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The Dayana W-Mo deposit in eastern Ujumchin of Inner Mongolia is a quartz-vein type deposit in the mid-
western part of the Central Asian Orogenic Belt (CAOB). Biotite monzogranite, quartz porphyry and hornfels
hostW-Mo in quartz veins. Based on spatial relationships,molybdenite was depositedfirst followed bywolfram-
ite. This contribution presents precise laser ablation inductively coupled plasmamass spectroscopy (LA-ICP-MS)
U–Pb zircon dating and geochemical analysis of the biotite monzogranite. The U–Pb dating shows that the
monzogranite is 134 ± 1 Ma. Major and trace element geochemistry shows that the monzogranite is character-
ized by high SiO2 and K2O contents, a “Right-inclined” shape of the chondrite normalized REE patterns, enrich-
ment of large ion lithophile elements (LILEs), and depletion of high field strength elements (HFSEs) such as
Nb, P, Ba. The monzogranite is high-K calc-alkaline, has a strong negative Eu anomaly (Eu/Eu* = 0.04–0.45),
low P2O5 content, high A/CNK of N1.2, enriched in large-ion lithophile elements (LILEs; such as Rb, Th, U, Nd,
and Hf), and notably depleted in Ba, Sr, P, Ti, and Nb. These characteristics define the Dayana monzogranite as
a highly fractionated peraluminous granite. Re–Os isotopic analysis of seven molybdenite samples from the de-
posit yield an isochron age of 133 ± 3 Ma (MSWD= 2.2), which indicates that the monzogranite and ore have
the same age within error, are probably genetically related, and related to a major Early Cretaceousmineralizing
event in China known as the Yanshanian.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The Dayana W-Mo mineralization is located at East Ujumchin in
Inner Mongolia (Fig. 1). The deposit is in the southwestern margin of
the Greater Hinggan Mountain metallogenic belt (GHMMB; Fig. 1).
Recent exploration in the belt has led to the discovery of numerous
Cu, Mo, Fe, Pb, Zn, Au, Ag, and Ni polymetallic deposits, even though
grasslands and forest cover the area. Deposits discovered include the
Chaobuleng skarn Fe–Zn, Shamai W-bearing quartz-vein, Erdaohe
skarn Pb–Zn(–Ag), Taipinggou porphyry-type Mo, Chalukou porphyry
Mo(−Cu), Honghuaerji scheelite, and Duobaoshan porphyry Cu–Mo
deposits (Mao and Wang, 1999; Mao et al., 2003a, 2011; Ge et al.,
2007; Nie et al., 2010; Chen et al., 2008, 2011; Chen, 2010; Wu et al.,
2011; She et al., 2012; Xiang et al., 2012, 2014; Li et al., 2013; Liu
et al., 2013; Wang et al., 2015; Xu et al., 2015a,b; Jiang et al., in press).

Preliminary studies have recently led to the discovery of five outcrop-
ping high-gradeW- andMo-bearing quartz veins at Dayana (Fig. 2). This
contribution is on this new discovery and reports on the geology,
ces, China Academy of Geology
geochronology of mineralization andmagmatism, and geochemical char-
acteristics of the hosting rockswith the aim to better understand the gen-
esis of mineralization in the GHMMB.

2. Regional geology

The Dayana W-Mo mineralization is in GHMMB located the Central
Asian Orogenic Belt (CAOB) (Wilhem et al., 2012; Xu et al., 2015a,b;
Wu et al., 2011;) between the Siberian Craton to the north and the
North China Craton (NCC) to the south (Fig. 1). The Dongwuqi-
Nenjiang belt is bound by the Elunchun Fault to the northwest and the
Nenjiang Fault to the southeast (Fig. 1b), which is an area considered
to rich in Au, Ag, Cu, Pb, Zn, Fe, Sn, and rare metallic metals (REE; Li,
Be, Nb, Ta, and REE; Hong et al., 2003; She et al., 2012; Xu et al.,
2015a,b). The tectonic evolution of the belt is complex and has been
studied by many authors (Ge et al., 2005; Wu et al., 2011, 2015; Miao
et al., 2007; Zhang et al., 2008; Chen, 2010; Wang et al., 2012; Sun
et al., 2013; Gou et al., 2013; Xu et al., 2015a,b). In summary, these au-
thors propose the following sequence of events: (1) suturing of the
Erguna Block to the Xing'an Block during ca. 530–440 Ma; (2) closure
of Paleo-Asian Ocean during ca. 330–280 Ma; (3) subduction of the
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Fig. 1. Maps showing: (a) Relationship of study area with the Central Asian Orogen (Modified from Liu et al., 2016); (b) relationship of study area with the metallogenic belt in China
(Modified from Liu et al., 2016).
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Mongolia-Okhotsk Ocean during ca. 240–160Ma resulting in collisional
orogenic events and consequent post-collisional extensional collapse
and magmatism; and (4) evolution of the Paleo-Pacific Ocean during
ca. 150–120 Ma; and the oblique subduction of the Pacific Ocean since
ca. 150 Ma.

The Dayana W-Mo deposit is located in the grasslands of Inner
Mongolia and hosted by the poorly exposed Carboniferous-Permian
Gegen'aobao Formation, which consists of andesite, andesitic pyroclas-
tic rocks, dacite, siltstone, and thin beds of mudstone (Figs. 1, 2). An
Early Cretaceous biotite monzogranite and a Cretaceous quartz porphy-
ry dyke intrude the study area. The biotite monzogranite is part of the
Dayana Granite and covers approximately 1 km2 in area, and the quartz
porphyry dyke crosses the monzogranite trending and some of the W-
Mo mineralization (Fig. 2).

