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In this study, both the fuzzy weights of evidence (FWofE) and random forest (RF) methods were applied to map
themineral prospectivity for Cu polymetallicmineralization in southwestern Fujian Province, which is an impor-
tant Cu polymetallic belt in China. Recent studies have revealed that the Zijinshan porphyry–epithermal Cu de-
posit is associated with Jurassic to Cretaceous (Yanshanian) intermediate to felsic intrusions and faulting
tectonics. Evidence layers, which are key indicators of the formation of Zijinshan porphyry–epithermal Cu min-
eralization, include: (1) Jurassic to Cretaceous intermediate–felsic intrusions; (2) mineralization-related geo-
chemical anomalies; (3) faults; and (4) Jurassic to Cretaceous volcanic rocks. These layers were determined
using spatial analyses in support by GeoDAS and ArcGIS based on geological, geochemical, and geophysical
data. The results demonstrated that most of the known Cu occurrences are in areas linked to high probability
values. The target areas delineated by the FWofE occupy 10% of the study region and contain 60% of the total
number of known Cu occurrences. In comparison with FWofE, the resulting RF areas occupy 15% of the study
area, but contain 90% of the total number of known Cu occurrences. The normalized density value of 1.66 for
RF is higher than the 1.15 value for FWofE, indicating that RF performs better than FWofE. Receiver operating
characteristics (ROC) were used to validate the prospectivity model and check the effects of overfitting. The
area under the ROC curve (AUC) was greater than 0.5, indicating that both prospectivity maps are useful in Cu
polymetallic prospectivity mapping in southwestern Fujian Province.
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1. Introduction

The origin of mineral prospectivity modeling (MPM) can be traced
back to the works of mathematical geologists such as Harris (1965,
1969); Sinclair and Woodsworth (1970); Agterberg (1971, 1973,
1974), and Bonham-Carter (1994). Methods for GIS-based mineral
prospectivity analysis and predictive modeling have been developed
over the past 30 years. A number of mathematical methods and models
have been introduced for MPM in an attempt to provide objective tools
for the integration of multi-source data to narrow down target areas
for ground exploration at different scales. The integration functions
applied in MPM vary from simple arithmetic or logical operators to
complex mathematical functions. These methods can be generally
subdivided into knowledge- and data-driven categories, depending on
whether the function's parameters are estimated heuristically using the-
oretical or empirically based knowledge on the statistical spatial rela-
tionships between known deposits of the targeted type and predictor
maps. Knowledge-driven methods, such as fuzzy logic (An et al., 1991;
Ford et al., 2015), Boolean logic (Bonham-Carter and Cox, 1995; Carranza
et al., 1999), and evidential belief (An et al., 1994; Carranza et al., 2005;
Carranza, 2009), use expert opinions to assign the weights for each evi-
dence map. Data-driven approaches, such as weights of evidence
(WofE: Bonham-Carter et al., 1990; Liu et al., 2014; Ford et al., 2015),
Bayesian network classifiers (Porwal et al., 2006), neural networks
(Singer andKouda, 1996; Brown et al., 2000; Oh and Lee, 2010), and sup-
port vector machine (Zuo and Carranza, 2011; Geranian et al., 2015) are
based on quantitative measures of spatial associations between known
mineral occurrences and multiple prospecting datasets
(Bonham-Carter, 1994; Carranza, 2011; Porwal and Carranza, 2015).
Knowledge-driven approaches are commonly applied in greenfields,
where no or very fewmineral occurrences have been discovered. In con-
trast, data-driven mineral prospectivity models are suitable for “brown-
fields” (moderately or well-explored regions)where the goal is to define
new exploration targets for mineral deposits of the desired type.

When using ordinaryWofE, evidencemaps should be converted into
binary or ternary form so that maps of different types can be compared
and integrated into a single index of favourability or probability
(Agterberg, 1989; Agterberg et al., 1990; Bonham-Carter et al., 1990).
Cheng and Agterberg (1999) proposed the fuzzy weights of evidence
(FWofE) method, an extension of the ordinary WofE method, to
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quantify spatial associations between evidence layers (or geological fac-
tors) and known mineral occurrences based on fuzzy sets and fuzzy
probabilities. The FWofEmethod integrates the prior probability ofmin-
eral occurrences with the conditional probability for each evidential
layer to obtain posterior probabilities of mineral occurrence. Instead of
separating evidence into binary or ternary forms, this method allows
objective or subjective definitions of fuzzymembership by relatively ob-
jective definitions of fuzzy or conditional probabilities. This effectively
minimizes the uncertainty caused by missing data and improves the
prediction accuracy, providing a powerful tool for measuring spatial
correlations between spatial features (Cheng and Agterberg, 1999;
Cheng and Zhang, 2002; Cheng et al., 2007).

