
Computers and Geosciences 109 (2017) 247–257
Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier .com/locate/cageo
Research paper
New spatial upscaling methods for multi-point measurements: From normal
to p-normal

Feng Liu a,c, Xin Li a,b,c,*

a Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
b Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
c University of Chinese Academy of Sciences, Beijing 100049, China
A R T I C L E I N F O

Keywords:
Generalized Gaussian distribution
Multi-scale
Least power estimation
Geostatistics
Soil moisture
Heihe Watershed Allied Telemetry
Experimental Research (HiWATER)
* Corresponding author. Key Laboratory of Remote Sen
China.

E-mail addresses: liufeng@lzb.ac.cn (F. Liu), lixin@lzb

http://dx.doi.org/10.1016/j.cageo.2017.08.001
Received 10 November 2016; Received in revised form 6
Available online 2 August 2017
0098-3004/© 2017 Elsevier Ltd. All rights reserved.
A B S T R A C T

Careful attention must be given to determining whether the geophysical variables of interest are normally
distributed, since the assumption of a normal distribution may not accurately reflect the probability distribution
of some variables. As a generalization of the normal distribution, the p-normal distribution and its corresponding
maximum likelihood estimation (the least power estimation, LPE) were introduced in upscaling methods for
multi-point measurements. Six methods, including three normal-based methods, i.e., arithmetic average, least
square estimation, block kriging, and three p-normal-based methods, i.e., LPE, geostatistics LPE and inverse
distance weighted LPE are compared in two types of experiments: a synthetic experiment to evaluate the per-
formance of the upscaling methods in terms of accuracy, stability and robustness, and a real-world experiment to
produce real-world upscaling estimates using soil moisture data obtained from multi-scale observations. The
results show that the p-normal-based methods produced lower mean absolute errors and outperformed the other
techniques due to their universality and robustness. We conclude that introducing appropriate statistical pa-
rameters into an upscaling strategy can substantially improve the estimation, especially if the raw measurements
are disorganized; however, further investigation is required to determine which parameter is the most effective
among variance, spatial correlation information and parameter p.
1. Introduction

The multi-scale problem indicates that the scale-dependent variation
in a geophysical variable should be considered when observing or esti-
mating the value of that variable at diverse scales. This problem has
received significant attention (Atkinson and Tate, 2000; Famiglietti et al.,
2008; Gruber et al., 2013; Mandelbrot, 1967) and has become one of the
most important challenges faced by scientists performing Earth obser-
vations and simulations because the multi-scale problem has a general
impact on land surface data comparisons, assimilations, and so on. The
multi-scale problem has once again emerged due to improvements in
Earth observation and modeling technologies and the increase in geodata
availability.

In general, multi-scale problems in geoscience stem from the fact that
the relationships between geophysical variables at different scales are
highly non-linear. This non-linearity is mainly caused by the represen-
tativeness issue of observations or simulations. That is, one can only
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detect the “truth” of a geophysical variable at a single support in space
and time (Li, 2014), whereas most models simulate the dynamic pro-
cesses at a certain scale, with reduced performance at other scales. This
non-linearity is also caused by the lack of some physical information. For
example, this issue arises when using a numerical operator to replace an
ideal model or enforcing the use of traditional 2-point statistics to address
the connectivity patterns (Meerschman et al., 2013; Renard and Allard,
2013). Therefore, if the measurement scale differs from that of a model
(Li, 2014; Vereecken et al., 2007; Wang et al., 2004), data comparison or
transformation from one scale to another scale must be performed,
thereby possibly introducing significant uncertainties into the
modeling process.

One can address this problem using upscaling methods, which
consider the transformation of heterogeneous land surface characteristics
at fine scales to homogeneous characteristics at larger scales (Atkinson
and Tate, 2000; Vereecken et al., 2007). There are three main types of
transformation processes in upscaling methods, i.e., dynamic process
titute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
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upscaling (Vereecken et al., 2007), statistical upscaling (Atkinson and
Tate, 2000) and mixed upscaling (combining the first two). Dynamic
process upscaling methods focus on modeling the physical phenomena
across different scales, and partial differential equations are generally
formulated in this process. The upscaling methods in this study, unless
otherwise indicated, are only related to statistical upscaling. This study
does not include dynamic process upscaling methods or mixed methods.
One of the easiest methods involves directly regarding a single-point
measurement as a large-scale “truth”. However, this method produces
large errors because point measurements simply represent the state of the
geophysical variable at its own support. If these types of data are directly
converted to the desired scale, they will not maintain their original
spatial representativeness (Atkinson and Tate, 2000; Woodcock and
Strahler, 1987) and will not sufficiently represent the true value of a
geophysical variable at the large-scale. Other methods, such as the
weighted spatial average of multi-point measurements, can effectively
improve the upscaling results. Based on this concept, various in situ
observation networks (Gruber et al., 2013; Jin et al., 2014; Molotch and
Bales, 2005) have recently been launched. Meanwhile, the demand for
advanced upscaling methods continues to gradually increase.