The northward-trending mineralized veins in the study area are
hosted by northward-trending dextral faults, and are cut by eastward-
trending sinistral faults. Both these faults appear to be associated with
a NE-SW orientated compressional regime, which is parallel or subpar-
allel to the quartz porphyry dyke. It is here proposed that the dyke was
emplaced in the NE-SW orientated compressional regime shortly dur-
ing the development of the faults and emplacement of the mineralized
veins, suggesting that the quartz porphyry,mineralization and faults are
broadly coeval.

3. Orebody characteristics

The biotite monzogranite in the Dayana Granite hosts mineralized
quartz veins with hydrothermal alteration bordering the vein systems.
The ore minerals include scheelite, molybdenite, chalcopyrite, native
copper, pyrite and sphalerite, with gangue minerals including muscovite,
quartz, beryl, K-feldspar, albite, and fluorite. The quartz veins have sharp
boundaries with the biotite monzogranite.

3.1. Mineralization

Preliminary studies indicate that the mineralization at Dayana is
situated towards the upper part of the biotite monzogranite and in
faults along the contact between the monzogranite and country rocks.
The mineralization appears to form a zonation from quartz-W veins to
quartz-Mo veins (Fig. 3). Over 38 quartz-W veins and 65 quartz-Mo
veins have been delineated to date.



Fig. 2. Geological map of the Dayana W-Mo mineralization.
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The mineralized quartz veins are subparallel to each other and the
quartz porphyry dipping around 75° east cutting and the biotite
monzogranite (Fig. 2). The longest mineralized vein is ~800 m long
and 1 to 2 m wide. The richest quartz-W veins are located referred to
as V3, V4 and V5, which are generally overlain by quartz-Mo veins
(Figs. 2, 3). The mineralization extends to a depth of 300 m, but this ob-
servation is based on limited diamond-drilling and the mineralization
remains open at depth (Fig. 3). The quartz-Wmineralization is lenticu-
lar in shape and broadly consists of numerous radiating or densely
distributed parallel 5 to 100 mm wide veins of WO3 in the upper parts
of large quartz veins. In detail, the mineralization in the WO3-bearing
veins consists of large single crystals of varying diameters up to 50 mm
across forming columns and needles in quartz (Fig. 4a,b). In addition,
some veins of WO3 are also located in the biotite monzogranite (Fig. 4).
The overall grade of the vein is between 0.1 and 8.8%, WO3 with an aver-
age grade of 0.81% WO3. Examples of the mineralization in diamond-
drillhole core are shown in Fig. 3.

The Mo mineralization is also widespread having a thicker width
than the W mineralization, but more limited in number. The average
grade on the Mo mineralization in the economic orebodies is ~0.12%.

Where both theMo andWmineralization are present, theMooccurs
as sporadic disseminations in the country rock bordering quartz veins,
along the edges of the quartz veins, and disseminated being intergrown
with W in quartz–K-feldspar–muscovite veins interpreted to be mag-
matic in origin.

There is a recognizable difference between the Mo- and W-
mineralized quartz veins. The quartz-Mo veins are commonly dark-
coloured, accompanied by K-feldspar and muscovite suggestive of a
pegmatitic association. These veins are often crosscut by white and
transparent quartz-W veins with a greasy luster. The quartz of in the
Mo-quartz veins is dark, and the Mo-quartz veins are fine and typically
1–5mm inwidthwith some veins being intersected by largerW-bearing
veins. This relationship indicates that the molybdenite mineralization
precedes the wolframite mineralization (Fig. 5).

3.2. Wall-rock alteration

Hydrothermal wall-rock alteration at Dayana is characterized by
greisen and a mineral assemblage of silica, epidote, muscovite (up to
5 mm long), beryl, chlorite, K-feldspar, and albite. The Mo and W min-
eralization is commonly associated with greisen, albite, K-feldspar,
and silica. Greisen containing narrow and densely distributed quartz-
mica veins is present at the top of the biotite monzogranite in the
Dayana Granite (Fig. 4d,i). Quartz-W veins, and the K-feldspar and al-
bite alteration are synchronous, located at the lower levels of the veins
(Fig. 4h), accompanied by wolframite and muscovite in some places
(Fig. 4e), and locally surrounded by quartz-mica veins. Comb-shaped
structures or re-cemented fractures are present in some of the quartz-
W veins that are 10 mm to 2 m wide (Fig. 5b). The beryl forms 3–5 mm
wide columnar crystals commonly between muscovite and quartz in
the greisen (Fig. 4d).

Sericite, chlorite, and minor amounts of pyrite are common alter-
ation minerals located along the edges of mineralized quartz veins.
The outer parts of the alteration zone are characterized by the presence
of biotite, indicative of hydrous potassic alteration.

4. Methods

4.1. U–Pb isotopic analysis

Two samples (DYN-19, DYN-30) of biotite monzogranite were col-
lected for U–Pb zircon dating from diamond-drillhole (DDH) core at



Fig. 3. Cross section showing the style of W-Mo mineralization at Davana.
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the Dayana mineralization. Sample DYN-19 is from DDH ZK0705 at a
depth of 110–112 m and DYN-30 is from DDH ZK1109 at a depth of
58–68 m. The samples were crushed and subjected to flotation and
magnetic separation to obtain over 800 grains of zircons fromboth sam-
ples, which were mounted following the procedure outlined by Song
et al. (2002). The procedure involved the selection of zircon grains
with good crystal shapes and transparency using a binocular micro-
scope. Theywere then placed on an epoxy surface for polishing, and ex-
amined for imperfections and inclusions using transmissive, reflective,
and cathode luminescence (CL) images. The CL images were obtained
using a LEO1450VP scanning electron microscope (SEM; 15 kV, 1.1
nA) at the Electronic Probe and Electron Microscope Laboratory of the
Beijing Gaonian Pilot Technology Co. Ltd. A laser ablation inductively
coupled plasma mass spectroscopy (LA-MC-ICP-MS) was used for
U–Pb zircon dating at theMC-ICP-MS laboratory in the Institute of Min-
eral Resources of the Chinese Academy of Geological Sciences. The in-
strument used is a Finnigan Neptune MC-ICP-MS coupled with a New
Wave UP-213 laser ablation system. Laser ablation was performed
with a spot diameter of 25 μm, frequency of 10 Hz, and energy density
of 2.5 J/cm2 using He as the carrier gas. In order to ensure simultaneous
reception of all target isotope signals and similarity of peak values of dif-
ferent mass numbers to obtain high-precision data, weak signals of
207Pb, 206Pb, 204Pb(+204Hg), and 202Hg were recorded using a multi-
ion counter, and the 208Pb, 232Th, and 238U signals were recorded using
a Faraday cup. Themeasurement precision of homogeneous zircon grains
for 207Pb/206Pb, 206Pb/238U, and 207Pb/235U was approximately 2% (2σ),