The random forest (RF) method, which is a machine learning
method based on a decision tree classifier (Breiman et al., 1984), is
increasingly being applied to data-driven predictive mapping of
mineral prospectivity. It is an ensemble classification scheme that
Fig. 1. Simplified geological map of southwestern Fujian Pro
uses a majority vote for class association based on the results of mul-
tiple decision trees (Cracknell and Reading, 2013). Reddy and
Bonham-Carter (1991) used a decision-tree method to map mineral
prospectivity for base-metal deposits in the Snow Lake area of Man-
itoba (Canada). Rodriguez-Galiano et al. (2014, 2015) applied the RF
method to map gold prospectivity in southern Spain. Carranza and
Laborte (2015a, 2015b, 2015c) tested the efficacy of an RF algorithm.
Harris et al. (2015) utilized the RF method to map prospectivity in
Canada's northern Melville Peninsula area. Furthermore, Zhang
et al. (2015) chose southwestern Fujian Province in China as a case
study area to compare the FWofE and RF methods for mapping min-
eral prospectivity for skarn-type Fe deposits. Mckay and Harris
(2015) applied the RF for mapping gold prospectivity in southern
Nunavut (Canada).

In this paper, both the FWofE andRFmethods are used tomapmineral
prospectivity for Cu polymetallic mineralization in southwest Fujian
vince (compiled from China Geological Survey, 2011).



Fig. 2. Regional tectonic framework of the Zijinshan region (after Jiang et al., 2013).
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Province. The aims of this study are: (1) to produce a prospectivity map
for Cu polymetallic mineralization in southwest Fujian Province; and
(2) to compare the FWofE and RF methods.
2. Data and methods

2.1. Data

The datasets used in this study consists of geological, geochemical,
and geophysical data. A 1:200,000 geological map, including intrusive
rocks, volcanic rock formations, faults, and mineral occurrences, was
obtained from the China Geological Survey (CGS). Regional stream sed-
iment geochemical data for 39major and trace elements were collected
from the Chinese National Geochemical Mapping (CNGM) project, initi-
ated in 1979 (Xie et al., 1997). Xie et al. (1997) provide a more detailed
description of the geochemical data, including analysis methods, data
quality, and sampling strategy. The geophysical datasets consist of
Bouguer gravity and airborne total magnetic data obtained from the
CGS at 2 km spatial resolution.
2.2. Fuzzy weights of evidence

The FWofE method defines an evidence layer as a fuzzy set with a
membership function consisting of multiple values, rather than the
binary or ternary sets commonly involved in the ordinary WofE
(Cheng and Agterberg, 1999). The binary and ternary patterns are
special cases of the fuzzy set (e.g. μ(A)= 1 or 0 correspond to a bina-
ry pattern and μ(A) = 0, 0.5 and 1 correspond to a ternary pattern).
Suppose that evidence X is related to hypothesis H regarding the oc-
currence of mineralization of type D, then X={x1,x2,⋯xn} consists of
discrete states (continuous variables are separated into classes). In
MPM, xi can be defined as an anomalous class. Suppose that A⊂X is
the created fuzzy set, then the degree of each element x belonging
to A can be described by a membership function uA(x) with the fol-
lowing properties:

(1)0≤μA(x)≤1,
(2)μA(x)=1, if and only if x∈A,
(3)μA(x)=0, if and only if x∉A,
For convenience, let A1 and A2 denote the subsets

A1 ¼ x; μA xð Þ ¼ 1
n o

; A2 ¼ x; μA xð Þ ¼ 0
n o

ð1Þ

where A1∪A2⊂X , A1∩A2=0. The membership function then
gives

μA xð Þ ¼
c−minx∈A2c

maxx∈A1c−minx∈A2c
ð2Þ

where the contrast value c equals W+ − W−, and W+ and W− are
calculated using the WofE method of Agterberg et al. (1993)

