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The Lemarchant volcanogenic massive sulphide (VMS) deposit (1.24 Mt grading at 0.58% Cu, 5.38% Zn,
1.19% Pb, 1.01 g/t Au, and 59.17 g/t Ag) is a bimodal-felsic VMS deposit hosted within the Late
Cambrian (�513–509 Ma) Tally Pond group of the Exploit Subzone in central Newfoundland, Canada.
The deposit is hosted by andesitic volcaniclastic and volcanic rocks with subordinate dacite flows. The
mineralisation is hosted by the dacites and is overlain by pillowed and massive basalts.
Four structural breaks offset the local stratigraphic sequences including: 1) the LJ syn-volcanic

shear zone; 2) the KJ syn-volcanic shear zone; 3) the Lemarchant thrust; and 4) the Bam normal
fault. Deformation of the Lemarchant likely occurred during the Penobscot orogeny (486–478 Ma).
Early deformation is marked with the local deformation of the LJ and KJ syn-volcanic shear zones
during NW-SE compression which coincided with the development of the Lemarchant thrust. A
late (<465 Ma) east trending normal fault, the Bam fault, affected the central portion of the
Lemarchant area and down-faulted the southern portion of the study area relative to the northern
portion.
Immobile element systematics of all the sequences from the Lemarchant deposit are tholeiitic with

transitional Zr/Y ratios (1.9–6.6), Lan/Smn ratios <1 (normalised to upper crust), and have primitive
mantle extended rare earth elements profiles with slight light rare earth element (LREE)-enriched pat-
terns with flat heavy REE (HREE), and weak to strong negative Nb, Zr, and Ti anomalies. Together,
these geochemical features, coupled with an FIIIa signature, and existing mineralogical and Nd-Pb iso-
tope data, are consistent with the rocks at the Lemarchant deposit having formed within a shallow
(<1500 m) arc or migrating cross-arc seamount chain located within a young peri-continental rifted
arc along the margin of Ganderia, within the Iapetus Ocean. The estimated shallow water emplace-
ment of the deposit likely allowed boiling near or at the rock-sea water interface, ultimately resulting
in precious metal enrichment of the Lemarchant deposit. It is suggested that cross-arcs within rifted
arc environments may represent favourable exploration targets for precious metal-enriched VMS
deposits.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

The Lemarchant deposit is a type example of an Appalachian
precious metal-bearing bimodal-felsic volcanogenic massive sul-
phide (VMS) deposit (Fig. 1). Globally, bimodal-felsic (i.e.,
Kuroko-type) VMS deposits are commonly Zn-Pb-Cu-rich, strata-
bound to stratiform, syngenetic deposits that form on, or near,
the seafloor by precipitation from hydrothermal fluids (e.g.,
Large, 1977; Franklin et al., 1981, 2005; Lydon, 1984, 1988;
Hannington, 2014). They are commonly capped by massive barite
and hydrothermal exhalative mudstone.

Bimodal-felsic hosted deposits form near eruptive centres and
are commonly hosted within autoclastic rhyolitic volcaniclastic
rocks to massive rhyolite flows (e.g., Ohmoto, 1996; Lizasa
et al., 1999; McNicoll et al., 2010; Piercey et al., 2014).
Bimodal-felsic deposits, like all VMS deposits, form within exten-
sional geodynamic regimes, commonly in arc rifts and back-arc
basins (e.g., Swinden, 1991; Piercey, 2010, 2011; Hannington,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.oregeorev.2017.01.010&domain=pdf
http://dx.doi.org/10.1016/j.oregeorev.2017.01.010
mailto:jc301@st-andrews.ac.uk
http://dx.doi.org/10.1016/j.oregeorev.2017.01.010
http://www.sciencedirect.com/science/journal/01691368
http://www.elsevier.com/locate/oregeo


J. Cloutier et al. / Ore Geology Reviews 84 (2017) 154–173 155
2014). In ancient environments, the extensional stage of tectonic
activity is frequently followed by uplift, basin inversion, compres-
sional deformation, and metamorphism of the sequence hosting
the massive sulphide deposits often related to post-VMS forma-
tion accretionary tectonics (e.g., McClay, 1995; Nelson, 1997).
Consequently, lithostratigraphic and structural reconstructions
of VMS deposits in ancient accretionary orogens are critical to
understand the genesis of ancient VMS deposits, as well as their
exploration.

The Lemarchant deposit provides the opportunity to study
deformed VMS mineralisation systems in an accretionary oro-
genic setting. The level of stratigraphic preservation and the pre-
dominantly brittle deformation at Lemarchant allows for its
reconstruction in 3D, unlike many other volcanic belts where high
intensity of deformation obscures original stratigraphy (i.e., more
structurally complex and ductile in nature) or where outcrop dis-
tribution and diamond drilling density are insufficient to under-
take the reconstruction. The aim of this study is to document
the stratigraphy and major structures affecting the Lemarchant
VMS deposit to understand the subsurface distribution of the
structural features and geologic units, including the mineralisa-
tion, using a three-dimensional framework. In addition, this study
presents new geochemical data obtained at the Lemarchant
deposit and assess the immobile element geochemical signatures
and the tectonic evolution of the Lemarchant deposit and Tally
Pond group. This reconstruction resolves the primary origin for
mineralised zones, provides new information on the tectonic evo-
lution of the Tally Pond group and the Appalachian mountain
belt, and generates new exploration concepts for VMS deposits.
The results herein have implications not only for Appalachian
VMS environments, but for any deformed and imbricated VMS
belts globally.
NB

NS

Quebec

NL

PEI

Log
an

’s 
Line

Hum

N

S

EW

Mesoproterozoic
Basement Inlier

Silurian Putonic
and Volcanic rocks

Silurian
Successor Basins

Devonian and Younger
Plutonic rocks BBL GBF LCF

RIL

LR
F

DBL

0 50
kilomete

Fig. 2

Fig. 1. Simplified geological map of the Newfoundland with tectonostratigraphic zones
follow: BBL: Baie Verte Brompton Line, DBL: Dog Bay Line, DF: Dover Fault, GBF: Green
2. Geology