Fig. 4. Examples of the mineralization in diamond-drillhole core at Davana.

Fig. 5. (a) Relationship of W-veins with Mo-veins and Mo-mineralization. The Mo-veins are often cross by white and transparent quartz-W veins, and Mo-mineralization sporadically
forms disseminations in the country rock bordering quartz veins. (b) Comb-shaped structures or re-cemented fractures are present in some of the quartz-W veins.
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and the dating precision and accuracy by relevant zircon standards was
approximately 1% (2σ). Five to seven unknown samples were bracketed
with two calibration standards (GJ-1; Jackson et al., 2004) to correct for
instrumental mass bias. The sensitivity for measured Pb and U isotopes
for a 35 μmspotwas typically in the range of 4000 cps/ppm. The Plesovice
zircon was also analyzed as a test for the operating conditions to ensure
measuring precision and accuracy. Data were processed using the
ICPMSDataCal program (Liu et al., 2010). Common lead correction was
not performed for most data points 206Pb/204Pb N 1000. Moreover, 204Pb
was recorded using an ion counter, and spots with significantly high
204Pb content possibly due to the effect of common Pb (e.g. inclusions)
were not used for calculations. A Concordia plot of zircon ageswas gener-
ated using Isoplot 3.0 (Hou et al., 2009). For details of the testing process,
please refer to Hou et al. (2009). The analysis of the standard Plesovice
samples yielded an age of 338.3 ± 4.5 Ma (n= 4, 2σ), while the recom-
mended age is 337.13 ± 0.37 Ma (2σ; Sláma et al., 2008). Both of these
ages were concordant within the specified error limit.

4.2. Re–Os isotopic analysis

Seven samples of molybdenite samples were collected from the sur-
face and at depth from shafts and drives for Re–Os isotopic analysis.
Most of the molybdenite samples came from thin veins, separate blocks
from the margins of quartz veins, and the biotite monzogranite.

The Re–Os isotopic analysis was performed at the National Research
Center of Geoanalysis in Beijing, China. Refer to Du et al. (2001), Mao
et al. (2003b), and Shirey andWalker (1995) for details on the prepara-
tion of samples and separation and purification of Re and Os. An ATJA X-
series ICP-MS was used to measure the Re–Os isotope ratios, and a
Thermo Fisher Scientific ELEMENT 2HR-ICP-MS was used to measure
samples with low Re–Os contents. Re isotopes with mass numbers
185 and 187 were selected, and the isotope with mass number 190
was used to monitor Os. Os isotopes with mass numbers 186, 187,
188, 189, 190, and 192 were selected, and the isotope with mass num-
ber 185 was used to monitor Re.

4.3. Geochemical analysis

The major and trace element analyses of rocks were performed in
the Analytical Laboratory at the Beijing Research Institute of Uranium
Geology using a Finnigan MATHR-ICP-MS (ELEMENTI), according to
the method and reference data specified in the General Rules for ICP-
MS Analysis (DZ/T0223–2001). The testing temperature and relative
humidity were 20 °C and 30%, respectively.

5. Results

5.1. Zircon U–Pb age

Zircons used in the studywere sampled from the ore-bearing biotite
monzogranite. They exhibitedwell-developed oscillatory zoneswith no
inclusions. They are colourless and transparent or slightly light yellow
and irregular granular, tabular or cylindrical shaped with grain diame-
ters ranging from 40 to 150 μm. They are highly automorphic with
length to width ratios of 1:2 or 1:3. The CL image shows that the zircons
have wide alternated dark and bright rings distributed along the long
axis, and the zircon grains generally have regular straight crystal bound-
aries without irregular cores. The distinct features of the zircons used in
this study were all from magmatic crystals without inherited zircons
(Claesson et al., 2000; Rayner et al., 2005; Rubatto, 2002). A total of 25
crystal grains were selected for LA-ICP-MS zircon U–Pb dating, and the
results are listed in Table 1.

The geochemical data of zircons from the two samples show that
Sample DYN-19 has Th and U contents of 86.8 × 10−6 – 1388.8 × 10−6

and 277.3 × 10−6 – 1515.4 × 10−6, respectively, and a Th/U ratio of
0.20–1.84. Sample DYN-30 has Th and U contents of 33.5 × 10−6 –
3809.7 × 10−6 and 173.0 × 10−6 – 2008.0 × 10−6, respectively, and a
Th/U ratio of 0.17–1.82. The zircons from the two samples exhibit some
similaritywith bothhaving higher Th andU contents, thus yielding darker
CL images (Fig. 7).

