
models require a significant amount of training data and a con-
siderable number of iterative training procedures to ensure that
the models are trained successfully. Consequently, the computa-
tion of ANN algorithms can be extraordinarily complex.

To resolve the problems in terms of both classification accuracy
and computational efficiency, a novel remote sensing image clas-
sification method is developed in this study. First, the remote
sensing image is divided into a training data set and testing data
set. Next, the features are extracted from the training data set. In
this step, a discretization algorithm based on information entropy
is employed to segment the brightness values of each band; each
section of the brightness values is regarded as a feature. Then, the
feature space is constructed for all the training and testing data.
Vector space model (VSM) is applied as the feature representation
algorithm. Finally, the testing data set is classified using a k-
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Fig. 1. The flowchart of the proposed method.
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nearest neighbors (KNN) model. Fig. 1 presents the flowchart of
the proposed method.

This paper is composed of four sections. The remaining sections
are organized as follows. Section 2 describes the required algo-
rithms and models for the proposed work. Section 3 introduces
the data set and the design of the experiment. The experimental
results and discussion are presented in Section 4. Section 5 con-
cludes this paper.
2. Methodology

2.1. Data discretization

The brightness values of each band of remote sensing data are
continuous values, typically ranging from zero to 65,535. However,
the majority of classification algorithms have difficulty in proces-
sing continuous values. Therefore, the continuous attributes must
be separated into multiple intervals to accommodate the decision
rules. In this paper, a data discretization algorithm is adopted to
discretize the continuous brightness values based on information
entropy (Xie et al., 2005).

2.1.1. Decision table
To begin, the concept of a decision table is defined. A decision

table can be described as a 4-tuple ( )U R V F, , , . In the tuple, U
represents the set of objects. R refers to the set of attributes and

= ∪R C D, where C is the set of condition attributes and D is the set
of decision attributes. V denotes the domain of the attribute values
and = ∪V V VC D, where VC is the domain of the condition attribute
values and VD is the domain of the decision attribute values.

× →F U R V: . Supposing a decision table contains n objects and m
condition attributes, then = { … }U x x x, , , n1 2 , = { … }C c c c, , , m1 2 ,

( ) =F x c u,i j ji, and ( ) =F x D v,i i. Table 1 provides an example of a
decision table.

In terms of remote sensing image classification, the experi-
mental samples (image pixels) correspond to U. The bands of the
image and the land cover classes correspond to C and D. VC refers
to the range of the brightness value and VD is the domain of the
land cover class value.

2.1.2. Breakpoint and equivalence class
For a condition attribute c, ∈c C , its domain is = [ ]V l r,c c c . If

there exists values …b b b, , ,c c
m
c

1 2 , that split Vc into ( + )m 1 intervals,
namely
Table 1
An example of decision table.

U C D

c1 c2 ⋯ cm

x1 u11 u21 ⋯ um1 v1
x2 u12 u22 ⋯ um2 v2
⋮ ⋮ ⋮ ⋮ ⋮
xn u n1 u n2 ⋯ umn vn
= [ ] ∪ [ ] ∪ ⋯ ∪ [ ] ∪ [ ] ( )−V l b b b b b b r, , , , , 1c c
c c c

m
c

m
c

m
c

c1 1 2 1

then, bi
c is defined as a breakpoint. The sample set is divided into

( + )m 1 equivalence classes on attribute c by the breakpoint set.
The breakpoints can be calculated by the values of attribute c.
Supposing the ordered values of attribute c are

= < < ⋯ < =l v v v rc
c c

n
c

c0 1 , the candidate breakpoints can be

= + = … ( )
−b

v v
i n

2
, 1, 2, , . 2i

c i
c

i
c

1

2.1.3. Discretization algorithm
The goal of discretization is to determine an adaptive break-

point set for each continuous attribute. Supposing ⊆X U and the
number of samples in X is | |X ; j is the decision attribute of X,