2.1. Regional geology

The Cambrian (513–509 Ma) Lemarchant VMS deposit is
located within the Dunnage Zone of the Appalachian mountain belt
of central Newfoundland, Canada (Fig.1; Copeland, 2008). The Dun-
nage Zone is bounded by the Humber Zone to the west and the
Gander Zone to the east (Williams, 1979; Williams et al., 1988;
Hibbard et al., 2004), and represents the deformed vestiges of arcs,
back-arcs and ophiolite complexes assembled during the closure of
the Cambrian to Ordovician Iapetus Ocean (Fig. 1; Williams, 1979;
Williams et al., 1988; Swinden et al., 1989; Swinden, 1991; Kean
et al., 1995; van Staal and Colman-Sadd, 1997; Evans and Kean,
2002; Rogers and van Staal, 2002; Rogers et al., 2006; van Staal,
2007; Zagorevski et al., 2010). The Dunnage Zone is divided into
the Notre Dame Subzone, which formed near the Laurentian equa-
torial margin, and the Exploits Subzone, which formed on the edge
of Gondwana and related microcontinents at mid- to high-
southerly latitudes (e.g., Williams et al., 1988; Cocks and Torsvik,
2002; Zagorevski et al., 2006; van Staal, 2007). The suture zone
between these two subzones is marked by the Red Indian Line, a
2–3 km wide mylonitic shear zone gently dipping towards the
northwest (Fig. 1; e.g. O’Brien et al., 1991; Cocks and Torsvik,
2002; Zagorevski et al., 2006; van Staal, 2007). The Exploits Sub-
zone is divided into four geotectonic domains (Figs. 1 and 2), which
are: 1) the Neoproterozoic arc and back-arc remnants derived from
Ganderia; 2) the 513–488 Ma arc and back-arc volcanic sequences
of the Penobscot Arc, which hosts the Lemarchant deposit and
numerous other VMS deposits (Fig. 2; e.g., Duck Pond and the
Boundary deposits); 3) the 473–455 Ma arc and back-arc volcani-
clastic and sedimentary sequences of the Popelogan-Victoria Arc,
be
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Fig. 2. Geologic setting of the Victoria Lake supergroup, as well as the VMS deposit hosted within the Tally Pond group. Diagram modified from McNicoll et al. (2010) and
Piercey et al. (2014).
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which was built in part on the older Penobscot Arc; and 4) younger
marine sedimentary rocks covering the Popelogan-Victoria Arc
sequence (Dunning and Krogh, 1985; Dunning et al., 1987, 1991;
Evans et al., 1990; Squires et al., 1991, 2001; Colman-Sadd et al.,
1992; O’Brien et al., 1997; MacLachlan and Dunning 1998a,b;
MacLachlan et al., 2001; Evans and Kean, 2002; Squires and
Moore, 2004; Rogers et al., 2006; Zagorevski et al., 2007b;
Zagorevski et al., 2010; McNicoll et al., 2008, 2010; van Staal and
Barr, 2012; Piercey et al., 2014). These arcs and related back-arcs
sequences were accreted onto the passive margin of Ganderia dur-
ing the Penobscot Orogeny (486–478 Ma; Colman-Sadd et al.,
1992; van Staal, 1994; Johnson et al., 2009; Zagorevski et al.,
2010), and to Laurentia during phase 3 of the Taconic Orogeny
(�461 to �450 Ma; Zagorevski et al., 2010; van Staal, 2007; van
Staal and Barr, 2012).

The Lemarchant deposit is occurs within the Victoria Lake
supergroup, which includes elements of both the Penobscot and
Popelogan-Victoria arcs (Fig. 2). Elements of the Penobscot Arc
include: the 513–509 Ma bimodal volcanic rocks of the Tally Pond
group, which hosts the Lemarchant deposit (Dunning et al., 1991;
Rogers et al., 2006; McNicoll et al., 2008); the 514–506 Ma bimodal
volcanic rocks of the Long Lake group (Zagorevski et al., 2007a;
Hinchey and McNicoll 2016); the 496.5 ± 1 Ma dominantly felsic
with minor mafic volcanic rocks of the Tulks group (G.R. Dunning,
personal communication, 2008); and the 491–488 Ma bimodal vol-
canic rocks of the Pats Pond group (Zagorevski et al., 2007a;
Hinchey and McNicoll, 2009). Elements of the Popelogan-Victoria
Arc comprise the >465 Ma to >455 Ma dominantly sedimentary
with minor felsic volcanic rocks of the Noel Paul’s Brook Group
(Dunning et al., 1987; Zagorevski et al., 2008), the 462–457 Ma
sedimentary rocks of the Sutherlands Pond group (Dunning et al.,
1987; Zagorevski et al., 2008) and the �453 Ma sedimentary, felsic
volcaniclastic and subordinate mafic volcanic rocks of the Wigwam
Brook group (Zagorevski et al., 2007a).

The Tally Pond group has been informally subdivided into two
units that include the predominantly mafic Lake Ambrose forma-
tion and the predominantly felsic Bindons Pond formations
(Rogers and van Staal, 2002; Rogers et al., 2006). The Lake Ambrose
formation consists of vesicular to amygdaloidal, dark green to grey,
massive to locally pillowed tholeiitic basalt flows and subordinate
tuff, pillow breccia, volcanic breccia and andesitic flows. Geochem-
ically, rocks from the Lake Ambrose formation are predominantly
arc tholeiites with eNdt > 0 (Rogers et al., 2006). Felsic volcanic
rocks of the Bindons Pond formation comprise massive to flow-
banded aphyric dacite and rhyolite, quartz- and/or feldspar-
phyric rhyolite, volcaniclastic, epiclastic, and crystal tuff, volcanic
breccia and subvolcanic quartz porphyry. Geochemically, they
have calc-alkalic to transitional signatures with eNdt ranging from
+1.77 to �2.64 indicative of both juvenile and evolved components
in their genesis (Rogers et al., 2006). Regionally, the rocks of the
Lake Ambrose formation are found stratigraphically below the Bin-
dons Pond formation (Kean and Evans, 1986; Evans and Kean,
2002; Rogers and van Staal, 2002; Rogers et al., 2006) but at
Lemarchant, they are found stratigraphically overlying the Bindons
Pond formation (Copeland, 2008).

2.2. Geology of the Lemarchant deposit

The Lemarchant deposit consists of two mineralised zones: the
Main Zone and the Northwest Zone (Fig. 3). The Main Zone con-
tains an indicated resource of 1.24 million tonnes grading at
5.38% Zn, 0.58% Cu, 1.19% Pb, 1.01 g/t Au and 59.17 g/t Ag and
an inferred resource of 1.34 million tonnes grading 3.70% Zn,
0.41% Cu, 0.86% Pb, 1.00 g/t Au and 50.41 g/t Ag (NI43-101;
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Fraser et al., 2012). At present, there is no NI-43-101 compliant
resource for the Northwest Zone. Both zones are hosted by mas-
sive felsic flows of the Bindons Pond formation and are separated
by a structurally complex corridor. They are interpreted to repre-
sent two parts of a single dismembered sulphide lens that have
been displaced by the Lemarchant fault (Fraser et al., 2012). How-
ever, given the structural complexity of the corridor, it is possible
that these two mineralised zones represent different mineralised
lenses that were superimposed during post-VMS formation
deformation.

The Main Zone ranges in thickness from 1.7 to 30.4 m, strikes
south-southwest, dips shallowly towards the northwest, and is
occurs near or at the contact with the conformable mafic volcanic
rocks of the Lake Ambrose formation (Copeland, 2008; Fraser et al.,
2012; Gill, 2015). The Northwest Zone ranges in thickness from 1.8
to 29.8 m, strikes northwest, dips steeply (�60�) towards the
northeast (Fraser et al., 2012).

The mineralisation in both zones consists of <30 m thick lenses
of massive, semi-massive, and stringers of sphalerite, chalcopyrite,
galena, pyrite, pyrrhotite, and barite that precipitated in three
stages (Gill et al., 2013, 2015, in press; Gill and Piercey, 2014).
Stage 1 is characterised by precipitation of low-Fe sphalerite and
pyrite whereas Stage 2 is marked by precipitation of sulphosalts
(i.e., tetrahedrite-tennantite), bornite, stromeryite, electrum,
bladed barite, Ca-Fe-Mg-Mn-carbonate, and enrichments in
epithermal suite elements (i.e., Au, As, Bi, Co, Cr, In, Mo, Ni, Sb,
Se, Te), which are atypical of VMS deposits (Gill et al., 2013,
2015, in press; Gill and Piercey, 2014). Both stages are interpreted
to have formed at relatively low temperature (150–250 �C) in a
shallow water environment (<1500 m below sea level (mbsl))
wherein intermitted boiling principally occurred during Stage 2
and produced the Ag and Au enrichment observed at the Lemarch-
ant deposit (Gill et al., 2013, 2015, in press; Gill and Piercey, 2014).
Stage 3 consists of a late overprint of stages 1 and 2 assemblages by
chalcopyrite and pyrite, and the creation of a stringer zone below
the stratiform zone of the Lemarchant deposit. It is interpreted as
a return to more ‘‘typical” VMS conditions, and correlate with a
marked increase in the temperature of the hydrothermal fluids
(>300 �C). Stage 3 is also associated with a deepening of the basin
to >1500 mbsl due to the absence of epithermal suite elements and
the lack of boiling evidences (Gill et al., 2013, 2015, in press; Gill
and Piercey, 2014).