Generally, the assumption of a normal distribution is not enough to
represent the statistics of a geophysical variable of interest. Among the
commonly used upscaling methods, statistical algorithms based on the
best linear unbiased estimator (BLUE) are generally accepted. In these
types of algorithms, various statistical parameters, such as the variance
and spatial correlation, are used to construct the unbiased condition.
Unfortunately, these methods are strongly dependent on the condition
that the geophysical variable of interest is normally distributed (Chen
et al., 1994). However, because uncertainty exists everywhere in the real
world, it is difficult to obtain a precisely normal distribution. For
example, parametric uncertainties can result in a non-normal distribution
(Kitanidis, 1986). Even if strict quality control has been applied and the
true distribution of a geographical element is normal, measurements,
which can be considered samples of this distribution, are nearly normal
but not strictly normal. Furthermore, if outliers are present in the data,
the normal distribution-based methods may be very inaccurate, because
they are used to find the maximum likelihood estimates by minimizing
the least square error. These methods are less robust than some methods,
such as those based on minimizing the least absolute error (Nyquist,
1980; Pennecchi and Callegaro, 2006). For example, a previous experi-
ment (Wang et al., 2004) showed that the averaging method produces
substantial deviations when the sample is non-normal.

Consequently, although the normal distribution assumption can be
used to construct a simple and fast algorithm, this type of method will
most likely result in a significant difference between the estimate and the
“truth” because the geophysical variables of interest are not always
strictly normal. This deficiency has motivated the development of a more
reasonable statistical method to evaluate the relationships between
measurements at different scales. As an extension of the normal distri-
bution, the p-normal distribution (also known as generalized Gaussian
distribution) and its best linear unbiased estimation, the least power
estimation (LPE), have been studied (Money et al., 1982; Nyquist, 1980;
Pennecchi and Callegaro, 2006; Pascal et al., 2013) and widely applied in
fields such as signal processing (Chen et al., 1994; Krupi�nski and Purc-
zy�nski, 2006; Kuruo�glu et al., 1998; Yarlagadda et al., 1985) and
metrology (Pennecchi and Callegaro, 2006). This technique further
provides an extra parameter (the shape parameter p) to handle
more samples.

This study mainly addresses the following scientific issues. (1) How
can new upscaling methods based on p-normal distributions be devel-
oped? (2) Do these methods perform better than classic methods? (3)
What conclusions can we draw from the comparisons between the p-
normal-based upscaling methods and the normal-based methods?

This paper is organized as follows. Chapter 2 presents the construc-
tion of a spatial model with correlation information and the development
of the corresponding upscaling algorithms for multi-point measurements
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based on the concepts of p-normal distributions and LPE. In chapter 3, six
upscalingmethods are used in two experiments to test their performances
using various types of data. Finally, these upscaling methods are dis-
cussed, and conclusions are presented.

2. Upscaling strategy

Generally, one can assume that an upscaling strategy can be expressed
as follows:

xt ¼ fupðXoÞ þ ε, where xt is the “truth” of the geophysical variable of
interest at a larger scale, fupð⋅Þ is the upscaling method, Xo ¼ fxoi

��i ¼
1;⋯; ng represents a column vector comprised of simultaneous multi-
point measurements, and ε is error. Due to the multi-dimensional mea-
surement Xo, fupð⋅Þ is based on the assumption that the geophysical var-
iable of interest features either a multivariate normal or a multivariate
non-normal distribution. However, as stated in the Introduction, it is
unreasonable to consider the measurements normally distributed.

2.1. p-Normal distribution

The normal distribution consists of two parameters (the location and
scale parameter, or mean and variance). Therefore, its probability density
function (PDF) includes only a few parameters and fails to explain other
samples in which the concentrations of values around the mean are
different from that of a normal distribution. Compared to the normal
distribution, the p-normal distribution, also known as the generalized
Gaussian distribution (Krupi�nski and Purczy�nski, 2006), is better suited
to a wider range of samples. The standard formula of a univariate
p-normal distribution is as follows:

φðxoÞ¼ pτ
�
2σΓ

�
1
p

�
exp
�
�
hτ
σ
jxo� xtjp

i�
;τ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ

�
3
p

��
Γ

�
1
p

�vuut ; (1)

where xt , σ and Γð⋅Þ are the available measurements, standard deviation
and Gamma function, respectively, and p is an additional parameter that
creates a new degree of freedom for the PDF. Therefore the p-normal
distribution can be regarded as a generalization of the normal distribu-
tion. If p ¼ 1; p ¼ 2 or p→∞, the samples are distributed according to a
Laplace, normal or uniform distribution, respectively.

The relationship between p and kurtosis is significant: a large p is
associated with high-precision measurements with small sample errors,
whereas a small p is associated with a peaked and heavy-tailed sample
distribution (Nyquist, 1980). An empirical formula (Money et al., 1982)
was correspondingly introduced to estimate p:

p ¼ 9	bk2 þ 1; (2)

where the sample kurtosis bk is bk ¼ ½mPm
j¼1ðxoj � xoÞ4�=½Pm

j¼1ðxoj � xoÞ2�2
(Pennecchi and Callegaro, 2006) and m, xoj and xo represent the amount
of data, the measurements at time j and the average value of the mea-
surements, respectively. Generally, the geophysical variable of interest
can be characterized as having distributions between normal and very
non-normal; thus, 1 � p � 2 (Pennecchi and Callegaro, 2006).

2.2. Least power estimation

Generally, each type of distribution is associated with a correspond-
ing maximum likelihood estimation method. For example, the estimation
method for normal distributions is the least square estimation (LSE).
Similarly, the maximum likelihood estimation for a p-normal distribution
is LPE.