A total of 16 spots were selected out of the 25 spots obtained from
sample DYN-19 for this study, while the other points (DYN-19-1, 3, 4,
10, 13, 14, 16, 23, and 25) were excluded because their 206Pb/238U con-
cordances are significantly lower than 90%, owing to their higher con-
tents of common lead. The chosen 16 spots had similar 207Pb/206Pb,
206Pb/238U, and 207Pb/235U ages. In this study, the zircon crystallization
age refers to the 206Pb/238U age suitable for their relatively young
ages. The 206Pb/238U ages of the 16 zircons are within or near a concor-
dant line (Fig. 6a). The Concordia age is 134 ± 1 Ma (MSWD = 0.41),
and the 206Pb/238U weighted average age is 135 ± 1 Ma. A total of 20
spots were selected from 25 analyzed spots obtained from Sample
DYN-30, while the other data points (DYN-30-3, 4, 6, 10, and16) were
excluded because of their 206Pb/238U concordance is significantly
lower than 90%, owing to their higher common lead content. The select-
ed 20 spots had similar 207Pb/206Pb, 206Pb/238U, and 207Pb/235U ages
(Fig. 6b), with a Concordia age of 135 ± 1 Ma (MSWD = 0.52), and a
206Pb/238U weighted average age of 135 ± 1 Ma. The two samples
have concordant ages within error, and the crystallization age of the
biotite monzogranite is interpreted as 135 ± 1 Ma.

5.2. Re–Os analysis

TheRe–Os isotopic analytical results for the seven samples ofmolyb-
denite from the Dayana W-Mo mineralization are listed in Table 2. The
Re (5.31–15.38 ppm) and 187Re (3.34–9.67 ppm) contents of the seven
samples are comparable. Similarly, the Os (0.0262–0.4987 ppb) and
187Os (7.378–21.29 ppb) contents also exhibit concordant linear rela-
tionships. Therefore, the isochron data points are reasonably apart and
suitable for the production of an accurate isochron. Regression anal-
ysis of the Re–Os model ages was performed using the equation t =
1/λ[ln(1 + 187Os/187Re)], where λ is the decay constant of 187Re,
1.666 × 10−11 a−1 (±1.02%; Smoliar et al., 1996). The results also
show that the model ages are concordant and vary within a relative-
ly narrow error range of 130–134 Ma (MSWD = 2.2). The initial Os
value is 0.06 ± 0.25, which indicates that the molybdenite contains
very little common Os. Therefore, isochron plots and weighted aver-
age data were obtained using Isoplot 3, which yield an isochron age
of 133 ± 3 Ma and a similar weighted average age of 132 ± 1 Ma
(Fig. 8a,b). The isochron and weighted average ages are concordant
within the specified error limit, indicating data reliability, and the
age of the mineralization is interpreted to be ca. 132 Ma.

5.3. Major and trace elements data of the biotite monzogranite

5.3.1. Major elements
The analytical results of major and trace elements of the biotite

monzogranite at Dayana are shown in Table 3. Our data suggest that
the monzogranite is rich in silica and alkali, with a SiO2 content of
72.84–76.49%, Na2O+ K2O content of 7.89–9.25%, and Na2O/K2O ratios
between 0.65 and 1.30, corresponding to the high-K calc-alkaline series
(Fig. 9a). The monzogranite is also rich in Al with Al2O3 contents of
11.7–13.1% and A/CNK values of 1.07–1.44 (typically N1.2), which are
characteristics of a strongly peraluminous granite (Fig. 9b). The
monzogranite is also relatively poor in Mg assaying 0.03–0.36%.

5.3.2. REE and trace elements
The trace elements (including REE) of the biotite monzogranite

at Dayana are listed in Table 3, and normalized plots are shown in
Fig. 10. The geochemistry shows that the monzogranite has a low REE
content with a ΣREE of 63.68 × 10−6 – 94.88 × 10−6, and the chondrite
normalized REE distribution pattern shows right-inclined distribution
(Fig. 10b). In general, the biotite monzogranite is slightly enriched in



Table 1
Zircon LA-ICP-MS U–Pb isotopic data for the biotite monzogranite from the Dayana WO3 mineralization of Inner Mongolia.

Spot# Th/ U/ Th/U 207Pb/235U 207Pb/235U 206Pb/238U 206Pb/238U 206Pb/238U 206Pb/238U