A thin layer of discontinuous exhalative mudstone (<1–20 m)
caps the massive sulphide lenses and extends to four kilometres
from the deposit (Copeland, 2008; Fraser et al., 2012; Lode et al.,
2015, 2016). Hydrothermal alteration associated with the
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mineralised zones is characterised by intense and localized
Ba-enrichment, quartz, sericite and chlorite hydrothermal alter-
ation (Fraser et al., 2012). At present, the alteration associated with
the Lemarchant deposit has been outlined over 4 km in strike and
is open to the north and south (Copeland, 2008; Fraser et al., 2012).
Post-mineralisation, possibly syn-mafic volcanic, mafic and felsic
dikes intrude the felsic and mafic volcaniclastic and volcanic rocks
of the Tally Pond group.
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Post-mineralisation deformation of the deposit occurred along
the Lemarchant thrust fault (Copeland, 2008; Fraser et al., 2012).
Late east-southeast trending and southerly dipping normal faults
also displaced the Main Zone between sections 104+00N and 106
+00N (Fig. 3).
3. Stratigraphic sequences

A total of 53 diamond drill cores from 10 sections across the
Lemarchant area were logged to identify and map the main struc-
tures and lithostratigraphic units present in area. The volcaniclastic
lithofacies described herein are classified using the classification of
Fisher (1966), which has been updated by White and Houghton
(2006). These classifications are non-genetic and based entirely
on clast size and abundance, with no implications for the nature
or mechanism of emplacement. Lithogeochemistry is discussed in
detail in the following section; however, the rock nomenclature
based on immobile trace elements is presented herein for
chemostratigraphic purposes. Four volcano-sedimentary
sequences, one mineralised sequence, and several intrusive phases
are recognised at the Lemarchant deposit. The lithological
sequences from a representative drill core (LM11-51 from section
104+50N), three cross-sections from section lines 103+00N, 104
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+50N, and 160+00N, and a three-dimensional model of the distri-
bution of the subsurface lithology are presented in Figs. 4–6
respectively. Overall, the lithostratigraphic sequences of the
Lemarchant deposit reflect an evolution from a distal (sequences
1 and 2) volcaniclastic dominated environment of formation to a
proximal (sequence 3) volcanic dominated depositional
environment.

3.1. Sequence 1

Sequence 1 is found at the base of the stratigraphy at the
Lemarchant area and chemically falls within the basalt/andesite
field of Pearce (1996) (Fig. 7a). The sequence consists of volcano-
sedimentary lithofacies dominated by tuff (50%) and poorly sorted
breccias (46.5%) and lapilli-tuffs (3.5%). The tuff is andesitic in com-
position, is grey to dark blue in colour and consists of >90% matrix
with rare small (2–20 mm) monolithic clasts and flattened carbon-
ate filled cavities (Figs. 7a, 8c). Minor <30 mm circular to elliptical,
red to orange staining of the rock is also characteristic of this
lithofacies.

The lapilli-tuff and breccia are grey to dark blue-green in colour
and contain >50% angular to subrounded andesitic clasts. Rare sub-
rounded to rounded basaltic clasts and polylithic breccia clasts
consisting of red chert, felsic, intermediate and mafic fragments
occurs locally (Fig. 8ab), suggesting a multi-source provenance.
Characteristic interstitial dark chlorite aggregates are interstitial
to the clasts to the volcaniclastic rocks matrix (Fig. 8a), and likely
to reflect seawater alteration of volcanic glass shards shortly after
their formation. When clast-supported, the chlorite aggregates
within the breccias and lapilli-tuffs may account for up to 100%
of the inter-clast matrix.

Sequence 1 is constrained to the northwest and west portion of
the Lemarchant area and is found in the hanging wall of the KJ and
the Lemarchant shear zones, and in the footwall (north side) of the
Bam fault (Figs. 5 and 6).

3.2. Sequence 2

Sequence 2 falls within the basalt/andesite field of Pearce
(1996) and consists of volcaniclastic lithofacies dominated by
poorly sorted polymictic breccia (47%) and lapilli-tuffs (18%) with
lesser tuff (35%) (Fig. 8a). The lapilli-tuffs and breccias are pale grey
to dark grey in colour and generally contain >50% clasts. The clasts
are angular to subrounded and dominated by andesitic clasts with
subordinate subrounded to rounded smaller mafic and chert clasts
(Figs. 7a, 8d). Unlike rocks of sequence 1, polymictic clasts and
interstitial aggregate of dark chlorite are absent in the matrix of
the volcaniclastic rocks of sequence 2.

The tuff of sequence 2 is macroscopically and chemically indis-
tinguishable from those of sequence 1 (Fig. 8e), except that the tuff
intervals from sequence 2 are generally restricted to a few meters
compared to the 10s to 100s of meters of the tuffs of sequence 1.

Sequence 2 conformably overlies sequence 1 and is constrained
to the northwest portion of the Lemarchant area. Like sequence 1,
it is found in the hanging wall of the KJ and the Lemarchant shear
zones, and in the footwall (north side) of the Lemarchant shear
zone and Bam fault (see section 5; Figs. 5 and 6). It represents a
change in the clasts source with the disappearance of the polymic-
tic clasts and dark chlorite aggregates.
3.3. Sequence 3

Rocks from sequence 3 are bimodal in composition and clusters
within the basalt/andesite and dacite/rhyolite fields of Pearce
(1996) (Fig. 7a). Both group are macroscopically similar and can
only be distinguished through geochemical analysis. Andesitie
(3I) is dominant at the base of the sequence whereas dacite (3F)
is more common near the top of the sequence and are the primary
host to the mineralisation (Figs. 5 and 6). Both andesite and dacite
consists of poorly sorted monomictic breccias and flows, and are
consistent with deposition in a vent proximal depositional setting
(McPhie et al., 1993; Allen et al., 1996; Gibson et al., 1999).

The monomictic breccias contains >50% very fine-grained
quartz and feldspar, a dark grey to dark blue matrix, disseminated
pyrite (<3%), and large (>10 cm) intermediate to felsic clasts
(Fig. 8fg). They consist of aggregates of monomictic, clast-
supported, matrix-poor, poorly sorted volcaniclastic rocks that
commonly grade into in situ jigsaw-fit breccia and massive flows.
Individual breccia intervals correlate poorly between drill holes
and appear to have irregular geometries and distributions. The
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monomictic breccias are commonly overprinted by weak to strong
sericite alteration. Veinlets of sphalerite, chalcopyrite, coarse
quartz, chlorite and carbonate crosscut the monomictic breccias
and early sericite alteration near mineralised intervals. However,
late sericite veinlets also crosscut the sphalerite-chalcopyrite vein-
lets, suggesting at least two episodes of sericite alteration. It is
unclear if the monomictic breccias are formed by synvolcanic auto-
clastic mechanisms or are the result of hydrothermal alteration of
jigsaw-fit breccias on flow margins, transforming them into appar-
ent pseudo matrix-supported breccia (Allen, 1988; McPhie et al.,
1993).

The flows are flow-banded and jigsaw-fit flows that are white
to creamy-yellow (Fig. 8hi). The groundmass consists of an inter-
growth of quartz and feldspar with subordinate euhedral, <1 mm
long, disseminated pyrite and anatase grains. Feldspar phe-
nocrysts <2 mm long are also present in the groundmass and
locally exhibit Carlsbad or albite twinning. Aphanitic dark grey
to black chlorite with subordinate sphalerite, and chalcopyrite
fills the interstices between the jigsaw pieces. Both flows com-
monly display varying degrees of late sericite and carbonate
alteration.
Sequence 3 is commonly in structural contact with sequences 1
and 2 but is conformable with sequence 2 in section 106+00N
(Fig. 5c). Sequence 3 rocks occur in every structural block at
Lemarchant but are more predominant within the central and
western portion of the Lemarchant property (Figs. 5 and 6).