= ⋯j k1, 2, , . Then, the information entropy of X can be denoted
as

∑( ) = − =
( )=

H X p p p
k
X

log , .
3j

k

j j j
j

1
2

A smaller value of ( )H X indicates less disorder in X. ( ) =H X 0
when all samples in X share the same decision values. A break-
point bi

c divides X into two subsets, ( )l bX
i
c refers to the quantity of

samples whose attribute value on c is smaller than bi
c and ( )r bX

i
c

refers to the quantity of samples whose attribute value on c is
greater than bi

c , namely

∑( ) = ( )
( )=

l b l b ,
4

X
i
c

j

k

j i
c

1

∑( ) = ( )
( )=

r b r b .
5

X
i
c

j

k

j i
c

1

The two subsets of X are denoted as Xl and Xr , and their in-
formation entropy can be calculated as follows:

∑( ) = − =
( )
( ) ( )=

H X p p p
l b

l b
log , ,
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X
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( ) ( )=

H X q q q
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additionally, the information entropy of bi
c to X is

( ) = ( ) + ( )
( )

H b
X
U

H X
X
U

H X .
8

X
i
c l

l
r

r

Supposing P is the set of selected breakpoints and B is the set of
candidate breakpoints, = { … }L X X X, , , m1 2 is considered as the
equivalence classes set divided by P. The information entropy after
adding a candidate breakpoint b ( ∈ ∉b B b P, ) to P can be calcu-
lated by

( ) = ( ) + ( ) + ⋯ + ( ) ( )H b L H b H b H b, . 9X X Xm1 2

The steps of the discretization algorithm can be described as



(

Fig. 2. The outcome of discretization on a sample.
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follows:

(i) To begin, let = ∅ = { } = ( )P L U H H U, , .
(ii) Compute ( )H b L, for each ∈c B.
iii) If ≤ { ( )}H H b Lmin , , terminate the loop.
(iv) Add bmin to P, creating the minimum value of ( )H b L, , then

= ( ) = − { }H H b L B B b, , .
(v) For all ∈X L, if X is divided into X1 and X2 by bmin, add X1 and X2

to L, and remove X from L.
(vi) For each ∈X Ln , if Xn has the same decision, end the loop,

otherwise go to step ii.

After discretizing, each band is separated into several sections
and each section is regarded as a feature. Fig. 2 presents the dis-
cretized result of a sample.

2.2. Feature representation

Vector space model (VSM) (Salton et al., 1975) is one of the
most commonly used methods in feature representation. VSM was
initially applied to information retrieval (Salton et al., 1975; Yang
and Chute, 1994; Gethers et al., 2011) and is being widely used in
textual (Yang, 1999; Tan, 2005; Soucy and Mineau, 2005; Xia and
Du, 2011) and visual (Kesorn and Poslad, 2012) content
representation.

Take the application of VSM in text classification as an example.
The collection of documents is defined as the document space and
the words that are used to discriminate the document categories
are defined as terms. In VSM, the document space is represented
by the documents, each identified by weighted terms. The terms
can be denoted as an m-dimensional vector

= ( ⋯ ) ( )T t t t , 10m1 2

where tj is the jth term. Then, each document di can be described
by a weighted vector

= ( ⋯ ) ( )d w w w , 11i t t tm1 2

and the n-dimensional document space is

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟
=

⋮
=

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯ ( )

D

d

d

d

w w w
w w w

w w w

,

12n

d t d t d t

d t d t d t

d t d t d t

1

2

m

m

n n n m

1 1 1 2 1

2 1 2 2 2

1 2

where wd ti j refers to the weight of the jth term on the ith docu-
ment. The weights may be a binary value according to the ex-
istence of the terms (Salton et al., 1975; Yang and Chute, 1994;
Kesorn and Poslad, 2012). For example, wd ti j¼1 when tj is present
in di and wd ti j¼0, otherwise.
Because only the band values are studied in this paper, remote
sensing image classification can be regarded as a data mining
process. The sample set is considered as the document space; a
sample is the equivalent of a document, and an attribute node of
the sample is the equivalent of a term. The section that contains
the brightness value is marked by “1” and other sections are
marked by “0”. The following array is a case of a sample re-
presented by VSM:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

( )
S

0 0 0 1
0 0 1
0 1 0 0 0

.
13

It is worth noting that the sample contains three bands that are
divided into four, three, and five sections. Moreover, the brightness
values of the bands are in section 4, section 3, and section 2,
respectively.