The simplest estimation equation is as follows:

Xo ¼ BXt þ V ; (3)
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which means that the available measurements Xo are the estimates of the
“truth” Xt ¼ ðxt1; xt2;⋯; xtnÞT , where B ¼ diagðβiÞ and V ¼ fvig; i ¼
1; 2;⋯; n represent the estimation coefficient matrix and estimation error
vector, respectively. Based on Equation (1), the joint PDF of all available
measurements is as follows:

φ ¼
Yn
i¼1

φi



xoi
� ¼ Qn

i¼1piτi

2n
Qn

i¼1σiΓ
�

1
pi

� exp �
Xn
i¼1

�
τi
σi

��xoi � βix
t
��pi!;

i ¼ 1;⋯; n

(4)

where τi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ
�
3
pi

�.
Γ
�
1
pi

�r
.Equation (4) can be regarded as multivariate

generalized Gaussian distribution (Pascal et al., 2013) assuming that
each element of the measurement vector is observed independently. This
assumption results that the scatter matrix in multivariate generalized
Gaussian distribution is an identity matrix. However, it does not mean
that there is no spatial correlation between the measurements. The
missing spatial correlation will be compensated by a geostatistical
strategy in the next section.

Note that σi, pi and τi are known, so obtaining the maximum of φ is
equivalent to finding the minimum of the following likelihood function:

L ¼
Xn
i¼1

�
τi
σi

��xoi � βibx��pi ¼Xn
i¼1

�
τi
σi
jvij
pi

; (5)

where the “truth” xt is replaced by a large-scale estimate bx, and the error

vi ¼ xoi � βibx. Setting ∂L=∂bx ¼ 0; qi ¼ τi=σi
and sgnðviÞ ¼

8<: 1; vi >0
0; vi ¼ 0
�1; vi <0

yields the following:

∂L=∂bx ¼
Xn
i¼1

βiq
pi
i pijvijpi�1sgnðviÞ ¼

Xn
i¼1

βiq
pi
i pijvijpi�2vi ¼ 0: (6)

If the error weight matrix is defined as
W ¼ diagðqpii pijvijpi�2Þ; i ¼ 1;⋯; n, then the matrix form of Equation (6)
yields BWV ¼ 0. With regard to V ¼ Xo � Bbx, the estimation function is
as follows:

bx ¼ ðBTWBÞ�1BWXo: (7)

Equation (7) introduces a promising way to estimate xt using the
statistical parameters of measurements and also presents a nonlinear
least power problem, which is parameterized by its arguments B and W .
To solve this problem requires assigning an initial value to bx and iterative
optimization, we consequently develop the LPE algorithm based on
iteratively reweighted least squares (IRLS) (Kuruo�glu et al., 1998; Yar-
lagadda et al., 1985) as follows:

(I) Let bxð0Þ be an arbitrary initial value (to quickly obtain the desired
result, LSE is recommended).

(II) viðjÞ ¼ xoi � βibxðjÞ
(III) WðjÞ ¼ diagðqpii pijviðjÞjpi�2Þ
(IV) bxðjþ 1Þ ¼ ½BTWðjÞB��1½BTWðjÞ�Xo

(V) Stop the algorithm if jbxðjÞ � bxðj� 1Þj is less than a sufficiently
small positive number or j is larger than a maximum number of
iterations, otherwise go to (II).

2.3. Spatially correlated LPE

According to the logic of BLUE, the estimate of a geophysical variable
can be regarded as a weighted linear combination of multi-point mea-
surements at different scales. Therefore we can assume that each point-
scale measurement is a linear combination of other point-scale
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measurements and the truth of the geophysical parameter at the large
scale. The ith point-scale measurement xoi is as follows:

xoi ¼ βiix
t þ
X
j≠i

βijx
o
j þ vi ¼ βiix

t þ Ri þ vi; i ¼ 1;⋯; n; (8)

where βii and βij are linear weights, and Ri ¼
P
j≠i

βijxoj . This relationship
can also be written in matrix form:

Xo ¼ ðB E Þ
�
Xt

R

�
þ V ; (9)

where B ¼ diagðβiiÞ;R ¼ fRig is an n-dimensional vector, and E is the n�
n identity matrix.

Compared to estimation Equation (3), Equations (8) and (9) imply
that βii represents the linear spatial relationship between xoi and xt , such
that xoi can be considered as a measurement of xt at the location of xoi ,
and βij represents the relationships between xoi and measurement xoj . βii
also represents the degree of importance of the estimate xt to xoi . Due to
the heterogeneity of the region of interest, this degree is not only posi-
tively correlated to the spatial similarity between xoi and xt but also
negatively correlated to the similarities between xoi and other measure-
ments. Therefore, the weights are associated with the heterogeneity of a
geophysical variable, and this heterogeneity has a negative impact on the
representativeness of point-scale measurements xoi .

A spatial estimation equation should take into account the correlation
between measurements at different locations. Thus, we construct multi-
scale spatial models based on two typical methods: geostatistics and in-
verse distance weighting (IDW). The former method mainly uses ordi-
nary kriging, which is a typically generalized least square regression
algorithm (Goovaerts, 1997) and can be regarded as the maximum
likelihood estimator only if the measurements rely on the normality
assumption, whereas the latter method does not depend on this
assumption. Both are applied to the upscaling algorithms in this study
and are abbreviated as GSLPE and IDWLPE.