If A and B are conditionally independent of D, the natural logarithm
of the probability of D for the two given fuzzy sets A and B can be
expressed as:

lnO D μA xð ÞμB yð Þ
���

h i
¼ ln

P D μA xð ÞμB yð Þ
���

h i

1−P D μA xð ÞμB yð Þ
���

h i ¼ W0 þWμA xð Þ þWμB yð Þ ð3Þ

where the left side of Eq. (3) represents the natural logarithm of the
odds of D given evidence that A. FunctionsWuA(x) andWuB(y) areweight-
ed for the fuzzy sets A and B, and they can be expressed in terms of B
with fuzzy membership functions uA(x) and uB(y), respectively. W0

corresponds to the prior probability.
Functions:

WμA xð Þ ¼ ln
P μA xð ÞjD
h i

P μA xð ÞjD
h i ¼ ln

μA xð ÞP A1jD½ � þ 1−μA xð Þ
� �

P A2jD½ �
μA xð ÞP A1jD

� �þ 1−μA xð Þ
� �

P A2jD
� � ð4Þ

WμB yð Þ ¼ ln
P μB yð Þ Dj
h i

P μB yð ÞjD
h i ¼ ln

μB yð ÞP B1 Dj½ � þ 1−μB yð Þ
� �

P B2jD½ �
μB yð ÞP B1jD

� �þ 1−μB yð Þ
� �

P B2jD
� � ð5Þ

Additional details for the FWofE method can be found in Cheng and
Agterberg (1999).

2.3. The random forest method

Random forest (RF) is an ensemble machine learning method,
originally developed by Breiman (2001), that combines multiple de-
cision tree (DT) algorithms to classify or predict the value of vari-
ables (Breiman, 2001; Guo et al., 2011). Like other data-driven
methods for MPM, the RF algorithm requires training data consisting
of known mineral locations and no-deposit locations. To avoid the
correlation of different trees, the RF method increases the diversity
of the trees by growing them from different training data subsets
created through a procedure called “bagging”. Bagging is a technique
used for obtaining training data for each decision tree by randomly
sampling (with replacement) a number of samples equal to the
number of instances in the training dataset, leading to the possibility
that some data are used more than once during training, although
other data may never be used. Each tree employs a bagging process
known as “bootstrap sampling” in which approximately two-thirds
of the training areas (or pixels) are randomly selected (with replace-
ment) and used to generate the classification (in-bag data); the re-
maining one-third (out-of-bag or oob data) are used for validation.
This random sampling (with replacement) of the training dataset is
undertaken for every tree. The in-bag data are used to create multi-
ple decision trees that are applied to produce independent classifica-
tions, and the oob data are used to validate the classification by
calculating an oob error. Compared with cross-validation, the oob
error is unbiased and provides a good estimate of the generalization
error (Harris et al., 2015).

The Gini impurity index (Breiman et al., 1984) is used to determine
the “optimal split” threshold at each node of a decision tree in the RF



19Y. Gao et al. / Ore Geology Reviews 75 (2016) 16–28
algorithm. TheGini impurity index (IG), whichmeasures the impurity of
an attribute with respect to the classes, is defined as:

IG fð Þ ¼
Xm

i¼1

f i 1− f ið Þ ð6Þ

where fi denotes the probability of class i at node m, defined as:

f i¼
nj

n
ð7Þ

where nj denotes the number of samples that belong to class j,
and n is the total number of samples within a particular node.
The attribute of the lowest IG is used as the decision tree splitting
criterion.

The RFmethod combines the prediction output of each RT algorithm
using a rule-based approach (Breiman, 2001). For prediction, classifiers
are combined by amajority vote from the outcomeof k randomdecision
trees within the forest, and the output of the RF is calculated by the
equation:

P j ¼
1
k

Xk

j¼1

yij ð8Þ
Fig. 3.Maps showing (a) loadings of PC2, (b) the spatial distribution of the P
where j denotes the possible classes of the sample (deposits and
non-depositswhenmappingmineral prospectivity) and yj

i is the predic-
tion result belonging to class j in the i-th decision tree.

RF provides additional information concerning the data as well as an
accurate prediction, because of its random features. The following signif-
icant information is obtained from the oob data in the training dataset:
(1) the error rate being approximately one-third of the prediction in-
stances are omitted from the bootstrap,which can be set to obtain an un-
biased estimate of the test set error rate (Breiman, 1996); and (2) the
variable importance measures where the RF switches one of the input
variables while retaining the remaining variables, and the output
(mean squared error, or MSE) is given by the increased percentage of
the oob rate divided by the misclassification rate (Breiman, 2001).