3.4. Mineralisation and alteration

Lithofacies associated with the mineralised sequence include:
exhalative mudstones, massive barite, massive to semi-massive
sulphides, chaotic chlorite-carbonate alteration, chlorite alteration
and sericite alteration. The mineralisation in both the Main and
Northwest zones is hosted within the dacitic breccias and flows
of sequence 3, with the exception of the exhalative mudstones,
which overlay the rocks of sequence 3. Precise timing for the initi-
ation of the Lemarchant VMS system is not known. However, cross-
cutting relationships suggest that it was initiated after the
emplacement of the dacitic flows of sequence 3F and prior to the
deposition of the basalts of sequence 4. Layers of exhalative mud-
stones are also present within the hanging wall basalts above the
Main Zone attesting that the Lemarchant hydrothermal system
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was at least still partly active during the deposition of the lower-
most basalts of sequence 4.

3.4.1. Mudstone
The mudstones commonly vary in thickness between 0.1 and

10 m but can be as thick as 23 m. They are brown to black in colour,
finely laminated, graphitic, and contain various amounts of fine
carbonaceous/organic-rich laminae intercalated with chert ± apa-
tite and with sulphides layers and are commonly hydrothermal
exhalites (Fig. 9ab; Lode et al., 2015, 2016). Sulphides are domi-
nated by pyrite and pyrrhotite, with minor amounts of marcasite,
chalcopyrite, sphalerite, arsenopyrite, and galena. There is an
increase in the chalcopyrite, sphalerite and galena content with
proximity to the massive sulphide (Lode et al., 2015). Pyrrhotite-
rich mudstones are common near the contacts with mafic intru-
sions and may be related to desulphidation of pyrite during the
emplacement of the mafic intrusions. In general, mudstones near
the Main Zone are generally well preserved but locally display
weak to moderate shearing (Fig. 9a). In contrast, mudstones at
the Northwest Zone are commonly structurally complex and have
been affected by tight to open folding and faulting (Fig. 9b).

3.4.2. Massive barite
Barite-rich intervals are found below the mudstones and vary in

thickness between 2 and 25 m. Barite is white to dark blue-grey in
colour and occurs as granular massive barite and is locally bladed
(Fig. 9c). Massive barite intervals replace the felsic and intermedi-
ate volcanic footwall rocks and is intergrown with, and replaced by
sulphide mineralisation (Gill and Piercey, 2014; Gill et al., 2015, in
press).
3.4.3. Massive to semi-massive sulphides
Massive to semi-massive sulphide lenses are up to 25 m thick

and consist principally of white to yellow sphalerite with subordi-
nate of pyrite, chalcopyrite and sulphosalts replacing the interme-
diate and felsic volcanic host rocks (Fig. 9de; Gill and Piercey,
2014; Gill et al. 2013, 2015, in press). Semi-massive sulphides
occur as disseminated aggregates and veins localised on fragment
margins of the jigsaw-fit fragments and along flow-banding in the
more massive parts of flows (Fig. 9e). Semi-massive sulphides are
associated with zones of moderate to strong chlorite, sericite
and/or quartz alteration. Massive sulphides commonly occur above
semi-massive sulphide zones but can locally occur below or within
larger intervals of semi-massive sulphides.

In the Main Zone (along section 103+00N; Fig. 5a), a pipe-
shaped mineralised zone is observed below the dacitic volcanic
rocks of sequence 3F and above the Lemarchant thrust in drill core
LM11-61. In the Northwest Zone (along section 106+00N; Fig. 5c),
the mineralisation occurs immediately below the LJ shear zone.
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3.4.4. Alteration
Alteration in the Lemarchant deposit consists of chlorite-

carbonate, chlorite, sericite, and silica alteration (Fig. 9fgh). Alter-
ation varies from weak to strong and occur below the massive
and semi-massive sulphide lenses. Chlorite ± carbonate alteration
occurs within and below the semi-massive sulphide and generally
overprints sericite alteration. Silica alteration occurs with both
chlorite and sericite alteration or by itself. Carbonate alteration
occurs within the massive sulphides and also extends several
meters into the mafic volcanic rocks of the hanging wall.
3.5. Sequence 4

Sequence 4 consists of massive, pillowed, and amygdaloidal
basalt and basalt breccias and falls within the basalt field of
Pearce (1996) (Fig. 7a). The basalts lie conformably above the
hydrothermal mudstones or the andesitic or dacitic volcanic rocks
of sequence 3. They are restricted to the eastern portion of the
Lemarchant property (Figs. 5 and 6).
3.5.1. Massive basalt
The massive basalts are aphanitic, dark grey to dark green with

rare 0.5–2 mm feldspar and magnetite phenocrysts (Fig. 10a). They
are crosscut by minor (up to 10%) 1–3 mm wide carbonate veinlets
and 1–5 mm wide quartz-carbonate veinlets. Epidote alteration of
the matrix is rare and restricted to within or immediately adjacent
to fracture zones.
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Fig. 10. Mafic rocks from sequence 4. (A) Massive basalt; sample LM11-49_421.3m. (
49_056m. (D) Basalt breccia; sample LM07-16_046.2m. All drill core samples are from N
3.5.2. Amygdaloidal basalt
The amygdaloidal basalts are similar to the massive basalts but

have 5–20%, 1–20 mm wide, rounded to sub-rounded carbonate
filled amygdules (Fig. 10b). Chlorite replacement of carbonate in
the amygdules occurs near fracture zones.
3.5.3. Pillow basalt
Intervals of pillow basalts consist predominantly of 5–50 cm

wide pillows with rare pillows >50 cm in width. The pillows are
aphanitic, dark grey to dark green, and contain 5–20% carbonate
filled, 1–20 mm wide, rounded to sub-rounded amygdules
(Fig. 10c). The amygdules are generally smaller and more elon-
gated towards the edge of the pillow where they are 1–2 mmwide.
Inter-pillow volcano-sedimentary rocks consist of a mixture of
very fine-grained basalt, epidote, white mica, carbonate, and pyr-
ite. The pillow basalts are crosscut by moderate amounts (up to
10%) of 1–3 mm wide carbonate veinlets and 1–5 mm wide
quartz-carbonate veinlets. Both the pillows and interflow sedimen-
tary rocks commonly have weakly to moderately developed epi-
dote and carbonate alteration.
3.5.4. Basalt breccia
The basalt breccias are highly variable in texture and vary

between jigsaw-fit, fragment- to matrix-supported-breccia. Frag-
ments consist of aphanitic, dark green to dark grey basalt that vary
in size between 0.5 and 10 cm (Fig. 10d). The matrix varies
between carbonate dominated to epidote ± carbonate dominated.
.

.
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B) Amygdaloidal basalt; sample LM07-16_106m. (C) Pillow basalt; sample LM11-
Q core (diameter = 47.6 mm).
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3.6. Intrusions

Three types of intrusions have been identified in the Lemarch-
ant area, including: mafic, intermediate and felsic intrusions.