According to geostatistics and Equation (8), the spatial model of
GSLPE is as follows:

xoi ¼ λi;0bx þ Ri þ vi; (10)

where βii ¼ λi;0 and βij ¼ λi;j; j ¼ 1;⋯; i� 1; iþ 1;⋯; n. The kriging
weight vector λi ¼ ðλi;0; λi;1;⋯; λi;i�1; λi;iþ1;⋯; λi;nÞT can be calculated
using the equations of ordinary kriging (Goovaerts, 1997):

8>><>>:
Xn

k¼0;k≠i

λi;kγ


cj � ck

�� ξ ¼ γ


cj � ci

�
Xn

k¼0;k≠i

λi;k ¼ 1
; j ¼ 0; 1;⋯; i� 1; iþ 1;⋯; n

(11)

where ξ is the Lagrange multiplier, γð⋅Þ is a semivariogram, ci is the
geographic location where xoi is measured, and c0 is the geometrical
center coordinate of the study area.

In Equation (10), β is replaced by the kriging weight vector λ, which is
also a normalized weight with respect to the weights between xoi and
other measurements. Here, the weight vector λ is collected in a different
way from the regular kriging methods. According to Equation (8), which
requires the true value xt to be a component of xoi , we first assume the
unknown estimate bx is available and its geographic coordinate is the
geometrical center coordinate of the study area c0, then the ordinary
kriging equation with respect to xoi is formulated by bx and
xoj ðj ¼ 1;⋯; i� 1; iþ 1;⋯; nÞ, from which the desired kriging weight

vector λ is obtained. Note that the unknown estimate bx will not result in
unsolved equations because the semivariograms associated with bx are
obtained by a fitting model (such as an exponential model) that was
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formulated using all of the available measurements in advance.
Compared to the modeling of GSLPE, the spatial modeling of IDWLPE

is much simpler. In Equation (8), let βii ¼ di;0=
Pn

j¼0di;j and
βij ¼ di;j=

Pn
j¼0di;j, where di;j is the distance between geographic locations

ci and cj.
Regarding the spatial estimation in Equation (8), Equations (5) and

(7) can be extended as follows in Equations (12) and (13), respectively:

L ¼
Xn
i¼1

�
qi

����xoi � ð βii 1 Þ
� bx
Ri

�����pi ¼Xn
i¼1

½qijvij�pi ; (12)

bx ¼ ðBTWBÞ�1ðBWÞðXo � RÞ: (13)

Therefore, the GSLPE and IDWLPE algorithms are the same as the
LPE, except that the iteration equation in step (IV) is changed tobxðjþ 1Þ ¼ ½BTWðjÞB��1½BTWðjÞ�ðXo � RÞ according to Equation (13).

3. Experiments

3.1. Methods

The numerical experiments were designed to compare upscaling
methods that are based on normal and non-normal distributions.

We adopted six methods: the multi-point arithmetic average (AA),
LSE, block kriging (BK) (Goovaerts, 1997), LPE, GSLPE and IDWLPE. The
first three methods can only obtain the corresponding maximum likeli-
hood estimator based on normality. Among them, the spatial arithmetic
average assumes that the upscaling estimator of the multi-point mea-
surements is a mean. The LSE has been extended by weighting the
different measurement variances in a linear combination equation, and
BK provides a result by introducing the spatial correlation. These six
algorithms focus on different combinations of statistical parameters, and
their relationships are shown in Fig. 1.

In Fig. 1, four statistical parameters – location, scale, p and spatial
correlation information – are listed, and the last three parameters are
used to generate the three corresponding shaded circles. The overlapping
regions of the shaded circles indicate that the method(s) in this region
should consider the corresponding parameters. Thus, the arithmetic
average simply focuses on the location parameter, the LSE algorithm
focuses on the scale parameter, and BK algorithm focuses on the spatial
correlation. Compared to the LSE, the LPE further introduces the p-
normal distribution, and both the GSLPE and IDWLPE incorporate all
four parameters.

3.2. Synthetic experiment

In the synthetic experiment, a spatial correlation region was
Fig. 1. The relationships with respect to four statistical parameters between the six
upscaling methods. An overlapping region of shaded circles means all the involved pa-
rameters should be considered. (μ: location parameter, σ: scale parameter, p: p parameter,
γ: spatial correlation information).
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established. This region was regularly discretized using 9� 9 points (see
Fig. 2), and a measurement was available at each point, except the red
one at the center of the region. All of the available synthetic measure-
ments were generated using a spatially correlated normal random field
(generated by the geoR package, see: http://leg.ufpr.br/geoR/), of which
the spatial mean, nugget, sill and range of the geostatistical semivario-
gram model were 10, 1, 2, and 10, respectively. Therefore, the study
region is mean homogeneous, and the macro-scale true value of the re-
gion can be regarded as 10.

In the synthetic experiment, three numerical tests were conducted to
evaluate the performances of each method.

(1) An accuracy test was used to identify the method that generated
the best upscaling estimates. The criterion of this test is the mean
absolute error (MAE), which is given as εa ¼ 1

m

Pm
i¼1jbx � xt j,

where m is the simulation time, and a smaller εa indicates a better
performance.

(2) A stability test was used to calculate how well an upscaling
method reacted to the diverse number of point measurements.
Based on the accuracy test, s points (s ¼ 2, 3, …, 80), which were
randomly selected from measurements at the same observation
time, were upscaled using eachmethod. The criterion of this test is
the averageMAE, which is given as εa ¼ 1

Nr

PNr
i¼1εa, whereNr is the

repeat time for each s.
(3) A robustness test was used to determine how well each upscaling

method reacted to the point measurements with a given number of
outliers. This test was also based on the accuracy test. Specifically,
each measurement in the accuracy test was randomly amplified or
minimized according to a particular probability, and the MAE
values of these modified measurements were calculated.
3.3. Real-world experiment

A real-world experiment was performed using soil moisture data
collected during an intensive observation period of the Heihe Watershed
Allied Telemetry Experiment Research (HiWATER) project (Li et al.,
2013) in 2012. The relevant study region is located in the 962� 962 m2
Fig. 2. The region of 9� 9 simulated point-scale measurements for the synthetic exper-
iment. All of the measurements were known except the red point at the center of the
region. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

http://leg.ufpr.br/geoR/
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Yingke-Daman irrigation district in the midstream region of the Heihe
River Basin. Using eco-hydrological wireless sensor networks, a
point-scale to footprint-scale observational network of soil elements was
installed. Additional details of this project have previously been pub-
lished (Jin et al., 2014; Li et al., 2013).