2.3. Classification

K-Nearest neighbors (KNN) is a classical pattern recognition
algorithm based on statistics. Cover and Hart (1967) demonstrated
that the KNN rule is superior to other decision rules because it
owns a probability of error that is less than twice the Bayes
probability of error. The main function of a KNN model is to
identify the k most similar training samples (nearest neighbors)
for a testing sample and label the testing sample class according to
the category of the k nearest neighbors. The decision function of
the testing sample using the KNN model is given as follows (Kim
et al., 2005):

∑( ) = ( ) ( )
( )=

y d c b d c sim d d, , , ,
14j

k

j j
1

where k refers to k nearest neighbors of sample d; ( )b d c,j is a
boolean value. If sample dj belongs to class c, ( )b d c,j is assigned to
“1”, otherwise ( )b d c,j is assigned to “0”; ( )sim d d, j represents the
similarity between sample d and dj , which can be calculated on the
basis of vector angle cosine (Xia and Du, 2011). The vector angle
cosine is defined as follows:

( ) =
∑

∑ ∑ ( )

=

= =

sim d d
w w

w w
, ,

15

i
m

i i

i
m

i i
m

i

1 2
1 1 2

1 1
2

1 2
2

where w i1 and w i2 refer to the weight of the ith term on sample d1
and d2.

Consider n is the total number of categories in a sample set. For
each sample d, there are n values of ( )y d c, , i.e.,

( ) ( ) ⋯ ( )y d y d y d n, 1 , , 2 , , , . Among these values, the maximum is
selected and the class of d is labeled c.
3. Experimental design

A Landsat8 satellite image with a ground resolution of 30 m
was used for the experiments. The study area was located in
Huairou district ( ° ′ − ° ′116 32 116 43 E, ° ′ − ° ′40 16 40 24 N) in Peking,
China (Fig. 3). The study area consisted of ×500 500 samples
(pixels), which were composed primarily of five land cover types
including cropland, fallow, forest, residential area, and water. The
samples were labeled with class information based on an official
land use map and field observation. All of the samples were used
to generate a set of 50,000 training samples and a set of 200,000
testing samples using a random sampling method. Furthermore, to
simplify the experimental process and accelerate the speed of
computing, only the first eight bands were selected in the
experiments.



Fig. 3. The Landsat8 image (7,6,4) of the study area in Peking.
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The experimental results of the proposed method were com-
pared with the back propagation neural network (BPNN) method
and the ant colony optimization (ACO) method. Compared with
classical neural network models, the BPNN method reduces the
training time and improves the computational efficiency (Heer-
mann and Khazenie, 1992). Furthermore, the BPNN method is
flexible and can be modified to function with a high-dimensional
feature space. The ACO method is a swarm intelligence algorithm
that searches for the shortest path or optimal solution to a specific
problem. When it comes to classification, the ACO method sear-
ches for a solution in the classification rules. Liu et al. (2008)
proved that the ACO method is more efficient and accurate than
the decision tree method in remote sensing image classification.

All three methods were implemented in Matlab R2012b and
executed on a computer with an Intel(R) Core(TM) i7-3612QM
with a 2.10 GHz CPU and 8.00 GB RAM.
4. Results and discussion

4.1. Evaluation of classification accuracy

In this section, the classification accuracy of the proposed
method, BPNN method, and ACO method was evaluated by two
groups of experiments. The objectives of the experiments were to
study the effects of feature dimensionality and training set size on
the classification accuracy of the three algorithms.