×10−6 ×10−6 Ratio 1σ Ratio 1σ Age (Ma) 1σ

DYN-19-2 336.6 1053.2 0.32 0.1451 0.0070 0.0210 0.0003 133.9 1.8
DYN-19-5 410.3 758.6 0.54 0.1437 0.0082 0.0213 0.0003 135.7 2.1
DYN-19-6 441.1 1701.2 0.26 0.1482 0.0095 0.0219 0.0005 139.6 3.0
DYN-19-7 372.6 1425.5 0.26 0.1458 0.0086 0.0211 0.0004 134.4 2.4
DYN-19-8 179.0 911.1 0.20 0.1480 0.0089 0.0216 0.0004 137.7 2.5
DYN-19-9 130.2 576.3 0.23 0.1524 0.0077 0.0213 0.0004 136.0 2.5
DYN-19-11 550.6 1515.4 0.36 0.1445 0.0050 0.0213 0.0002 135.6 1.5
DYN-19-12 559.6 811.6 0.69 0.1480 0.0058 0.0213 0.0003 135.7 1.9
DYN-19-15 154.9 545.4 0.28 0.1500 0.0105 0.0217 0.0005 138.1 2.9
DYN-19-17 301.5 532.1 0.57 0.1509 0.0211 0.0212 0.0006 135.1 3.7
DYN-19-18 169.0 857.4 0.20 0.1467 0.0078 0.0216 0.0003 137.5 1.8
DYN-19-19 152.7 376.7 0.41 0.1538 0.0148 0.0214 0.0006 136.6 3.7
DYN-19-20 353.5 854.6 0.41 0.1456 0.0129 0.0209 0.0004 133.2 2.7
DYN-19-21 1155.2 3703.1 0.31 0.1494 0.0057 0.0208 0.0004 132.4 2.3
DYN-19-22 520.8 1168.5 0.45 0.1478 0.0071 0.0214 0.0003 136.4 1.7
DYN-19-24 163.5 340.5 0.48 0.1426 0.0081 0.0211 0.0004 134.7 2.5
DYN-30-1 256.3 614.3 0.42 0.1402 0.0072 0.0207 0.0003 132.3 1.8
DYN-30-2 453.5 1523.7 0.30 0.1439 0.0060 0.0212 0.0002 135.4 1.4
DYN-30-5 175.5 729.3 0.24 0.1382 0.0150 0.0204 0.0005 129.9 3.3
DYN-30-7 238.4 740.5 0.32 0.1455 0.0077 0.0214 0.0003 136.5 2.2
DYN-30-8 275.3 901.3 0.31 0.1492 0.0102 0.0214 0.0004 136.7 2.4
DYN-30-9 458.2 1292.2 0.35 0.1405 0.0057 0.0208 0.0003 132.5 1.6
DYN-30-11 500.4 1536.6 0.33 0.1422 0.0057 0.0211 0.0003 134.5 1.7
DYN-30-12 208.9 584.7 0.36 0.1454 0.0076 0.0210 0.0003 133.7 1.9
DYN-30-13 302.6 1218.8 0.25 0.1487 0.0061 0.0212 0.0003 135.1 1.8
DYN-30-14 333.8 1092.0 0.31 0.1468 0.0057 0.0214 0.0003 136.4 1.9
DYN-30-15 367.5 1434.1 0.26 0.1468 0.0081 0.0210 0.0004 134.0 2.7
DYN-30-17 282.2 513.4 0.55 0.1449 0.0088 0.0213 0.0005 136.1 3.4
DYN-30-18 203.9 779.8 0.26 0.1454 0.0106 0.0210 0.0004 133.8 2.6
DYN-30-19 531.4 1019.7 0.52 0.1439 0.0060 0.0212 0.0003 135.2 1.9
DYN-30-20 1136.6 1073.4 1.06 0.1398 0.0092 0.0208 0.0004 132.5 2.4
DYN-30-21 402.3 1829.3 0.22 0.1500 0.0047 0.0214 0.0002 136.4 1.5
DYN-30-22 332.9 1184.1 0.28 0.1509 0.0051 0.0213 0.0003 135.6 1.7
DYN-30-23 374.4 1040.7 0.36 0.1423 0.0054 0.0209 0.0003 133.5 1.6
DYN-30-24 95.7 419.3 0.23 0.1476 0.0095 0.0214 0.0004 136.6 2.3
DYN-30-25 157.8 908.7 0.17 0.1412 0.0063 0.0209 0.0003 133.2 1.8
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LREE with an LREE/HREE ratio of 1.31–6.27 and moderate LREE/HREE
fractionations. It has an a (La/Yb)N ratio of 0.58–7.35 and exhibits
pronounced negative Eu anomalies with δEu values between 0.04 and
0.45 (Fig. 10b).

The primitive mantle-normalized spider diagram shows that the
trace elements have a regular pattern (Fig. 10a) with significantly low
Sr content (b400 ppm), and a high Yb content (N2 ppm), indicating
that the pressure in the source region was b0.8 or 1 GPa. The Eu anom-
alies suggest that plagioclase is a residual phase in the source without
Fig. 6. Zircon LA-ICP-MS U–Pb concordia diagrams for the bio
garnet, and likely at amphibolite facies metamorphic conditions
(Martin et al., 2005). The trace elements have a low Nb content
(13.4–58.9 ppm) and low Ta content (1.66–24.5 ppm), and a Nb/Ta
ratio of 1.45–8.43, which is significantly lower than the ratio range of 16
to 18 for mantle-derived magma (Hofmann, 1988). The monzogranite is
clearly enriched in large-ion lithophile elements (LILEs), such as Rb, Th,
U, Nd, and Hf, but notably depleted in Ba, Sr, P, Ti, and Nb, with low Ba
and Sr contents. This suggests that fractionation was significant at the
magmatic source for the monzogranite.
tite monzogranite at the Dayana W-Mo mineralization.



Fig. 7. Cathodoluminescence images of zircons from the biotite monzogranite at the Dayana W-Mo deposit. Analyzed spots are circled. Numbers are 206Pb/238U age.
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6. Discussion

6.1. Timing of intrusion and mineralization

Previous studies have suggested that theMesozoicmineralization in
the GHMMB formed in discrete periods during 220–240, 160–200 and
125–140 Ma (Mao et al., 2003a; Xu et al., 2015a,b; She et al., 2012).
Examples of deposits include some porphyry deposits such as the ca.
230 Ma Badaguan porphyry Cu–Mo deposit (Kang et al., 2014a,b), ca.
Fig. 8. Re–Os isochron diagram for molybdenite (a), and weigh
178 Ma Wunugetushan porphyry Cu–Mo deposit (Tan et al., 2013;
Chen, 2010; Chen et al., 2011), and ca. 140 Ma Shamai quartz vein wol-
framite deposit (Nie et al., 2010; Jiang et al., in press).

In order to better understand the ore genesis ofWandMo at Dayana,
it is necessary to obtain precise geochronological data. The biotite
monzogranite at Dayana hosts the W-Mo mineralization towards its
upper zones at the contact with shale in the Gegen'aobao Formation,
and the mineralization decreases in grade with depth. Exploration at
the deposit is continuing, however, the lack of knowledge about the
ted average age (b) of the Dayana W-Mo mineralization.



Fig. 9. Classifications diagrams for the biotite-monzogranite at the Dayana W-Mo mineralization of Inner Mongolia: (a) SiO2–K2O plot; and (b) A/NCK-A/NK plot.
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genesis of the mineralization has prevented efficient exploration in the
region. Based on this study, two samples were collected from the mar-
ginal and central areas of the intrusion. TheU–Pb dating of zircons yields
concordant ages of 134± 1Ma and 135± 1Ma for the samples, which
are the same within error. This age is similar to the ca. 140 Ma date re-
corded for mineralization elsewhere in the belt (Jiang et al., in press).