3.6.1. Mafic intrusions
Mafic intrusions are macroscopically similar to the amyg-

daloidal basalts of sequence 4 and fall within the basalt field of
Pearce (1996) (Fig. 7a). They are aphanitic, dark grey to dark green
to grey-beige in colour, contain10-25% of 1–20 mm carbonate-
filled amygdules (Fig. 11a). The mafic intrusions locally exhibit
sharp chilled contact margins, which make them difficult to iden-
tify when intruding mafic extrusive rocks of sequence 4. However,
the intrusions can be recognised by their significantly lower
amounts (<1%) of carbonate or quartz veinlets. Likewise, the mafic
intrusions and locally contain 20–40 mm long euhedral pyrite
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Fig. 11. Intrusions from the Lemarchant area. (A) Mafic intrusion; sample LM08-
37_108.4m. (B) Intermediate intrusion; sample LM11-49_343m. (C) Felsic intru-
sion; sample LM08-34_318m. All drill core samples are from NQ core
(diameter = 47.6 mm).
cubes which are absent in the mafic extrusive rocks. The mafic
intrusions cross-cut rocks from all sequences and rare <10 m sills
occur within the mafic rocks of sequence 4. Trace element compo-
sition of the mafic intrusions is indistinguishable from the mafic
extrusive rocks of sequence 4 (Fig. 7), and suggests that the
emplacement of the mafic intrusions might have been in part syn-
chronous or genetically related with the deposition of the mafic
volcanic rocks of sequence 4.

3.6.2. Felsic intrusions
Two types of felsic intrusions with chemistries clustering

within the dacite/rhyolite fields of Pearce (1996) are present at
Lemarchant (Fig. 7a). The first type is cream coloured and contains
<20%, 2–5 mm wide, feldspar phenocrysts hosted in quartz-rich
groundmass that locally exhibit chilled contact margins
(Fig. 11c). The second type is volumetrically subordinate (<0.5%
of total rock volume) and consists of 20–50%, 1–3 mm long, white
feldspar phenocrysts hosted in a creamy-white to pink ground-
mass. These intrusions are commonly <5 m wide, exhibit sharp
chilled margins with surrounding rocks and occur within or prox-
imal to shear zones. The felsic intrusions crosscut every sequences
present in the Lemarchant area, including the mineralisation and
alteration sequence. However, they are commonly spatially associ-
ated with the felsic rocks of sequences 1–3 and are not volumetri-
cally abundant in the mafic volcanic rocks of sequence 4.

3.6.3. Intermediate intrusions
The intermediate intrusions contain <15%, 1–4 mm wide, white

feldspars phenocrysts hosted in a pale grey groundmass (Fig. 11b).
Intermediate intrusions are volumetrically minor, accounting for
<1% of the rocks present at Lemarchant. These intrusions are not
spatially associated with the mineralisation and are only recog-
nised as cross-cutting bodies in sequence 4 in drill cores LM11-
49 and LM11-50 on section 108+00N.
4. Lithogeochemistry

A total of 794 samples of all rock, alteration and mineralisa-
tion types from the Lemarchant area were collected from 46 dia-
mond drill cores. Major oxides (SiO2, Al2O3, Fe2O3, MnO, MgO,
CaO, Na2O, K2O, TiO2, P2O5) were analysed at ALS Global follow-
ing the ME-XRF06 method in which 0.9 g of sample was added
to 9.0 g of lithium borate Flux (50–50% Li2B4O7–LiBO2), mixed
well and fused into a glass disc with an auto fluxer between
1050 and 1100 �C, and analysed by X-ray fluorescence spec-
troscopy (XRF). Lower detection limits are 0.01% for all of the
major oxides. Trace elements were analysed on 371 samples at
ALS Global following the ME-MS81 method in which 0.2 g of
crushed sample is added to 0.9 g of lithium metaborate (Li2B4O7),
mixed well and fused in a furnace at 1000 �C. The resulting melt
was cooled and dissolved in 100 mL of 4% HNO3 and 2% HCl
solution, and was analysed by inductively coupled plasma mass
spectrometry (ICP-MS). Lower detection limits varied between
0.01 and 10 ppm, with most elements having detection limits
below 1 ppm.

Most host rocks in VMS systems are altered to some extent (e.g.,
Large, 1977; Franklin et al., 1981, 2005; Lydon, 1984, 1988;
Hannington, 2014), restricting the elements that can be used for
understanding the primary lithogeochemical signatures of host
rocks. Immobile elements such as Al, Ti, the high field strength ele-
ments (HFSE) and the REE (except Eu) are ideal to provide informa-
tion on the primary petrochemical attributes of the rocks in VMS
systems. However, caution must be used as some of these element
may become mobile (especially the LREE) during intense
hydrothermal alteration (MacLean, 1988).
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4.1. Mobile element systematics

Rocks from the Lemarchant area display weak to strong alter-
ation. Overall, Al2O3/Na2O ratios (Fig. 12a; Spitz-Darling index,
Spitz and Darling, 1978) are generally lower than 20, indicating
low levels of alteration, However, samples with Al2O3/Na2O ratios
as high as �50 occur in sequences 3I, and 4 and in the mafic intru-
sion. Samples with Al2O3/Na2O ratios as high as 235 occur in
sequence 3F, indicative of strong alteration. Plot of AI index
(AI = 100 * (MgO + K2O)/(MgO + K2O + CaO + Na2O); Ishikawa
et al., 1976) versus chlorite-carbonate-pyrite index (CCPI = 100 *
(MgO + Fe2O3)/(MgO + Fe2O3 + CaO + Na2O); Large et al., 2001),
rocks from sequences 1, 2 and 3, and the felsic intrusions plot in
both the least altered and the altered fields, whereas rocks from
sequence 4 and the mafic intrusions plot only in the least altered
field (Fig. 12b). Felsic and intermediate samples that plot in the
altered field display moderate to high AI and CCPI indexes, and
vary between the least altered, the sericite and the chlorite fields.
In addition, some felsic volcanic rocks from sequence 3 and felsic
intrusion have high Na2O values (Fig. 12a) and plot near the albite
field in the AI versus CCPI diagram (Fig. 12b).

4.2. Immobile element systematics

Most rocks fall within the tholeiitic field of Ross and Bedard
(2009) (Fig. 7b) with rocks from sequences 1, 2, 3I, 4, and the mafic
intrusions defining a cluster with Zr/Y ratios ranging from 1.9 to
5.3, and dacitic rocks from sequence 3F defining another cluster
with higher Zr/Y ratios ranging from 3.2 to 5.5. Felsic intrusions
have even higher Zr/Y ratios ranging from 3.5 to 6.6, indicating a
tholeiitic to transitional affinity (Fig. 7b). The dacites of sequence
3 and the felsic intrusions plot in the volcanic arc field on the
Nb-Y discrimination diagram of Pearce et al. (1984) (Fig. 7c),
whereas the mafic rocks of sequence 4 and the mafic intrusions
plot on the boundary between the island arc tholeiite and the
mid-ocean ridge basalt (MORB)/back-arc basalt (BAB) fields on
the Ti-V discrimination diagram of Shervais (1982) (Fig. 7d).