The RF method requires two training datasets. Usually, knownmin-
eral occurrences are used for positive cases. Other types of mineral oc-
currences and randomly selected points can be used for negative cases
(Nykänen et al., 2015). Two parameters need to be set to generate a pre-
dictive model: the number of predictive variables (m) in the random
subset at each node used to grow the decision tree and the number of
classification trees (k). According to Breiman (2001), m should be less
than log2(M + 1) (where M is the number of input variables) to mini-
mize generalization error and correlation among decision trees. In this
study, three forms of evidence were selected as input variables (M =
4), so m should be less than log2(4 + 1) and m = int (log24 + 1) =
C2 score, and (c) the inferred Yanshannian intermediate-acid granites.



Fig. 4.Maps showing (a) loadings of geochemical variables on principal components, and
(b) the spatial distribution of PC1 scores.
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3. Rodriguez-Galiano et al. (2015) chose the Rodalquilar mining district
as a case study area to test the application of the RF method to mineral
prospectivitymapping, and they discussed the relationship between the
number of trees (k) and the number of split variables (m). They con-
cluded that using k = 1000 resulted in relatively low prediction errors
and the most stable predictions.

2.4. Validation

There are a number of methods used to test the performance of
prediction models, such as “cross-validation” (Agterberg and
Bonham-Carter, 2005; Chung and Fabbri, 2008; Fabbri and Chung,
2008), “jack-knifing” (Bonham-Carter, 1994; Nykänen and
Salmirinne, 2007), “receiver operating characteristics” (ROC) vali-
dation (Robinson and Larkins, 2007; Nykänen, 2008; Nykänen
et al., 2015), and “prediction–area” (P–A) plots (Yousefi and
Carranza, 2015a, 2015b, 2015c). In this study, P–A plots and ROC
validation are addressed.

A P–Aplot is constructed based on the ability of prospectivitymodels
to predict mineral deposits with respect to the size of predicted target
areas. It consists of: (1) the curve of prediction rate of the known min-
eral occurrences (on the left y-axis) corresponding to the classes of
theweighted evidentialmap on the x-axis; and (2) the curve of percent-
age of occupied areas (on the right y-axis) corresponding to the classes
of the weighted evidential map (Yousefi and Carranza, 2015b, 2015c).
The intersection point defines the prediction rate in the P–A plot,
which is a key criterion to evaluate and compare the different
prospectivity models. This is because, if an intersection point appears
at a higher place in the P–A plot, it indicates a smaller area containing
a larger number of mineral deposits. Yousefi and Carranza (2015b) ap-
plied the normalized density to rank evidential layers and compared the
prospectivity models. The normalized density can be expressed as Nd=
Pr/Oa, where Nd is normalized density, and Pr and Oa are prediction rate
and occupied area, respectively. More detailed information on the P–A
plot can be found in Yousefi and Carranza (2015a, 2015b, 2015c).

The ROC graph is an alternative approach to visualizing, organizing,
and selecting classifiers based on their performance (Egan, 1975;
Fawcett, 2006; Swets andMonahan, 2000). Given a geochemical pattern
with a total number of cells C, in which N cells are occupied by known
mineral deposits (each cell is occupied by only one mineral deposit), P
cells (equal to C–N) do not contain known mineral occurrences. For a
given location, the four possible outcomes are: (1) if the location is oc-
cupied by a known mineral occurrence and is classified as a prospect
(or an anomalous area), it is counted as a true positive (tp); (2) if the lo-
cation is classified as a non-prospect (or background), it is counted as a
false negative (fn); (3) if the location is occupied by nomineral deposits
and is classified as a prospect, it is called a false positive (fp); and (4) if
the location is classified as a non-prospect, it is called a true negative
(tn). The true positive rate and the false positive rate can be calculated
using the following equations:

True positive rate ¼ Prospectivities correctly classified=N ð9Þ

False positive rate ¼ Non‐prospectivities incorrectly classified=P: ð10Þ

The paired data of (tp, fp) can be obtained using a series of thresh-
olds to classify the geochemical pattern. ROC graphs can then be
constructedwith the tp and fp rates plotted on the Y and X axes, respec-
tively. An advantage of ROC curves is that they are insensitive to changes
in the class distribution. If the proportion of positive to negative
instances changes in a test set, the ROC curve will not change
(Fawcett, 2006). The area under the ROC curve (AUC) is an index that
can be used to compare classifiers, and it provides a single scalar value
representing the expected performance. The value of the AUC ranges
from 0 to 1.0, and the larger the AUC, the better the performance. A
ROC curve nearer to (0, 1), leading to a larger AUC value, represents a
more efficient classification.