The geological features discussed about Dayana above indicate that
the wolframite and molybdenite are spatially closely associated with
each other. They are products of different stages of the same mineraliz-
ing event, with molybdenite mineralization relatively preceding the
wolframite mineralization.

Seven samples of molybdenite collected from the ores have a Re–Os
isochron age of 133 ± 3 Ma. This age is considered robust given that
the Re–Os system in the molybdenite remains closed at metamorphic
temperatures reaching ~800 °C (e.g. Stein and Bingen, 2002; Bingen and
Stein, 2003; Stein et al., 2004; Chen et al., 2011). The date is only slightly
younger that the age of the biotite monzogranite suggesting that the
monzogranite and mineralization are genetically related. Furthermore,
given that the quartz porphyry in the study area intrudes the biotite
monzogranite and is crosscut by faults hosting the mineralization in
places and crosses the mineralization in other places (Fig. 2), the biotite
monzogranite, quartz porphyry, mineralization and faulting must be ca.
133 Ma.
Fig. 10. Primitive mantle-normalized spider diagram (a) and chondrite-normalized REE patter
(normalized values after Sun and Mcdonouch, 1989).
6.2. Magma and metal sources

6.2.1. Rock composition
The biotite monzogranite, hosting the W-Mo mineralization at

Dayana, is rich in silica (average of 74.5% SiO2), alkali (average of 8.5%
Na2O + K2O) with a corresponding Na2O/K2O ratio of 0.78, and
11.7–13.1% Al2O3, and has an A/CNK value of 1.1–1.4. These values are
characteristic of a high-K calc-alkaline magma and a strongly
peraluminous granite (Fig. 8). The monzogranite is also poor in Mg
(b0.3%). which suggests it is a possible S-type granite, assuming that it
is not fractionated (Chappell andWhite, 1992, 2001). But the trace ele-
ment characteristics discussed below show that it is fractionated and
cannot be strictly called an S-type granite.

The biotite monzogranite has a relatively low total REE content,
and its chondrite normalized REE pattern shows right-inclined dis-
tribution (Fig. 9). In general, the monzogranite is slightly enriched in
LREE with an LREE/HREE ratio of 1.31–6.27 and moderate fractionation
in LREE/HREE. It has a low Sr content (b400 ppm) and high Yb content
(N2 ppm) with a (La/Yb)N ratio of 0.58–7.35. It exhibits strong negative
Eu anomalies with δEu = 0.04–0.45 (Fig. 9), enriched in LILEs such as
Rb, Th, U, Nd, and Hf and notably depleted in Ba, Sr, P, Ti, and Nb. These
characteristic define that the Dayanamonzogranite as a highly fractionat-
ed granite. Meanwhile indicating the presence of residual plagioclase,
n (b) for the biotite monzogranite at the Dayana W-Mo mineralization in Inner Mongolia



Fig. 11. Schematic metallogenic model for the Dayana W-Mo mineralization, Inner Mongolia.
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without garnet, at middle crustal (amphibolite facies) levels in the crust
with a relatively low forming pressure (b0.8 or 1.0 GPa) (Martin et al.,
2005).

Guo et al. (2012) have studied biotite granites hosting wolframite
throughout southern China, and have found that most of these granites
are high in SiO2 and Na2O + K2O, are metaluminous to peraluminous,
flat or right-inclined distribution patterns of REE and trace elements,
distinct negative Eu anomalies, enriched LILEs such as Rb, Th, U, Nd,
and Hf, and depleted Ba, Sr, P, Ti, and Nb. These characteristics are sim-
ilar to that observed at Dayana.

The genesis of the quartz-wolframite mineralization in southern
China is proposed to be related to melting of the middle to lower crust
following crustal thinning in an extensional setting following continen-
tal collision and gravitational collapse (c.f. Guo et al., 2012; Chen and
Wang, 2012; Chen et al., 2014; Sun et al., 2009; Xiao et al., 2009; Mao
et al., 2009, 2011).

A documented example of quartz-W mineralization in the Greater
Hinggan Mountains of Inner Mongolia is the Shamai deposit that is asso-
ciatedwith the Shamai Granite (Jiang et al., in press). The Shamai Granite
is geochemically similar to the Dayana Granite and similar in age. The
Shamai Granite is enriched in LILEs, depleted in high field strength
Table 2
Re–Os isotope data for molybdenite from the Dayana W-Mo mineralization of Inner Mongolia.

Sample W(Re)/μg.g−1 w(普Os)/ng.g
−1

M 2σ M 2σ

DYN-23 10.99 0.10 0.0262 0.0092
DYN-21 14.21 0.11 0.0405 0.0099
DYN-74 5.305 0.034 0.0334 0.0064
DYN-86 7.863 0.056 0.0359 0.0060
DYN-35 6.592 0.048 0.0638 0.0073
DYN-37 15.38 0.12 0.0502 0.0067
DYN1602–70 6.520 0.064 0.4987 0.0699