All the samples have low Zr (<200 ppm) and Nb (<10 ppm) con-
tents (Fig. 7e), upper crust-normalised La/Sm ratios <1 (McLennan,
2001; Fig. 7f), and are consistent with input from juvenile crust/-
mantle (Piercey, 2010, 2011). In addition, most samples fall within
the FIIIa field (Fig. 7g) of Lesher et al. (1986) and Hart et al. (2004),
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indicating that partial melting likely took place at relatively shal-
low levels (<10 km) in the crust. However, the basalts from
sequence 4 and the mafic intrusions suggest crustal contamination
and/or slab fluid influence based on the Th/Yb-Nb/Yb discrimina-
tion diagram of Pearce (2008) (Fig. 7h).
4.3. Primitive mantle normalised plots systematics

The extended trace element profiles for each sequence has been
normalised to relative to the primitive mantle values of Sun and
McDonough (1989). Overall, every sequence has negative Nb, Ti,
and Zr anomalies (Fig. 13). Intermediate volcanic rocks of
sequences 1, 2 and 3I have similar extended trace element profiles
and are enriched in light REE compare to heavy REE, with negative
Nb and Ti, moderate negative Zr anomalies (Fig. 13a-c). The dacite
of sequence 3F is enriched in light REE, has strong negative Nb and
Ti anomalies and moderately negative Zr anomalies (Fig. 13d). The
profiles are similar to the profiles of intermediate volcanic rocks
from sequences 1, 2 and 3I but the dacite exhibits more pro-
nounced negative Ti anomalies. Felsic intrusions have similar pro-
files to the dacite of sequence 3F but generally contain higher
absolute values of trace elements (Fig. 13e). Basalts from sequence
4 and the mafic intrusions have similar flat extended trace element
profiles, characterised by strong negative Nb anomalies, and mod-
erately negative Zr and Ti anomalies (Fig. 13fg).
5. Structural elements

Structural elements in the Lemarchant area consist of fractures,
gouge, shear zones, and faults. Fracture zones range from 10s of
centimetres to 10s of meters and consist of sharp sets of dense to
widely spaced parallel fractures. The fractures are generally open
with no visible alteration on their surfaces, except in rare cases
where the fracture surfaces and the adjacent bedrock is bleached
up to 1 cm into the wallrock. The majority of fractures have smooth
surfaces indicating minimal displacement along them; however,
fracture surfaces locally show slickenlines, indicating some dis-
placement. Within the fault zones, areas with the maximum inten-
sity of deformation manifest themselves as 5–25 cm wide zones of
bleached fault gouge. Fracture zones are present in every rock unit
at Lemarchant.
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Shear zones consist of moderately to highly foliated ductile to
brittle shears. They vary in thickness from 10 cm to 10s of meters,
depending on the competence of the rocks and the deformation
intensity. The main shear zones recognised during this study are
termed the LJ, KJ and Lemarchant shear zones, whereas the Bam
fault is the only extensional fault recognised in the study area
(Fig. 6).

5.1. LJ shear zone

The LJ shear zone is a southeast striking shear zone dipping at
�60� towards the southwest (Fig. 6). It typically ranges in thick-
ness from 0.5 to 7 m, but can locally be up to 25 m in thickness.
It occurs exclusively within rocks of sequence 3 and thrusts the
non- to weakly-mineralised rocks of the hanging wall over the
non- to highly-mineralised rocks of the footwall. The LJ shear zone
has been folded into open folds during post-VMS deformation
(Fig. 6). A late mafic intrusion, herein referred to as the Pacman
intrusion, was emplaced in the axis of the LJ shear zone in between
section 104+50N and 106+50N, healing and masking portions the
LJ shear zone in these areas. The LJ shear zone and the Pacman
intrusion are cross-cut by the Lemarchant shear zone (Fig. 6).

5.2. KJ shear zone

The KJ shear zone is parallel to and located �10 to 35 m above
the LJ shear zone (Fig. 6). The KJ shear zone varies in thickness
between 0.4 and 8 m and thrusts rocks from sequences 1 and 2
over non- to weakly-mineralised rocks of sequence 3. As it is the
case for the LJ shear zone, the KJ shear zone has been affected by
open folding during post-VMS event deformation, and was
intruded by the Pacman intrusion between sections 104+50N and
106+50N is crosscut by the Lemarchant shear zone (Fig. 6).

5.3. Lemarchant shear zone

The Lemarchant shear zone is an extensive, relatively flat, hor-
izontal shear zone that occurs throughout the Lemarchant property
(Fig. 6). On average, it ranges between 1 and 10 m in thickness but
is locally up to 30 m thick. The Lemarchant shear zone is offset by
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the Bam fault in the central portion of the property between sec-
tion 104+00N and 105+00N. The observed depth of the Lemarchant
shear zone is approximately 200 m above the mean sea level north
of the Bam fault and 100 m above the mean sea level south of the
Bam fault. The Lemarchant shear zone is not significantly affected
by folding and crosscuts both the LJ and KJ shear zones.
5.4. Bam fault

The Bam fault is an east striking fault dipping at �60� towards
the south and ranges in thickness between 1 and 10 m (Fig. 6). It
crosscuts the LJ, KJ and Lemarchant shear zones. The Bam fault
records a normal-sense of displacement wherein the rocks south
side of the fault was down-faulted relative to the north side. Rela-
tive movement is estimated to be around 100 to 150 m based on
the offset of the Lemarchant shear zone (Fig. 6).
6. Discussion

6.1. Tectonic evolution of the Lemarchant host rocks

All sequences and intrusions examined in this study exhibit
similar primitive mantle normalised extended REE profiles with
negative Nb, Zr, and Ti anomalies (Fig. 13), suggesting a similar tec-
tonic environment of formation. In general, negative Nb, Zr, and Ti
anomalies are characteristic of ‘‘arc” environments, where slab
metasomatism has influenced the overlying mantle wedge result-
ing in an enrichment of large ion lithophile elements relative to
high field strength elements (e.g. Hawkesworth et al., 1993;
Pearce and Peate, 1995; Piercey, 2010). This ‘‘arc” signature is also
supported in the Ti-V systematic of the basalts and mafic intru-
sions (Fig. 7d), where they cluster near the boundary between
the island arc and back-arc/MORB fields. Additional support for
the ‘‘arc” signature can be seen in Th/Yb and Nb/Yb discrimination
diagram where basalt and mafic intrusions plots above the MORB-
OIB array with elevated Th/Yb at a given Nb/Yb (Fig. 7h), indicating
either the influence from slab metasomatism or crustal contamina-
tion during ascent. In addition, the dacite and felsic intrusions plot
in the volcanic arc field on the Y versus Nb discrimination diagram
of Pearce et al. (1984) (Fig 7c), further supporting the arc environ-
ment interpretation.

Despite the evidence for an arc environment, the majority of the
Lemarchant samples have a tholeiitic affinity (Fig. 7b), exhibit
juvenile signatures compare to typical upper continental crust
(La/SmUCN < 1; Fig. 7f) and plots in the post-Archean juvenile
VMS environment field on the Nb versus Zr discrimination diagram
of Piercey (2011) (Fig. 7e). Furthermore, the rocks at the Lemarch-
ant area do not exhibit a continuous spectrum of magmatic prod-
ucts, features common in most ‘‘arc” environments (e.g., Tatsumi
and Eggins, 1995), but rather are bimodal to trimodal in nature,
features commonly observed in rifted arc environments (e.g.,
Vivallo and Claesson, 1987; Wright et al., 1996), and consistent
with regional tectonics models (e.g., Rogers et al., 2006;
Zagorevski et al., 2010; Piercey et al., 2014). However, it should
be noted that some areas of the Tally Pond group (e.i., West and
South Tally Pond zones) exhibit a continuous spectrum of mag-
matic products fractionation (Pollock, 2004). The FIIIa signature
of the dacite and felsic intrusions at the Lemarchant area
(Fig. 7g) supports a shallow melting environment (<10 km), with
melting taking place under low pressure (<0.5 Gpa) and high tem-
perature (900–1000 �C) (Fig. 7e; Lesher et al., 1986; Hart et al.,
2004; Piercey, 2011). Similarly, the extended REE profiles nor-
malised to N-MORB and Ti suggest shallow melting from a garnet
free and spinel stable residue for the basaltic melts of sequence 4
(Fig. 13h; e.g., McKenzie and Bickle, 1988; McKenzie and
O’Nions, 1991; Pearce, 2008). Therefore, the arc signatures present
at Lemarchant area are interpreted to be the direct result of slab
metasomatism (e.g., Hawkesworth et al., 1993; Pearce and Peate,
1995), and/or inherited from contamination via arc crust (e.g.,
Morris et al., 2000) or continental crust assimilation (e.g., Piercey
et al., 2004). The interpreted volcano-sedimentary environment
at the Lemarchant area and the regional tectonic models and are
consistent with continental crust assimilation during magma
ascent.