The purpose of the first experiment in this section was to
evaluate the effects of feature dimensionality on classification
accuracy. As mentioned in Section 2.1.3, each section of a band was
regarded as a feature and hence, a band was considered as a di-
mension of features. In the first experiment, eight subsets were
derived from the training set. The first subset included only band
1, the second subset used bands 1 and 2, the third subset used
bands 1–3, continuing similar to the eighth subset. The number of
pixels in each subset was 50,000. The eight subsets were em-
ployed to train three classifiers separately; the same testing set
was used for validation.

Fig. 4 illustrates the relationship between the classification
accuracy and the number of bands. The results indicate that the
classification accuracy of the three algorithms demonstrated a
remarkable increase for the first seven subsets. The level of accu-
racy for the proposed and BPNN methods continued to increase
slightly until the feature dimensionality reached eight. As the
feature dimensionality increased from one to eight, the classifi-
cation accuracy increased from 49.9% to 94.7% for the proposed
method; it increased from 60.9% to 91.9% for the BPNN method.
Consequently, it can be concluded that the classification accuracy
of the proposed and BPNN methods increased with the feature
dimensionality growth.

An interesting phenomenon occurred with the ACO method.
The accuracy reached the peak (90.9%) when the number of bands
was seven. Then, the accuracy declined by 4.3% when the eighth
subset was used. A possible reason may be that the ACO method
searches for the classification rules according to the probability
(Dorigo et al., 1996; Parpinelli et al., 2002; Liu et al., 2008; Jova-
novic and Tuba, 2013). A classification rule is composed of several
conditions and the number of conditions is equal to the feature
dimensionality. The probability of a condition being selected to
construct a rule depends on the heuristic and pheromone value.
Thus, it is difficult to acquire a rule when the feature dimension-
ality is high. A solution to this problem would be to use a rule-
pruning technique to simplify the rules and improve the classifi-
cation accuracy (Parpinelli et al., 2002; Liu et al., 2008). However, a



Fig. 4. Effects of feature dimensionality on classification accuracy.

L. Xie et al. / Computers & Geosciences 89 (2016) 252–259256
rule-pruning technique for the ACOmethod is not discussed in this
paper because it is not the emphasis of this research.

The purpose of the second experiment in this section was to
assess the effects of the size of the training set on classification
accuracy. Five subsets were extracted from the training set using a
random sampling method. The number of samples in each subsets
were 2500, 5000, 10,000, 20,000, and 50,000 pixels. The five
subsets were used to train three classifiers separately and an
identical testing set was used to evaluate the classification accu-
racy. It should be noted that the optimal parameters were selected
in the second experiment to achieve the best results, i.e., the
feature dimensionality was set to seven for the ACO method, and
eight for the proposed and BPNN methods.

The results presented in Fig. 5 prove that the level of classifi-
cation accuracy is influenced by the size of training set, regardless
of what classifier is chosen. With regard to the proposed and BPNN
methods, the accuracy improved as the size of the training set
increased. For the ACO method, the accuracy increased from the
first subset to the second. Then, the accuracy remained approxi-
mately equivalent with the second and third subsets, then, in-
creased again such that the highest accuracy was obtained by the
fifth subset. Therefore, the overall trend of the accuracy for the
ACOmethod was also upward. On the other hand, the growth rates
of the accuracy for the three algorithms were slight; only a 1.1%
(from 93.6% to 94.7%) increment of accuracy for the proposed
method when the number of training samples increased from
2500 to 50,000, and 1.4% (from 90.5% to 91.9%) and 3.1% (from
87.8% to 90.9%) increments were demonstrated by the BPNN and
Fig. 5. Effects of training set siz
ACO methods, respectively. The following three tables present the
confusion matrices of the three algorithms with optimal
parameters.