In the sensor networks, the point measurements were based on 10
WATERNET and 50 SoilNET sensors that simultaneously collected point-
scale soil data at depths of 4 and 10 cm. The footprint -scale measure-
ments were COsmic-ray Soil Moisture Observing System (COSMOS) ob-
servations. COSMOS provides footprint-scale soil moisture data collected
at a maximum depth of 76 cm using a cosmic-ray fast neutron probe (Zhu
et al., 2015). The collection frequency and spatially representative scale
were 6 times per hour and 10 cm for the point measurements and once
per hour and 700 m for the footprint measurements.

In the real-world experiment, all of the observational instruments
were carefully quality controlled and calibrated (Jin et al., 2014; Zhu
et al., 2015). We regarded the COSMOS data as the truth at a large scale
and then upscaled the point-scale measurements using diverse upscal-
ing methods.

To make the point and footprint measurements correspond to one
another, appropriate data preprocessing techniques were applied. First,
for equivalence with the COSMOS data in terms of both the collection
frequency and observational depth, the hourly means of the point mea-
surements at depths of 4 and 10 cm were vertically averaged. Second, the
COSMOS data were retrieved by COSMIC (COsmic-ray Soil Moisture
Interaction Code) modeling after smoothing the measured cosmic-ray
neutron counts (Han et al., 2014).

There are 4 WATERNET and 20 SoilNET sensors at the scale of
COSMOS that can be used to provide experimental data (Fig. 3). The
vectors Xo and C ¼ fcig, which can be used to construct the spatial
model, are composed of hourly means and geographic coordinates of
Fig. 3. The configurations of point-scale and footprint-scale measurements in the study area
SoilNet is 0.1 m (regarded as zero or point scale), and the support scale of COSMOS is 700 m
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these 24 point measurements, respectively.
3.4. Estimation of parameters

Before the experiments, the corresponding statistical parameters of
each point measurement dataset should be estimated. We use an
empirical formulation of Equation (2) to estimate p: p ¼8<:

2; bk < 3

9bk2 þ 1; others
because the p parameter ranges from 1 to 2 in real-

world problems (Pennecchi and Callegaro, 2006).
In the synthetic experiment, the variance is σ2i ¼ 1

m

Pm
i¼1ðxoi � xoÞ2,

where i, m, xoi and xo represent the ith point measurement, the amount of
data, the observation at time i and the location parameter, respectively.
In the real-world experiment, according to calibration accuracies, the
observational precisions (variances) of the SoilNET and WATERNET
sensors were 0.010 m3 m�3 and 0.032 m3 m�3, respectively.
3.5. Results

For the accuracy test of the synthetic experiment, at each simulated
point, 1000 simulations were generated by 1000 random fields according
to the location of the point. These 1000 random fields are independent
identical distribution, i.e., they are generated by the same semivariogram
model introduced in Section 3.2.

The frequency distributions of many geophysical variables feature
sharper peaks and heavier tails than those of increments Δx ¼ xðd ¼
jc1 � c2jÞ ¼ x1 � x2 when the distance d is small and that the opposite
case is true when d increases (Panzeri et al., 2016; Riva et al., 2015). This
phenomenon can be introduced as a criterion for determining whether a
during an intensive observation period of HiWATER. The support scale of WaterNet and
(regarded as macro-scale).
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normal distribution is able to characterize the distribution of synthetic
measurements. The synthetic measurements in this experiment can meet
this criterion when the kurtosis of increments (decreasing progressively
from 3.6084 to 2.8854) is significantly larger than that of samples
(2.863) at small distances (1 � d � 9) then becomes smaller (from
2.7302 to 2.5771) when distances increase (9 � d � 10). These results
prove that a method based on a normal distribution is not recommended
in synthetic experiments.

The six methods were implemented at each simulation time to
calculate the upscaling estimates. The results of the time series are
illustrated in Fig. 4(a), and (b) zooms in on the results of the first 50
simulation times, where the gray dots represent the simulation mea-
surements and the true macro-scale value is 10. In Fig. 4(b), the in-
adequacy of the BK method is evident, whereas the other results are
indistinguishable.

To further compare the six methods, the MAE values between the
upscaling results and the macro-scale values are shown in the first row of
Table 1. According to Table 1, GSLPE produced the smallest MAE, indi-
cating that this method had the highest precision. We again assert that
despite being generated by a normal distribution-based field, the samples
cannot be considered to have strict normal distributions, and it is better
to apply a p-normal distribution to describe them. In the experiment
based on normally distributed samples, LPE performed slightly better
than LSE, and GSLPE performed the best because it also considers the
spatial information. All of the methods exhibited similar MAE values,
except BK and IDWLPE, which yielded the worst results, possibly because
these twomethods have difficulty capturing the heterogeneity in a region
based on a normal random field. For IDWLPE, it is unreasonable to
Fig. 4. Simulation measurements and estimates using the six upscaling methods (the simulation
line is the mean of the true value, and the lines with different colors are the results generated by
the reader is referred to the web version of this article.)
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assume that the spatial correlation is only influenced by distance, and BK
cannot correctly obtain the spatial correlation information because the
study region is random.