3. Geological background and mineral deposit model

3.1. Geological background

The Cathaysia Block of southeastern China is subdivided into the
Cathaysia Interior (CI), the Cathaysia Fold Belt (CFB), and the Southeast
Coastal Magmatic Belt (SCMB) (Xia et al., 2015). The case study area,
southwestern Fujian Province, is located in the CFB and SCMB, and it is
considered to be one of the key polymetallic belts in southern China
(Zhang et al., 2001; Zhong et al., 2011; Liang et al., 2012; Huang et al.,
2013; Jiang et al., 2013). The widespread plutonic rocks are Permo-Tri-
assic (Indosinian) and Jurassic–Cretaceous (Yanshanian) plutons with
some Early Devonian (Caledonian) and Permian (Hercynian) plutons
(Huang et al., 2013; Jiang et al., 2013) (Fig. 1). The Zijinshan mineral
field (ZMF) is one of the most famous Cu polymetallic districts in south-
western Fujian Province, and it is located in the eastern part of the
Cathaysia Fold Belt, at the intersection of the Xuanhe Anticlinorium
and the Yunxiao–Shanghang Fault, and at the northeastern margin of
the Cretaceous Shanghang Volcanic Basin (Zhong et al., 2011; Liang
et al., 2012; Huang et al., 2013; Jiang et al., 2013) (Fig. 2). The Cu
polymetallicmineralization in the area is generally associatedwith Juras-
sic to Cretaceous granitic plutons (e.g. the Sifang Granite and Caixi



Fig. 5.Maps showing (a) S–A plot, (b) the background component of PC1, and (c) the anomaly component of PC1.
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Granite) and mafic volcanic rocks (Zhong et al., 2011). The
lithostratigraphic units in the ZMF include Early Cretaceous volcanic as-
semblages assigned to the Shimaoshan Group in the southwest, which
underwent high-level uplift and erosion during the Cenozoic, and
Neoproterozoic to Carboniferous metamorphic and clastic rocks distrib-
uted in the northwest. Middle to Late Jurassic and Early Cretaceous plu-
tons host most of the orebodies in the area, and they were formed by
multistage intrusions, including the Middle Jurassic Zijinshan Granite,
the Late Jurassic Caixi Monzogranite, the Early Cretaceous Sifang Grano-
diorite, and small-sized granitic porphyries, dacite porphyries, and
cryptoexplosive breccia pipes (Zhong et al., 2014). These features charac-
terize the Jurassic and Cretaceous magmatic events in the ZMF.

3.2. Ore geology

The Zijinshan Cu–Au deposit is the first occurrence of a high
sulfidation-type epithermal deposit identified in mainland China and
is discovered in the late 1980s (So et al., 1998). The Cu–Au mineraliza-
tion in the ZMF ranges from high-sulfidation epithermal to porphyry
types, and is characterized by NW-trending breccia bodies and veins
in a Cretaceous volcanic pipe (Pirajno and Bagas, 2002). By the end of
2008, Zijinshan, containing 2.36 Mt. Cu at an average grade of approxi-
mately 0.45%, was the leading Cu producer in the Fujian Province
(Zhong et al., 2014). Copper deposits in themineralfield can be grouped
into epithermal (e.g. Zijinshan), porphyry (e.g. Luobuling), and transi-
tional epithermal and porphyry (e.g. Wuziqilong) types (So et al.,
1998).

Both gold and copper orebodies are distinctly zoned at Zijinshan,
with gold mineralization in the upper mine levels and copper at deeper
levels. Most of the mineralization at the deposit is in an alunite alter-
ation zone located below 650m, hosted by NW-trending breccia bodies
and veins within a Cretaceous dacitic porphyry volcanic pipe (Jiang
et al., 2013). Hydrothermal alteration and mineralization are typically
zoned with a quartz–sericite–pyrite assemblage in the deeper to outer



Fig. 6.Maps showing (a) faults and (b) buffer zones of faults.

Fig. 7. Maps showing (a) Yanshannian volcanic rock formations and (b) buffer zones of Yanshannian volcanic rocks.

Fig. 8. Probability map obtained by FWofE.
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parts of the system at depths between 350 and 1200 m, a dickite–
quartz–pyrite–zunyite assemblage at middle levels, and alunite–
quartz–pyrite nearer to the ground surface. Metal zoning within the
alunite–quartz–pyrite zone progresses from Cu–Pb–Zn to Au–Ag–As
near the ground surface (Pirajno and Bagas, 2002).