The comparison of classification results for the three algorithms
is presented in Tables 2–4. The proposed method had an overall
accuracy of 94.7% and a Kappa coefficient of 0.927. The total ac-
curacy of the BPNN method was 91.9% with a Kappa coefficient of
0.889. The total accuracy and the Kappa coefficient obtained by the
ACO method were 90.9% and 0.875, respectively. The comparative
results suggest that the proposed method outperformed the other
two methods in classification accuracy. Fig. 6 presents the classi-
fication results of the study area using the three algorithms.

4.2. Evaluation of computational efficiency

In this section, the computational efficiency of the three algo-
rithms was evaluated by two groups of experiments. The first
experiment was to assess the effects of training set size on com-
putational efficiency; the second was designed to study the re-
lationship between computational efficiency and testing set size.
In the first experiment, five training sets with different sizes and
the same testing set were employed. The training sets were
composed of 2500, 5000, 10,000, 20,000, and 50,000 pixels. The
testing set was composed of 200,000 pixels. The same training set
and five testing sets with different sizes were employed in the
second experiment. The training set composed of 2500 pixels; the
number of pixels in each of the testing sets were 10,000, 20,000,
40,000, 80,000, and 200,000 pixels. The overall time consumption
e on classification accuracy.



Table 2
Classification accuracy assessment on the proposed method.

Class Cropland Fallow Forest Residential area Water User's accuracy (%)

Cropland 18,609 0 1561 1256 81 86.5
Fallow 0 35,961 0 1094 0 97.0
Forest 2686 0 61395 389 38 95.2
Residential area 1408 1646 324 65,032 0 95.1
Water 9 0 176 0 8335 97.8
Producer's accuracy (%) 82.0 95.6 96.8 96.0 98.6

Total accuracy¼94.7% Kappa coefficient¼0.927

Table 3
Classification accuracy assessment on the BPNN method.

Class Cropland Fallow Forest Residential area Water User's accuracy (%)

Cropland 15,835 41 2737 2803 91 73.6
Fallow 158 32,839 158 3729 171 88.6
Forest 2426 5 61,283 774 20 95.0
Residential area 874 1142 382 65,971 41 96.4
Water 0 0 590 0 7930 93.1
Producer's accuracy (%) 82.1 96.5 94.1 90.0 96.1

Total accuracy¼91.9% Kappa coefficient¼0.889

Table 4
Classification accuracy assessment on the ACO method.

Class Cropland Fallow Forest Residential area Water User's accuracy (%)

Cropland 14,253 0 4540 2587 127 66.3
Fallow 0 35,046 1 2008 0 94.6
Forest 1550 0 62,092 689 177 96.3
Residential area 2641 3027 536 62,206 0 90.9
Water 0 0 300 3 8217 96.4
Producer's accuracy (%) 77.3 92.0 92.0 92.2 96.4

Total accuracy¼90.9% Kappa coefficient¼0.875
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of the experiment was chosen as the criterion to measure com-
putational efficiency. A lower time consumption represented a
higher computational efficiency.

The overall experiment time consumption of the three methods
with different sizes of training set and the 200,000 pixel testing
set are presented in Fig. 7. The results suggest that the training set
size has a significant influence on the computational efficiency.
The time consumptions of the three algorithms increased with an
increased training set size. The BPNN method demonstrated the
highest time consumption of the three algorithms. It required
approximately ten hours to complete the classification process
Fig. 6. (a) The original remote sensing image. (b) The classification result obtained by
(d) The classification result obtained by the ACO method.
when 50,000 pixels were used as the training set. Moreover, the
computational efficiency of the BPNN method would dropped
sharply with the increase of the training set size. The ACO method
was significantly faster than the BPNN method when the same
training set was used. It required less than 1 h to classify the
testing set with the largest training set. The proposed method
performed the best of the three algorithms for computational ef-
ficiency; it required the minimum time for the experiment.

Fig. 8 presents the overall time consumption of the three al-
gorithms with the 2500 pixel training set and different sizes of
testing set. The results indicate that the training set size had a
the proposed method. (c) The classification result obtained by the BPNN method.