M: Measurement.
elements (HFSEs) such as Nb and P, has strong negative Eu anomalies
(Eu/Eu* = 0.02–0.13), high A/CNK values (1.08–1.40), high Rb/Sr ratios,
and is depleted in Ba, Nb, Sr, P and Ti (Jiang et al., in press). The
monzogranite and mineralization at Shamai is ca. 150–140 Ma, and the
monzogranite originated from the partial melting of a juvenile lower
crust in an extensional setting (Jiang et al., in press). This is here consid-
ered analogous to the genesis of the Dayana Granite.
6.2.2. Metal source
The Re–Os isotopic system can provide important constraints on the

age mineralization and a highly sensitive monitor of the possible metal
sources (Mao et al., 1999, 2003b, 2008; Foster et al., 1996; Zhang et al.,
2005). According to the statistics of numerous Re–Os measurement of
molybdenite data (Mao et al., 1999, 2003b, 2008; Foster et al., 1996;
Zhang et al., 2005), it is thought that Re concentrations decrease from a
mantle to a mixed mantle–crustal and to crustal sources. The decrease
is from several hundred ppm in the mantle, to tens of ppm in the mixed
mantle–crustal, and to several ppm in the crust. This characteristic of Re
has been recognized by many researchers (e.g. Berzina et al., 2005; Li
et al., 2007; Selby and Creaser, 2001a,b). At Dayana the Re contents of
w(187Re)/μg.g−1 w(187Os)/ng.g
−1 Model age (Ma)

M 2σ M 2σ M 2σ

6.910 0.061 15.42 0.11 133.8 2.0
8.928 0.071 19.73 0.12 132.5 1.8
3.335 0.021 7.378 0.042 132.7 1.7
4.942 0.035 10.90 0.07 132.2 1.8
4.143 0.030 9.142 0.057 132.3 1.8
9.666 0.075 21.29 0.15 132.1 1.9
4.098 0.040 8.901 0.063 130.2 2.0



Table 3
Major elements (wt%), trace elements (×10−6) composition of the biotite monzogranite at the Dayana W-Mo mineralization, Inner Mongolia.

Sample DYN-19 DYN-30 DYN-31 DYN-34 DYN-45 DYN-52 DYN-62 DYN-76

SiO2 75.01 75.35 73.78 74.22 74.46 74.30 72.84 73.57
Al2O3 12.10 11.70 12.46 12.35 12.28 12.61 12.91 12.33
Fe2O3T 2.24 2.23 2.10 2.93 2.38 2.35 2.72 2.42
CaO 1.20 0.91 1.07 0.93 1.08 0.79 1.23 1.52
MgO 0.31 0.30 0.24 0.33 0.36 0.17 0.26 0.26
K2O 4.69 4.93 5.28 4.46 4.68 5.28 5.38 4.77
Na2O 3.22 3.27 3.40 3.71 3.47 3.58 3.64 3.64
MnO 0.039 0.083 0.043 0.065 0.050 0.050 0.076 0.059
P2O5 0.065 0.050 0.029 0.041 0.042 0.032 0.053 0.051
TiO2 0.13 0.15 0.081 0.15 0.15 0.091 0.16 0.17
FeO 1.43 1.79 1.36 2.05 1.65 2.20 2.43 1.88
LOI 0.49 0.42 0.58 0.29 0.34 0.10 0.17 0.20
Total 100.92 101.18 100.43 101.50 100.96 101.56 101.86 100.87
A/CNK 1.33 1.28 1.28 1.36 1.33 1.31 1.26 1.24
A/NK 1.53 1.43 1.43 1.51 1.51 1.42 1.43 1.47
Na2O/K2O 0.69 0.66 0.65 0.83 0.74 0.68 0.68 0.76
Na2O + K2O 7.91 8.20 8.68 8.17 8.16 8.86 9.02 8.41
La 15.3 15.2 11.8 12.3 13.1 13.1 16.1 16.7
Ce 27.1 27.0 22.6 22.7 24.3 25.7 29.1 31.2
Pr 3.98 3.93 3.48 3.26 3.59 3.95 4.21 4.51
Nd 14.8 14.6 13.1 12.2 13.5 14.8 15.6 16.5
Sm 4.06 3.59 3.64 2.92 3.33 4.33 3.73 4.38
Eu 0.34 0.45 0.31 0.38 0.46 0.33 0.54 0.46
Gd 3.60 3.63 3.65 2.94 3.39 4.48 3.56 4.17
Tb 0.61 0.56 0.62 0.49 0.51 0.75 0.55 0.64
Dy 3.34 3.20 3.53 2.61 2.90 4.30 2.95 3.66
Ho 0.63 0.60 0.72 0.51 0.53 0.82 0.51 0.69
Er 1.84 1.78 2.08 1.48 1.51 2.45 1.43 1.98
Tm 0.28 0.24 0.33 0.22 0.22 0.38 0.23 0.35
Yb 2.02 1.89 2.33 1.44 1.54 2.65 1.57 2.30
Lu 0.32 0.26 0.33 0.21 0.23 0.43 0.25 0.34
ΣREE 78.31 76.85 68.47 63.68 69.08 78.48 80.37 87.98
(La/Yb)N 5.44 5.76 3.63 6.11 6.07 3.55 7.35 5.23
δEu 0.27 0.38 0.26 0.39 0.42 0.22 0.45 0.32
δCe 0.83 0.83 0.85 0.86 0.86 0.87 0.85 0.86
Li 71.6 72.9 52.2 59.5 43.7 58.8 77.0 56.2
Be 6.88 5.84 6.50 4.98 5.93 6.01 5.59 5.66
V 35.2 31.3 40.8 33.8 33.6 32.8 30.5 28.4
Cr 25.4 23.8 38.3 24.6 28.6 39.3 24.5 24.9
Co 1.89 1.78 1.45 1.91 1.65 1.36 2.17 2.22
Ni 1.96 2.01 1.66 1.54 1.55 1.86 1.95 1.75
Cu 16.7 13.0 35.2 16.5 3.97 30.7 14.7 5.62
Zn 19.4 24.0 13.4 30.9 27.0 18.0 30.7 36.9
Ga 18.3 17.1 18.6 18.2 16.8 18.4 18.8 18.3
Rb 263 239 328 227 199 312 280 184
Sr 59.0 64.8 36.4 53.6 55.3 36.8 79.9 69.6
Y 19.2 17.9 19.1 14.4 14.4 25.6 15.0 20.3
Zr 112 112 100 106 109 99.0 124 118
Nb 13.6 13.4 17.1 14.0 15.0 17.9 13.5 17.4
Cs 12.4 11.9 11.9 9.55 7.15 9.25 10.6 3.95
Hf 4.66 4.83 5.59 4.25 5.24 4.73 5.17 4.58
Ba 90.5 113 63.3 77.4 95.5 61.3 138 106
Ta 1.68 1.89 2.36 1.66 1.85 2.87 2.22 3.07
W 2.32 2.64 5.06 1.74 0.66 7.47 2.35 1.18
Pb 18.9 18.7 23.0 19.8 19.8 25.0 20.6 20.6
Th 16.8 15.6 22.0 19.4 18.2 21.9 17.2 16.3
U 12.8 9.56 17.9 13.0 10.8 16.1 14.3 12.3
Nb/Ta 8.10 7.09 7.25 8.43 8.11 6.24 6.08 5.67
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molybdenite ranges from 5.3 to 15.4 ppm, which is indicative of a crustal
source.