The Cu mineralization in the ZMF is related to Early Cretaceous
granodiorite and volcanic rocks. These igneous rocks crop out in the
central–southern and northeastern parts of the mineral field, where
they are located in northwest-trending structures linked to the deep-
seated Yunxiao–Shanghang Fault (Zhang et al., 2001). The SifangGrano-
diorite is the youngest Cretaceous intrusion in the ore district and
consists of fine- to medium-grained granodiorite elongated in a NNE-
trending direction (Mao et al., 2002). The granodiorite intrudes
Neoproterozoic metamorphic rocks, Devonian–Carboniferous clastic
rocks and limestone, and the Zijinshan Granite. Dacitic porphyry hosts
Cu–Au mineralization at the Zijinshan deposit, whereas granodioritic
porphyry hosts Cu–Mo mineralization at the Luoboling deposit (Zhang
et al., 2005).

The pre-Jurassic rocks in the ZMF are folded into a NE-trending anti-
cline that is intruded by the Jurassic to Cretaceous plutons. Previous
studies have shown that theNE-trending faults that formed during com-
pression and shearing controlled the emplacement of the Jurassic gran-
ites, whereas the NW-trending faults that are mainly tensional are
associated with Early Cretaceous magmatism and Cu–Au mineralization
(So et al., 1998; Xue andRuan, 2008;Wang et al., 2009). Theplutons host
most of the orebodies in the area andwere formed bymultistage granitic
intrusions, including the: (1) Middle Jurassic Zijinshan Granite with a
sensitive high-resolution ion microprobe (SHRIMP) U–Pb zircon age of



Fig. 9. Plot of accumulative prospective areas versus accumulative probability obtained by FWofE.
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168 ± 4 Ma (Zhao et al., 2008) and a laser ablation inductively coupled
plasma mass spectrometry (LA-ICP-MS) U–Pb zircon age of 165 to
157 Ma (Jiang et al., 2013); (2) Late Jurassic Caixi monzogranitic pluton
with a SHRIMP U–Pb zircon age of 150 ± 3 Ma (Zhao et al., 2007);
(3) Early Cretaceous Sifang Granodiorite with a SHRIMP U–Pb zircon
age of 108 ± 1 Ma, a hornblende Ar–Ar plateau age of 105 ± 1 Ma
(Mao et al., 2002), an LA–ICP–MS U–Pb zircon age of 112 ± 1 Ma
(Jiang et al., 2013); and (4) small-sized granitic porphyries, dacite por-
phyries, and cryptoexplosive breccia pipes. It is noteworthy that the
breccia pipes and porphyries are spatially, temporally, and genetically
relationed with the mineral systems.
4. Mapping evidence

The Cu mineralization is genetically related to the Early Cretaceous
granodiorite and volcanic rock formations. These igneous rocks outcrop
Fig. 10. Prediction–area (P–A) plot for
in the central–southern and northeastern parts of the ZMF, where they
are located in NW-trending structures linked to the deep-seated
Yunxiao–Shanghang Fault. Four key geological factors were selected as
important criteria for mapping Cu polymetallic mineralization in south-
west Fujian Province: (1) Jurassic to Cretaceous granodiorite, (2) geo-
chemical anomalies related to Cu polymetallic mineralization processes,
(3) NE- and NW-trending faults, and (4) Jurassic to Cretaceous volcanic
rocks.
4.1. Jurassic to Cretaceous granodiorite