Fig. 7. Effects of training set size on computational efficiency.
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different impact on the computational efficiency of the three al-
gorithms. The time consumption of the proposed method was
approximately linear, upwards from the first testing set to the fifth.
The time consumptions of the BPNN and ACO methods also grew
linearly with the size of the testing set, however, the growth rates
were marginal. Therefore, it can be concluded that the testing set
size had a strong influence on the computational efficiency of the
proposed method; it had a minimal influence on the computa-
tional efficiency of the BPNN and ACO methods.

The results in Figs. 7 and 8 indicate that the size of the data set
had a different impact on the computational efficiency of the three
algorithms. Because the KNN model is employed as the classifi-
cation model of the proposed method, the similarity between
every testing sample and every training sample must be calculated
during the experiment. Therefore, both training set size and test-
ing set size had a substantial influence on the computational ef-
ficiency of the proposed method. For the BPNN method, increasing
iterations were required to train the BPNN model with the growth
of the training set size. Therefore, the time consumption of the
training phase continued to increase. In the testing phase, the
testing data were input into the model and the class labels were
output by the model. Compared with the training phase, the
testing phase required a minimal amount of time to classify the
testing data. Hence, the computational efficiency was primarily
Fig. 8. Effects of testing set size
influenced by the training set size and only marginally influenced
by the testing size for the BPNN method. Further, the computa-
tional efficiency of the ACO method was also mainly affected by
the training set size and only slightly influenced by the testing
size. The training strategy of the ACO method is to identify clas-
sification rules and remove the samples that are covered by the
rules from the training set. Then, the testing data are labeled with
class information according to the classification rules in the testing
phase. Similar to the BPNN method, the testing phase of the ACO
method required significantly less time than the training phase.

The comparison of the three methods on computational effi-
ciency with the same size of data set indicates that the proposed
method outperformed the BPNN and ACO methods considerably.
The main reason is that both the BPNN and ACO methods require
excessive time constructing the feature space in the training phase
because they require iterative training procedures to represent the
features. Conversely, the proposed method employs VSM to con-
struct the feature space and hence, does not require iterations to
represent the features. The time consumption in the training
phase is significantly reduced. Even though the proposed method
requires more time than the other two algorithms in the testing
phase, the loss of computational efficiency is compensated by the
fast training procedure.
on computational efficiency.
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5. Conclusion

A new method for remote sensing image classification was
successfully implemented in this research work. To extract fea-
tures from the remote sensing data, a discretization algorithm
based on information entropy was employed. Then, VSM was used
to represent the features and construct the feature space. Finally,
because it is one of the most effective classification algorithms for
VSM, a KNN model was employed to classify the testing data set.
The main novelty of the proposed method is applying a classical
text classification algorithm to remote sensing image classification.
The combination of VSM and KNN is widely used in text classifi-
cation and high classification accuracy can be achieved using this
method (Yang, 1999; Soucy and Mineau, 2005; Xia and Du, 2011).
However, this method is seldom applied to remote sensing image
classification because it is difficult for VSM to process continuous
values. Using the proposed method, the band values are effectively
transformed into discrete values such that VSM can be applied to
represent the features of the remote sensing data.

The experiments in this study aimed to evaluate the applic-
ability of the proposed method in remote sensing image classifi-
cation and compared the performance of the proposed method
with two other algorithms, the BPNN and ACO methods. The as-
sessment of applicability included not only classification accuracy
but also computational efficiency. The experimental results iden-
tified specific conclusions. First, the classification accuracy of the
proposed method was influenced by the feature dimensionality
and training set size. A higher accuracy could be achieved by a
higher feature dimensionality or a larger training set size. Sec-
ondly, the computational efficiency of the proposed method was
influenced by the size of the training and testing sets. The com-
putational efficiency of the proposed method decreased as the
data set size increased. The results also indicated that the pro-
posed method improved both classification accuracy and compu-
tational efficiency compared with the BPNN and ACO methods.
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