The Tally Pond group is underlain by the 563 Ma Sandy Brook
group, which consists of rhyolite, andesite and basalt (tholeiitic
and calc-alkaline), and minor siliciclastic rocks, including black
shale and chert horizons (Rogers et al., 2006). These rocks have
evolved Nd isotopic signatures (eNd563Ma from �5.18 to �0.67)
and are interpreted to have formed within a continental arc envi-
ronment (Rogers et al., 2006; Zagorevski et al., 2010). Evidence of
relatively young, but evolved crust beneath the Tally Pond group
at the Lemarchant deposit is also found in the Pb isotopic signa-
tures of galena from the mineralised zones (Gill et al., 2105; Gill,
2015). Therefore, it is plausible that the ‘‘arc” signatures present
in some of the rocks were at least in part inherited from interaction
with the underlying arc basement (i.e., the Sandy Brook group).
Despite being underlain by young arc crust, the presence of arc
tholeiitic rocks with ‘‘juvenile” like signatures is indicative of the
magmas erupting rapidly with limited interaction with crust dur-
ing its ascent and is consistent with rifted arc and VMS formation
environments (e.g., Piercey, 2011).

Several models have been proposed for the tectonic setting for
the Tally Pond group. Dunning et al. (1991) argued that the Tally
Pond group was the product of arc volcanism created by subduc-
tion zone magmatism in an oceanic setting. Rogers et al. (2006)
claimed that the Tally Pond belt formed from subduction along
the peri-Gondwanan side of Iapetus. However, they argue that
the Tally Pond volcanic arc was built on the Ganderian microcon-
tinent (Sandy Brook group – Crippleback Intrusive Suite crust)
and not in an oceanic setting as proposed by Dunning et al.
(1991). Based on Nd isotopes, Rogers et al. (2006) proposed that
the Tally Pond belt formed from 60% juvenile depleted mantle
and 40% recycling of older crust. In contrast, Zagorevski et al.
(2010) hypothesised that the arc signature of the Tally Pond belt
was the result of eastward subduction creating local arc volcanism
within a greater extensional back-arc complex in which the mag-
matic front migrated westward with time due to slab rollback. In
this model, these extensional eruptive complexes are associated
with longitudinal rifts crosscut by cross-arc seamount chains. Sim-
ilarly, Piercey et al. (2014) argues that the Duck Pond and Bound-
ary deposits formed within a rifted arc environment along the edge
of the Ganderian margin of the Iapetus ocean. More recently, Lode
et al. (2016) suggested a two-phase rifting model for the Tally Pond
group wherein the Lemarchant deposit formed at shallow depth
during phase one of rifting.

Our model for the Lemarchant area agrees with the young rifted
arc environment of Zagorevski et al. (2010), Piercey et al. (2014)
and Lode et al. (2016) and explain the abundance of rocks with a
juvenile geochemical signatures, the distinctly trimodal signature
of the belt comparatively to dominantly andesitic with continuous
fractionation trends (basalt to rhyolite) for continental arcs (e.g.,
Arculus, 1994; Lentz, 1998; Swinden, 1996), and is consistent with
the extensional environment of formation of VMS deposits com-
paratively to compressive environments for arcs (Fig. 14) (e.g.
Franklin et al., 2005; Galley et al., 2007; Piercey, 2010, 2011;
Hannington, 2014). However, since continuous magmatic products
are observed within the Tally Pond group (Pollock, 2004), compres-
sive arc environments were also locally present.

Due to the high abundance of andesite compared to the bimodal
(basalt and rhyolite) sequence at Duck Pond and elsewhere in the
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Tally Pond belt (Fig. 14c), we propose that the Lemarchant deposit
formed either at an arc front or within a migrating cross-arc. A sim-
ilar tectonic environment has been observed by Wright et al.
(1996) within the modern Havre Through, north of the Taupo Vol-
canic Zone, wherein east-west andesitic arcs and associated cross-
arcs occur perpendicular to the main north-south arc axis. Wright
et al. (1996) suggested that the cross-arcs formed during the east-
ward migration of the subduction and associated arc magmatic
fronts, and highlight areas where andesitic arc magma supply is
greater than the rifting rate. Following this model, we hypothesise
that the Lemarchant deposit formed following the attenuation of
the andesitic arc magma supplies, likely when the rift-related
magma supply became dominant. This transition was accompa-
nied by a change from andesitic to dacitic magmatic composition
during deposition of sequence 3 due to either mixing of the ande-
sitic arc magma with rhyolitic magmas derived from the rift com-
ponent or by crustal assimilation within the andesitic arc or cross-
arc, creating the sparse dacite that host the VMS mineralisation.
Subsequent to the transition to a rift dominated environment,
the basalts of sequence 4 erupted over the andesitic and dacitic
rocks of sequence 3. Hydrothermal activity related to the Lemarch-
ant deposit continued during that time (i.e.., post-VMS formation)
as attested by the presence of interlayered exhalative mudstones
within the basalts (Lode et al., 2015, 2016).

The relatively shallower position of VMS systems formed at the
front of or within the magmatic cross-arcs compared to those
formed at greater depths (i.e., in rift basins) may have enhanced
boiling and allow enrichment in precious metals. At Lemarchant,
potential boiling is evidenced by abundant sulphosalts (i.e.,
tetrahedrite-tennantite), electrum, bladed barite, Ca-Fe-Mg-Mn-
carbonate, and enrichments in epithermal suite elements (i.e.,
Au, As, Bi, Co, Cr, In, Mo, Ni, Sb, Se, Te; Gill et al., 2013, 2015; Gill
and Piercey, 2014; Lode et al., 2015). Based on the ore mineralogy
of the Main Zone at Lemarchant, Gill et al. (2015, in press) sug-
gested that the deposit formed from intermittent boiling of
hydrothermal–magmatic fluids at relatively shallow (<1500 m)
water depth, and is consistent with the model propose therein.
Boiling of Au-bearing magmatic fluids may have aided or may have
been critical to the precious metal enrichment at the Lemarchant
VMS system. Boiling resulted in a fluid phase with decreased HS-

activity due to strong fractionating of H2S into the vapour phase,
increased pH as a result of acidic components fractionating into
the vapour phase, and decreased temperature (William-Jones
et al., 2009). These promotes the destabilisation of the precious
and base metal complexes in solution and result in their precipita-
tion at the site of boiling.