Table 1 also shows the results of the robustness test. In this test, there
was a 5% chance of each simulation measurement being approximately 5
times or 20% of its original value. The results are shown in the second
and third rows of Table 1. Due to substantial robustness of the LPE and
IDWLPE (Nyquist, 1980; Pennecchi and Callegaro, 2006), the MAE
values barely increased. In contrast, the MAE values of the AA, BK and
LSE methods significantly increased because these methods completely
depend on minimizing the least square error and are therefore less
robust. Compared to IDWLPE, GSLPE performed poorly and had a larger
increment. This difference arose because although the iterative process of
the GSLPE method was based on a p-normal distribution, the matrix of
the spatial model Bwas deduced by ordinary kriging, which is less robust
and provides unreasonable weights in the presence of considerable out-
liers in themeasurements. Consequently, matrix B negatively affected the
robustness during each iteration, and these errors accumulated and
eventually produced poor estimates. IDWLPE had no requirements
regarding the distribution characteristics of the measurements; thus, its
performance was similar to that of the LPE method based on the
robustness test.

The results of the stability test are illustrated in Fig. 5. Obviously, the
estimates can be improved by increasing the number of simulation
measurements used in all of the methods. The improvements were more
significant for s < 10, and all of the methods produced stable results when
s > 20. Notably, all of the MAE values fluctuated considerably when
s < 10 and fluctuated much less when s > 20. This result confirmed that
time is (a) m ¼ 1000, (b) m ¼ 50). The dots present the simulation measurements, the gray
six upscaling methods. (For interpretation of the references to colour in this figure legend,



Table 1
The upscaling results of the six methods in the synthetic experiment. The first row is the MAE (Mean Absolute Error) values between the upscaling results and the macro-scale values in the
accuracy test, and the second and third rows show the MAE values and their changes in the robustness test where each measurement is randomly amplified or minimized according to a
particular probability.

AA BK LSE LPE GSLPE IDWLPE

MAE 0.8738 0.9998 0.8727 0.8718 0.8670 0.9127
MAE (after modification) 1.2384 1.5837 1.2066 0.8779 1.065 0.9196
Increment 41.73% 58.40% 38.26% 0.70% 22.84% 0.76%

F. Liu, X. Li Computers and Geosciences 109 (2017) 247–257
the reliability of the upscaling estimate could be increased by increasing
the number of measurements. In addition, the disadvantages of BK
indicated that a normal random field could have an adverse effect on the
study of spatial correlation information.

In the real-world experiment, all point measurements were grouped
according to the observation times, and each group of measurements was
used to estimate the footprint-scale data (COSMOS data) at the same time
using different upscaling methods. In addition to the six methods pre-
viously mentioned, a cokriging algorithm in conjunction with truncated
power variogram (see Appendix, CKT is used below as an abbreviation)
was also introduced in this experiment. A truncated power variogram
model has the ability to represent multiscale overlapping random fields,
e.g., the hydraulic data of a heterogeneous unconfined fluvial aquifer
(Neuman et al., 2008) or the air permeability of an unsaturated fractured
tuff (Neuman and Di Federico, 2003); therefore, this method is also
applied to samples at diverse scales.

Fig. 6(a) shows the time series performances of the upscalingmethods
estimates and the COSMOS data from 2012-06-29 to 2012-08-30. A
shorter period version of Fig. 6(a) is shown in Fig. 6(b), focusing on only
two weeks. According to this figure, each upscaling method was found to
simulate COSMOS data trends accurately, with small differences
observed between the methods. The COSMOS data curves exhibited
substantial variations, whereas the estimates of the point measurements
fluctuated less. This result arose from the fact that the upscaling methods
smoothed the differences between the multi-point values such that the
estimates fell between the maximum and minimum point measurements.

In addition, the differences between the footprint-scale measure-
ments and the estimates were significant, especially when the value
dramatically changed. This phenomenon was partly caused by observa-
tional differences; specifically, the measurement techniques and retrieval
models of the footprint data were not the same as those used to collect the
Fig. 5. Upscaling results using different numbers of simulations (The simulation
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point data, resulting in differences between the COSMOS data and the
point measurements. Additionally, when rain or irrigation events
occurred, the response speeds of point measurements varied according to
their locations, resulting in estimates lagging behind the footprint data.
Moreover, the upscaling methods still need to be improved, highlighting
the inappropriateness of extrapolating multi-point measurements to a
non-matched representative space. This difference consequently consti-
tutes the representativeness errors between the footprint- and point-scale
measurements.

Differences among the upscaling methods were also clear. At most of
the observation times, the estimates of AA were the largest, followed by
those of the LSE and BK. Moreover, compared to other methods, the p-
normal-based methods produced much smaller estimates at a few
observation times (as shown in the red boxes in Fig. 6(b)). This phe-
nomenon may imply that some point measurements with lower values
were assigned higher weights based on the LPE, resulting in
smaller estimates.