The Jurassic to Cretaceous granodioritic intrusions play an important
role in the Cu polymetallic mineralization in the study area (Jiang et al.,
2013). Although the outcrop of the intrusions has already beenmapped
in the study area, using only outcropped sections as an evidential layer
for mapping Cu polymetallic mineralization, which may lead to
the FWofE prospectivity model.
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uncertainties resulting from granodioritic intrusions of that age that
might be present in the study area. Therefore, the inferred intrusions
were classified based on the distinguishingmineralogical and geochem-
ical features of the magmatic, sedimentary, and metamorphic rocks.
Mafic magmatic rocks are always characterized by higher concentra-
tions of elements such as MgO, Fe2O3 and CaO compared with felsic
magmatic rocks, which have higher concentrations of elements such
as K2O, Na2O, SiO2 and Al2O3. Intermediate to felsic intrusive rocks al-
ways exhibit low gravity anomalies andweakmagnetic anomalies com-
pared with sedimentary and metamorphic rocks (Cheng, 2012).
Therefore, major element geochemical data (K2O, Na2O, SiO2, Al2O3,
Fig. 11. Probability ma
MgO, Fe2O3, and CaO) and geophysical data were used to infer the loca-
tion of the Jurassic to Cretaceous granodioritic intrusions in the study
area. Based on the available spatial datasets, the Jurassic to Cretaceous
granodioritic intrusions were distinguished from all of the exposed
rocks in the study area. The spatial interpolation for the major element
geochemical data was processed using the inverse distance weighted
(IDW) method, with a spatial resolution of 1 km. To reduce the asym-
metry of the magnetic field caused by the geomagnetic inclination and
declination, the original aeromagnetic data were preprocessed to re-
duce the geomagnetic pole; oblique magnetization was transformed
to vertical magnetization (Cooper and Cowan, 2005).
ps obtained by RF.
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The local singularity analysis developed by Cheng (2007) was used to
process the geochemical and geophysical data. The major geochemical
and geophysical anomalies were generated using principal component
analysis (PCA), which is one of themost popular methods of multivariate
analysis used to reduce the dimensionality of datasets producing relative-
ly few unrelated principal components based on covariance or correla-
tions of variables (Jolliffe, 2002). The resulting PCA in Fig. 3a shows that
PC2 consists of positive loadings for MgO (0.33), Fe2O3 (0.51), and CaO3

(0.11), aeromagnetic anomalies (0.06), negative loadings of K2O
(−0.57), Na2O (−0.50), Al2O3 (−0.14), and SiO2 (−0.05), and gravity
anomalies (−0.14), indicating that a negative PC2 is an indicator for
intermediate–acid intrusions. The spatial distribution of PC2 in Fig. 3b
shows a strong spatial correlation with the mapped granitic intrusions.
The inferred and outcrop intrusions were integrated in Fig. 3c as an evi-
dential layer for mapping mineral prospectivity.
4.2. Geochemical anomalies

Ten alteration- and mineralization-related elements (Cu, Au, Fe, Pb,
Zn, Al, Ag, Mo, K, and Ca) were chosen to map geochemical anomalies
associated with Cu mineralization in ZMF. To obtain a composite geo-
chemical map, the aforementioned elements were processed using the
IDW method and integrated using PCA. The PCA results revealed that
PC1 is composed of positive loadings from Cu, Au, Fe, Pb, Zn, Al, Ag,
Mo, K, and Ca and that 36.8% of the total variance was retained in PC1
(Fig. 4a). The PC1 possibly represents Cu polymetallicmineralization as-
sociatedwith intrusions and NE- andNW-trending faults, which exhibit
a strong spatial distribution with the known Cu polymetallic deposits
(Fig. 4b).

The spectrum–area (S–A) multifractal model developed by Cheng
et al. (1999, 2000) is considered to be a sophisticated and useful tech-
nique for decomposing mixed geochemical patterns (Cheng, et al.,
1999, 2012; Zuo, 2011, 2014; Zuo et al., 2013; Zuo and Wang, 2015).
In this study, the S–A method was applied to process the mixed geo-
chemical data, separating background and anomalous areas. A Fourier
transform (FT) was used to convert the PC1 score map from the spatial
domain into the frequency domain. A pair of datasets consisting of the
power spectrum density (S) and the area with power spectrum density
was obtained and plotted on a log–log graph, allowing the datasets to be
fitted by two straight lines using the least squares (LS)method. A cut-off
value (S=2437.1) is observed in Fig. 5a. The left-handpart of thisfigure
shows the straight-line fit y = −1.43× + 18.98 (R2 = 0.99), which is
considered anomalous (S ≤ 2437.1). The right-hand part shows the
straight-line y = −2.82× + 29.77 (R2 = 1.00), which represents the
background data (S N 2437.1). These two parts were then transformed
back to the spatial domain via an inverse Fourier transformation, and
background and anomaly maps were obtained (Fig. 5b, c). The anomaly
map shows that highly anomalous areas have a strong spatial correla-
tion with known Cu deposits in the study area.
Fig. 12. Plots of accumulative prospective areas versus accumulative probability obtained
by RF.
4.3. NE- and NW-trending faults

Porphyry–epithermal deposits in ZMF are closely and indirectly as-
sociated with regional deep (first-order) faults interpreted as pathways
for mineralizing fluids, with the majority of the mineral occurrences
distributed along secondary (or second-order) fault systems (Halter
et al., 2004). Both the NE-trending Zhenghe–Dapu and the NW-
trending Shanghang–Yunxiao fault (Chen et al., 2015), which are con-
spicuous geological structures in the study area, as well as a series of
NE- and NW-trending faults, were extracted from the geological maps
of the study area (Fig. 6a). A multi-ring buffer around the regional
deep faults was constructed using an interval of 5 km for 10 rings, and
around the secondary faults using an interval of 2 km for 5 rings
(Fig. 6b).
4.4. Jurassic to Cretaceous volcanic rocks