6.3. Geodynamic setting

The Mongol-Okhotsk Ocean and the surrounding regions in north-
ern China is thought to have experienced a post-orogenic extensional
collapse during the Early Cretaceous, post-arc extensional environment
in the wake of the subduction of the paleo-Pacific Plate, or both (Mao
and Wang, 1999; Mao et al., 2003a, 2004, 2011; Abzalov, 2007; Li
et al., 2007; Guo et al., 2010; Qing et al., 2011, 2012; Wu et al., 2011;
She et al., 2012; Li et al., 2013; Ouyang et al., 2013; Wang et al., 2014,
2015; Xu et al., 2013, 2015a,b).
The Dayana W-Mo mineralization is located at the southern
part of the Mongol-Okhotsk Ocean in an area that has been affect-
ed by Early Cretaceous extension associated with deformation
around the Mongol-Okhotsk Ocean and Early Cretaceous compres-
sional events associated with Paleo-Pacific Plate (Mao et al.,
2003a; Wu et al., 2011). Evidence for the compressional events
in the Dayana area are the presence of conjugate faults and struc-
tures hosting the northeast-trending quartz porphyry which, in
combination, are indicative of a NE-SW orientated compression.
Evidence for the extensional tectonics could be the formation of
the granitic magma at middle-crustal levels during ca. 134 Ma.
The magma would have carried W-Mo-bearing fluids along con-
duits such as extensional faults in the crust where the magma
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eventually crystalized and followed by the release of ore-forming
fluids during ca. 134 Ma.

6.4. Exploration potential

The study area is located in a major metallogenic belt in the mid-
western part of the Central Asian Orogenic Belt (Mao and Wang,
1999; Mao et al., 2003a, 2011; Xu et al., 2015a,b; Wu et al., 2011; She
et al., 2012; Nie et al., 2010; Jiang et al., in press). Numerous Cu, Mo,
Pb, Zn, Ag and, recently, W deposits were discovered in the orogen.
The Mesozoic metallogenic events in the region around the orogen
spanning ca. 200–125 Ma and coeval with various tectonic and mag-
matic events make the region highly prospective for economic metallic
deposits (Mao and Wang, 1999; Hua and Mao, 1999).

In the period following ca. 160 Ma, China's northeastern region was
primarily in a post-orogenic extensional regime, which was synchro-
nous with extensional tectonic activities in southern China (Mao and
Wang, 1999; Chen and Wang, 2012; Chen et al., 2014; Hua and Mao,
1999). The Lingnan region of southern China is known as the Earth's
“Wolframite Town” where numerous quartz-W vein deposits have
been discovered (Mao and Wang, 1999; Chen and Wang, 2012; Chen
et al., 2014; Hua and Mao, 1999; Guo et al., 2012). Given the tectonic
similarities of the Greater Hinggan Mountain and Lingnan regions, ex-
ploration activities for the same type of wolframite deposits have not
lead to the discovery of W mineralization until recently. This includes
the discovery of the large Honghuaerji scheelite deposit (Xiang et al.,
2014; Guo et al., 2014), and the recent discovery of the Dayana W-Mo
mineralization. This makes the CAOB prospective for various types of
deposits including tungsten (and molybdenite) associated with the re-
gional ca. 134 Ma magmatism.

7. Conclusions

The studies on the major and trace element exhibited in the paper
indicate that the ore-forming biotite monzogranite is rich in silica, alkali
and aluminum, poor in magnesium, is characterized by strong negative
Eu anomalies, is significantly enriched in LILEs (such as Rb, Th, U, Nd,
and Hf), and is notably depleted in Ba, Sr, P, Ti, and Nb. These are char-
acteristics of a highly fractionated peraluminous granite.

The U–Pb zircons dating of samples from the Dayana Granite show
that the biotite monzogranite is ca. 134 ± 1 Ma. The Re–Os dating indi-
cates that the mineralization at Dayana is ca. 133 ± 3 Ma. These dates
show that both the monzogranite and hosted W-Mo mineralization are
coeval within error, are related, and are products of a widespread Creta-
ceousmagmatic event in northern China locally knownas theYanshanian
(probably related to widespread post-orogenic extensional collapse dur-
ing the Cretaceous). Furthermore, the Re content of molybdenite at
Dayana ranges from 5.3 to 15.4 ppm, which is indicative of a crustal
source.

The ca. 134 Ma biotite monzogranite was emplaced in a succession
of andesite, andesitic pyroclastic rocks, dacite, siltstone, and thin beds
of mudstone in the Carboniferous-Permian Gegen'aobao Formation.
We envision that the ore-forming fluids were derived from highly frac-
tionated magma migrating along penetrative faults and eventually into
the Gegen'aobao Formation where W-Mo was concentrated along
extensional fractures that are parallel to a NE-trending compressional
regime (Fig. 11).
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