The MAE values between the upscaling results and the COSMOS data
observed from 2012-06-29 to 2012-08-30 are listed in the first row of
Table 2. Among the first six methods, GSLPE and LPE produced the
smallest MAE values, which correspond to higher precision, and the re-
sults of the AA and BK were the worst. The results highlight the advan-
tage of p-normal-based upscaling methods and indicate that if the land
surface heterogeneity is so complex that the spatial correlation infor-
mation cannot be correctly captured by geostatistical methods, an
overreliance on kriging may result in estimates that are no better than
those obtained by a simple arithmetic average. IDWLPE performed
slightly worse than LPE, demonstrating that the IDW method failed to
understand the spatial correlation of the study area. The second and third
row of Table 2 provide the MAE values between the upscaling results and
the COSMOS data observed during the irrigation period from 2012-07-27
time is m ¼ 1000 and the repeat time for each select number is Nr ¼ 10).



Fig. 6. The soil moisture time series of the upscaling method estimates and the COSMOS data (the bold gray line). (a) Time series from 2012-06-29 to 2012-08-30 (b) A shorter period of
time series from 2012-08-05 to 2012-08-18 (c) Time series of the irrigation period from 2012-07-27 to 2012-08-02.
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to 2012-08-02 (also see in Fig. 6(c)) and the increments that compared
the MAE values during the irrigation period to those from 2012-06-29 to
2012-08-30. CKT performed poorly like AA and BK in the whole period,
and became much better during the irrigation period. The change rate of
CKT is as small as those of the methods based on the LPE. However, the
reasons for the similar increments are different. Measurements during
Table 2
The MAE (Mean Absolute Error) value of the upscaling methods (Unit: m3 m�3, %) in the real
COSMOS measurements observed from 2012-06-29 to 2012-08-30, and the second and third ro

AA BK LSE

MAE 3.4708 3.4514 3.0737
MAE (irrigation period) 5.1936 5.1240 4.2994
Increment 49.63% 48.46% 39.87%
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the irrigation period vary greatly, driving the increase in the MAE be-
tween estimates and “truth”. As stated in the robustness test, LPE-based
methods are more robust than others and produce smaller increments.
Meanwhile, point-scale measurements vary with their locations during
the irrigation period, e.g., measurements of soil moisture in irrigated
areas are much bigger than those in unirrigated areas. Therefore, soil
-world experiment. The first row is the MAE values between the upscaling results and the
ws show the MAE values and their changes during the irrigation period.

LPE GSLPE IDWLPE CKT

2.9214 2.9423 2.9867 3.4695
3.6455 4.0208 3.7556 4.4755
24.78% 36.65% 25.74% 28.99%
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moisture measurements exhibit a heavy-tailed distribution, which is
suitable for being processed by CKT and also leads to small increments.

4. Discussion and conclusions

This study included two independent experiments. The synthetic
experiment included accuracy, stability and robustness tests, and the
real-world experiment evaluated the comprehensive performance of the
upscaling methods. The results indicated that the p-normal-based
methods produced more precise macro-scale estimates compared to the
estimates based on classic methods, which assume that the measure-
ments are normally distributed and minimize the least square error to
obtain maximum likelihood estimates.

The macro-scale “truth” was represented by the mean value of the
random field in the synthetic experiment and by the COSMOS mea-
surement in the real-world experiment. The former assumption is based
on the mean homogeneity of the study region, and the latter is on the fact
that the support scale of COSMOS measurement is much larger than the
point-scale measurement. However, it is hard to conclude that the real-
world measurements exactly represent the “truth” at their own support
scale. Nonetheless, our study evaded this problem and all the macro- or
point-scale measurements in the real-world experiment were regarded as
the sum of the true value and random errors.

The effectiveness of all of the parameters in the upscaling methods
can be described as follows. First, the experiments demonstrated the
potentiality of the p parameter for improving the upscaling strategies.
Equation (2) is commonly used to calculate the parameter p in the
literature, and other methods are also recommended (Money et al., 1982;
Pennecchi and Callegaro, 2006). One risk is that all the above calcula-
tions are empirical functions. This approximate function might result in
an imprecise p parameter and, ultimately, poor upscaling estimates.
Second, compared to the p parameter, variance may be more effective for
upscaling methods. This conclusion is based on the phenomenon that AA
and BK were always inferior to the other methods with respect to vari-
ance, and also based on the fact that the differences between AA and LES
were substantially larger than those between the LSE and the LPE
(compared with AA and LSE, LSE and LPE consider the variance and
parameter p, respectively). This finding indicates that an upscaling
method can be improved considerably if the variance is used. Third, the
experiments showed that the LSE performed better than BK. However,
the results do not demonstrate that variance is a more important factor
than the spatial correlation information because in this study only simple
geostatistical models (i.e., the exponential model, BK and ordinary
kriging) were employed. Some advanced geostatistical models may more
accurately capture spatial heterogeneity and result in better estimates.
Therefore, a reasonable conclusion cannot be currently drawn regarding
which factor – variance or spatial correlation information – is more
important for upscaling strategy.

We introduced four statistical parameters in this upscaling study.
However, the results did not present sufficient evidence to prove that a
method requiring more parameters performs better. As mentioned above,
the upscaling estimates are more sensitive to variance. This phenomenon
implicates the asymmetries of functions among diverse parameters and a
lack of metrics that can be used to evaluate different upscaling methods.
We therefore believe that more tests based on simulated and observed
data are needed to develop corresponding theoretical criteria.