The ZMF is located in the northeastern margin of the Cretaceous
Shanghang Volcanic Basin where Jurassic to Cretaceous volcanic rocks
and granodiorite host the Cu polymetallic mineralization, which show
a close spatial relationshipwith the knownCu polymetallic occurrences.
The mineralization ranges from high-sulfidation epithermal- to
porphyry-types, and the area is characterized by NW-trending breccia
bodies and veins within a volcanic pipe (Jiang et al., 2013). Therefore,
the volcanic rocks were selected as an important criterion for mapping
mineral prospectivity. Fig. 7a shows the spatial distribution of the volca-
nic rocks in the study area and demonstrates a strong spatial correlation
between them and known Cu deposits, and Fig. 7b shows the buffer
zones of the volcanic rocks.

5. Results and discussion

To obtain the posterior probabilities, 23 known porphyry–
epithermal Cu deposits were selected in ZMF as training data for calcu-
lating the fuzzy weights for all evidential layers using the FWofE meth-
od in support by GeoDAS GIS (Cheng, 2000). The results showed that
the known Cu deposits are located in or near areas with high values of
posterior probability (Fig. 8). To evaluate the success rate of the predic-
tions, a plot of accumulative prospective areas against accumulative
probability for Cu deposits was constructed, and it shows that 10% of
the total study area contains approximately 60% of the total known Cu
deposits (Fig. 9).

To evaluate the performance of the FWofE model generated in this
study, 23 known porphyry–epithermal Cu deposits were selected as



Fig. 13. Prediction–area (P–A) plot for the RF prospectivity model.
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testing points to create a P–A plot. The results show that the normalized
density is 3.17 and its weight is 1.15 (Fig. 10).

In this study, a set of 23 known Fe deposits and five sets of 23 ran-
dom points in the region were selected as negative cases. By comparing
six probability maps obtained using the RF method with known Cu de-
posits (Fig. 11), it can be observed that most of the known Cu deposits
are situated in the high probability region. The curves of RF (0–4) and
RF (Fe) show that approximately 15% of the total area contains more
than 90% of the known Cu deposits (Fig. 12), indicating a good perfor-
mance for the RF method. The RF0 is selected to construct a P–A plot,
and the results show that the normalized density is 5.25 and its weight
is 1.66 (Fig. 13).
Fig. 14. ROC
The RF method represents a type of machine learning. Overfitting
often happens when a model memorizes and can perfectly predict the
training data, but the model generally shows poor predictive perfor-
mance because it can exaggerate minor fluctuations in the data. To
avoid overfitting, it is necessary to test themodel's ability by evaluating
its performance on a set of data not used for training. Therefore, the ROC
graph was used to test the performance of the predictive model for Cu
polymetallic deposits. Twenty-three known Cu deposits and a set of
random points were selected as true positive and true negative cases,
respectively. The results showed that: (1) the AUC values from the RF
and the FWofE methods were higher than 0.5, indicating that these
two methods are useful for mapping Cu mineral prospectivity; and
curves.
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(2) the AUC value from the RF method was greater than that from the
FWofE, suggesting a better performance by the RF method in this
study (Fig. 14).

6. Conclusions

In this study, both the FWofE and RF methods were used to map
mineral prospectivity for Cu polymetallic mineralization in southwest-
ern Fujian Province, China. The following conclusions were obtained.

Both predictive maps obtained using the FWofE and RF methods
showed highly successful prediction ratios, and the small target areas
contained most of the known Cu deposits, indicating that a predictive
model consisting of four evidence layers is powerful formappingminer-
al prospectivity for Cu polymetallic deposits. These predictive maps can
provide useful information for the next round ofmineral explorations in
the study area.

The P–A plots show that the normalized density (1.66) of RF is larger
than that of FWofE (1.15), indicating that RF performs better than
FWofE in this study. The AUC value of the RF map is higher than that
of the FWofE map, also indicating a better performance of RF.

Other types of mineral deposits and randomly selected points pro-
vide alternative approaches for mapping mineral prospectivity, as they
indicate non-prospectivity, and they can be used to check the effects
of overfitting.
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