6.2. Structural evolution of the Lemarchant area

The Lemarchant area was affected by several episodes of defor-
mation following the deposition of sequences 1–4 and the VMS
mineralisation hosted therein. Recorded deformation is more
intense within the mudstone near the shear zones and within
sheared massive sulphides of the Northwest Zone. It is proposed
that the LJ and KJ shear zones originated as are syn-volcanic struc-
tures as both shear zones are found at �45� to the stratigraphy
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(Fig. 5c), and have different geometry (affected by early folding)
compared to regional thrust faults in the area (Figs. 5c, 6, 15;
e.g., McNicoll et al., 2010; Zagorevski et al., 2010). The kinematic
indicators of the LJ and KJ shear zones suggest that older rocks of
sequences 1 and 2 are thrusted over younger rocks of sequence 3
and records an overall net reverse motion, indicating late reactiva-
tion of the syn-volcanic faults (Figs. 5c, 6, 13). Within the LJ shear
zone, red sphalerite crosscut intervals of massive fine-grained,
honey brown sphalerite and chalcopyrite, and is spatially associ-
ated with small aggregates of rounded to subrounded chalcopyrite.
These textural relationships indicate that sphalerite deformed duc-
tility and was remobilised parallel to LJ and KJ shear zones,
whereas chalcopyrite was mechanically transported and concen-
trated into aggregates, as sphalerite does not require as high a
pressure/temperature, relative to chalcopyrite, to reach the
brittle-ductile transition and be ductility remobilised (Marshall
and Gilligan, 1987). Consequently, from the sulphide relationship
observed, it can be estimated that the pressures and temperatures
reached during the deformation of the Lemarchant area did not
exceed 175 MPa and 200 �C, respectively (Marshall and Gilligan,
1987).The high angle LJ and KJ syn-volcanic shear zones are cross-
cut by the relatively flat-laying Lemarchant shear zone
(Figs. 5, 6, 13b) and suggests that the two mineralised zones did
not originate from the same lens prior to deformation (Figs. 5
and 6). These observations are in agreement with those compiled
by Squires and Hinchey (2006), suggesting that the Lemarchant
shear zone is a thrust fault. On a regional scale, the Lemarchant
thrust zone terminates against felsis rocks of the Bindons Pond for-
mation which are crosscut by the nearby 465 ± 1 Ma (U–Pb zircon;
Pollock 2004) Harpoon Hill gabbro (Squires and Hinchey, 2006)
and possibly constrains the timing of the main deformation phases
to the Penobscot orogeny (486–478 Ma; Colman-Sadd et al., 1992;
van Staal, 1994; Johnson et al., 2009; Zagorevski et al., 2010). In the
eastern portion of the Exploits Subzone, east of the Tally Pond
group, the Penobscot orogeny was accompanied by thrusting of
locally derived Penobscot back-arc basin ophiolites onto the pas-
sive margin of Ganderia (Colman-Sadd, 1985; Colman-Sadd et al.,
1992; Jenner and Swinden, 1993; Zagorevski et al., 2010). It is sug-
gested that the Penobscot orogeny coincided with a NW-SE com-
pression event in the Lemarchant area, that resulted in thrusting
rocks over a few kilometres, as is the case for the obducted ophio-
lites in the east of the Exploits Subzone, and was accompanied by
folding of the LJ and KJ syn-volcanic shear zones (Fig 15b; Colman-
Sadd, 1985; Jenner and Swinden, 1993; Zagorevski et al., 2010).

The last deformation event recorded in the Lemarchant area
corresponds to an episode of extension marked by the creation of
the west striking Bam normal fault (Figs. 4, 15c). Regional mapping
compilation conducted by Squires and Hinchey (2006) and logging
of drill core south of the Main Zone suggests that the Bam normal
fault is part of a series of NW-SE striking late normal faults that
affected the southwest and northeast parts of the Tally Pond group.
The timing of the late normal faults is unclear; however McNicoll
et al. (2010) argues that late normal faults at Duck Pond displace
a gabbro intrusion with a chemical signature similar to the Har-
poon Hill Gabbro from which an age younger than 465 Ma can
be inferred for the late normal faults. By analogy, the late relative
timing for the normal faults at Lemarchant may suggests a maxi-
mum age of 465 Ma for normal faults, potentially related to an epi-
sode of tectonic relaxation post-Penobscot orogeny.

6.3. Implications for VMS exploration

Exploration for VMS deposits in accretionary orogenic belts is
challenging due to post-VMS tectonic imbrication of original basin
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sequences (e.g., Calon and Green, 1987; McClay, 1995; Thurlow,
1996; Nelson, 1997; Castroviejo et al., 2011), and other complica-
tion factors such as poor exposure, thick soil cover, or poorly
understood stratigraphic relationships. The work presented herein
provides an approach that may be useful for more effective explo-
ration for VMS deposits in imbricated terranes worldwide. The
results illustrate the importance of multi-faceted approach (struc-
tural, stratigraphic and chemostratigraphy) to formulate tecto-
stratigraphic reconstructions. This approach can help to identify
disparate sulphide lenses (e.g., Northwest vs. Main zones), from
continuous lenses offset by faults – critical for both exploration
and mine planning. Furthermore, fault reconstruction illustrates
that while many blocks were lithologically similar (e.g., sequences
1 and 2 vs. sequence 3), they can have distinct structural positions,
and may have markedly different economic potential. Conse-
quently, reconstruction of poly-deformed deposits such as pre-
sented herein are not only critical to understand the genesis of
ancient deposits and their tectonic setting, but also for guiding
exploration in deposit-proximal areas. The potential of the later
can be further enhanced by the addition of other information layer
(e.g.: geochemistry, geophysics, hyperspectral reflectance) within a
known geological context, which is key to efficient exploration.
7. Conclusions

The Lemarchant area is underlain by four volcano-sedimentary
sequences, one mineralised sequence, and several intrusive phases.
Sequences 1 and 2 consist of andesitic breccias, lapilli-tuff and tuff
and represent vent-distal volcaniclastic sequences relative to the
depositional centre. Sequence 3 consists of vent-proximal andesitic
to dacitic autoclastic volcaniclastic and associated massive flows
that host the VMS mineralisation. The mineralisation sequence
includes exhalative mudstones, massive barite, massive to semi-
massive sulphides, chaotic chlorite-carbonate alteration, chlorite
alteration and sericite alteration and is principally hosted within
the dacitic breccias and flows of sequence 3, with the exception
of the exhalative mudstones, which overlay the rocks of sequence
3. Sequence 4 consists of tholeiitic basalts that were deposited con-
formably on rocks of sequence 3 or on the exhalative mudstone of
sequence 3. These sequences are intruded by younger, possibly
syn-sequence 4, felsic, intermediate and mafic dikes.

The Lemarchant deposit consists of two distinct VMS lenses that
formed within massive dacitic flows and related autoclastic vol-
caniclastic rocks of sequence 3 that have recorded different defor-
mation styles. The Northwest Zone is hosted in the immediate
footwall of the folded LJ syn-volcanic shear zone, whereas the Main
Zone occurs in the relatively undeformed hanging wall of the
Lemarchant thrust. It is proposed that the tectono-stratigraphic
environment of formation of the Lemarchant deposit is within a
shallow (<1500 m below sea level) arc or migrating cross-arc sea-
mount chain which produced abundant amount of andesitic rocks.
The VMS mineralisation occurs within late dacitic flows (513–
509 Ma) that formed during the transition between arc dominated
and rift dominated environment. The shallow position of the
deposit promoted boiling near or at the seafloor, ultimately result-
ing in precious metals enrichment of the Lemarchant deposit. It is
suggested that arcs or cross-arcs within rifted arc environment
represent favourable exploration targets for precious metal
enriched VMS deposits.

Deformation of the Lemarchant deposit likely occurred during
the Penobscot orogeny (486–478 Ma) and coincided with the
deformation of the LJ and KJ syn-volcanic shear zone and subse-
quent creation of the Lemarchant thrust during a NW-SE compres-
sion episode. The late (<465 Ma) east trending Bam normal fault
affected the central portion of the Lemarchant area and lowered
the southern portion relative to the northern portion of the studied
area.

This study of the Lemarchant deposit resulted in the reconstruc-
tion of the original volcanic and structural environment, and has
implications for ongoing exploration at Lemarchant and can be
used as a framework for other datasets (e.g., geochemistry, geo-
physics, hyperspectral). The approaches and results presented in
this paper are relevant to and can be utilised for understanding
and exploring for VMS mineralisation in the Tally Pond group
and in similar accretionary orogens globally.
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