The results indicated that the representativeness error, which denotes
the deviation between the upscaling estimates and the corresponding
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“truth”, is still difficult to remove in statistical upscaling studies. Based on
the results of the stability test, we speculate that the representativeness
error will always have a negative impact on the results, even if the total
number of measurements approaches infinity. Additionally, in the real-
world experiment, the measurement techniques and retrieval models of
the soil moisture observations were entirely different between the
footprint-scale and point-scale; therefore, the COSMOS data and
upscaling estimates cannot be perfectly matched, even when the sam-
pling of the point measurements and the statistical upscalingmethods are
perfect. In conclusion, the representativeness error can be quantified by
statistical methods, but the best methods to control and understand this
error remain undetermined. Other uncertainties, such as the error caused
by incorrect parameter values or statistical model selection, may result in
poor upscaling as well. These factors include the setting of the repeat
time and the initial value of the algorithm, the choice of geostatistical
model and parameters (Riva and Willmann, 2009; Nowak et al., 2010)
and so on. Additional uncertainty arises from the imperfections in the
observation techniques and the use of a numeric model to simulate dy-
namic processes. This study did not involve the related error analyses,
but the fact that upscaling results can be affected by these uncertainties
cannot be ignored.

Because each method focuses on different statistical parameters and
exhibits distinct results in these numerical experiments, it is necessary to
determine which upscaling method is more adequate according to the
type of data being studied, especially when no prior statistical informa-
tion is available. First, if the measurements have been strictly pre-
processed and controlled and there are no outliers, methods based on the
normal distribution hypothesis, such as multi-point arithmetic average,
LSE or BK, are recommended because of their simplicity. In this situation,
if the upscaling results are less than satisfactory, the LPE should be used
because the measurements may not be normal, and the LPE can address
more general samples by calculating the parameter p. Second, if the raw
data are disorganized, LPE is a wise choice due to its robustness. Finally,
if slight preprocessing has been performed and the spatial correlation
information can be correctly captured, one can obtain a better estimate
using GSLPE because it is robust enough to address outliers and can also
improve the results by means of geostatistics. Note that the above con-
clusions are only based on the synthetic and real-world experiments
conducted in this study.

This study focuses on extending upscaling methods with the p-normal
distribution and exploring the possibility of upscaling multi-point mea-
surements with spatial information and the LPE. Therefore, the optimal
computation of the LPE and a thorough study to accurately capture the
spatial correlation information, such as an anisotropy analysis, were not
included. These efforts will enhance the estimation accuracy and deserve
attention in the future.
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Appendix

Multi-scale cokriging with truncated power variogram (CKT) refers to a method to estimate the value of a variable at desired scale. Consider the
following system:
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8 XM XNm
o
>>>>>>><>>>>>>>:

bx ¼
m¼2 i¼1

λm;ixm;iXM
m¼2

XNm

i¼1

λm;i ¼ 1

XM
m¼2

XNm

i¼1

λm;iγv;mðcv;u � cm;iÞ � ξ ¼ γðc0 � cv;uÞ; u ¼ 1;⋯;Nv; v ¼ 2⋯;M

(A1)

where xom;i;m ¼ 2⋯;M are the available measurements at scale sm. If s1 is the largest scale covering all the other scales, then themultiscale random fields
are overlapping and s1 > s2 >⋯> sM . The subscript m presents the scale sm; thus, xom;i is the ith measurement at scale sm, Nm is the number of xom;i, and λm;i

is the corresponding cokriging weight assigned to xom;i.
In the last Equation in (A1), cv;u and cm;i are the geographic locations where xou;vand xom;iare measured, respectively. Semivariogram

γv;mðcv;u � cm;iÞ ¼ σ2minðv;mÞ � 1
2 ðσ2v þ σ2mÞ þ ~γv;m, where σ2 is the variance of a variable at the corresponding scale, and ~γv;m ¼ ∫

μ
sm
μ
sv
γ
dn
n
; μ ¼ constantis the

truncated power variogram.
In the synthetic and real-world experiments in this paper, there are only two different scales, resulting in M ¼ 2. Equation (A1) is consequently

reduced to a system of ordinary kriging as follows:
N
8>>>>>><>>>>>>:

bx ¼
X
i¼1

λixoiXN
i¼1

λi ¼ 1

XN
i¼1

λiγðcu � ciÞ � ξ ¼ γðc0 � cuÞ; u ¼ 1;⋯;Nv

(A2)

If s1≫s2, the semivariogram reduces to γðcu � ciÞ ¼ ~γ ¼ A0d2H , where His the Hurst coefficient, A0 ¼ AΓð1� 2HÞ=2H(for exponential model,
0<H � 0:5) and dis the distance between geographic locations cuand ci.

The solution of system (A2) is based on the estimates of μ, Hand A0. Assuming that lag aand variances σ2i ; i ¼ 1;2are available, μ, Hand A0can be
found with the least square solutions of the following nonlinear system:
8 2μs H
>>>>>>><>>>>>>>:

2

1þ 2H
¼ a

Aðμs2Þ2H
2H

¼ σ22

Aμ2H


s2H1 � s2H2

�
2H

¼ σ21 � σ22

(A3)

In our study, we updated awith the experimental semivariogram at each time, and the variances σ2
1 ¼ 0:04and σ2

2 ¼ 0:0137.
The differences between LPE-based methods and CKT are clear. Compared with CKT, which performs better in a heavy-tailed distribution, the LPE-

based methods are free of the probability distributions of the geophysical variables and produce more robust results if there are some outliers in the
measurements. Furthermore, CKT specializes in capturing the multi-scale behavior of a geophysical variable ranging from the point scale to large
windows, and its estimates are explicitly related to the magnitude of the scale (see Equation. (A1)). However, the LPE-based methods are only
appropriate for point-scale measurements and the support scales of their estimates depend on how the available point measurements are sampled.
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