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Abstract

Based on an environmental geochemistry case study carried out in the neighbourhood of a W–Sn abandoned mine, the pollution in stream
sediments was modelled through a Global Contamination Index. Such an index permits one to summarize the combination of deleterious elements
in a single variable, obtained by the projection of samples onto the first axis of a PCASD (Principal Components Analysis of Standardized Data)
applied to the entire n×p matrix containing the available concentrations of p=16 elements in the set of n=220 collected samples.

In order to provide a sound basis for a coherent planning of the remediation process which will be put in operation in the affected area, it is
necessary to balance the costs of reclaiming with the probabilities of exceeding the upper limits accepted for concentrations of environmentally
harmful elements in sediments. Given these limits, they are back-transformed in the index values, providing a practical threshold between ‘clean’
and ‘contaminated’ samples. On the other hand, the minimum dimension of the cell to be reclaimed is restrained by the selected remediation
process to be applied in the affected area. Hence, to meet the constraints of such a remediation process, it is required to estimate the probabilities of
exceeding the index threshold in technologically meaningful sub-areas. For this end, the Indicator Block Kriging technique was applied, producing
a series of maps where sub-areas to be reclaimed can be spotted for different probability levels. These maps, on which the decision making
remediation agency can rely for its cost-benefit analysis, take into account both the spatial structure of ‘clean’ vs. ‘contaminated’ samples and the
constraints of the reclaiming process.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and methodological overview

When assessing the impact of abandoned mines on the
environment, an important issue is to map the concentration of
deleterious elements in stream sediments affected by the spread
of old tailings and wastes. Instead of mapping these elements
individually, giving rise to unmanageable plots, the global
contamination of a given area can be easily visualized by
summarizing such elements in a global index, which may be
provided by the PCASD (Principal Components Analysis of
Standardized Data) of the entire data set, under the approach
given in Barradas et al. (1992). In contrast with usual PCA, this
approach (described in detail in Vairinho et al. 1990, p. 384),
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allows the n samples to be projected onto the same axes that are
interpreted in terms of the p variables, linking Rp and Rn

factorial spaces through transition relationships. The projection
of samples onto the particular axis interpreted on the grounds of
deleterious elements concentrations give the values of the
required Global Contamination Index.

But, in addition to summarize the set of harmful elements
into a single contamination index, it is also necessary, for
remediation purposes, to locate in space significant areas where
the index exceeds a certain threshold, derived from upper limits
in the concentrations allowed for dangerous elements in
sediments. Such areas, which must conform to technological
constraints stemming from the selected remediation process
(minimum dimension of a cell to be reclaimed and maximum
contiguity between cells), can not be spotted from the sample
map, which refers to index values in point supports.
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For decision making in remediation planning, costs of
reclaiming must be related to the probability of exceeding the
maximum limits in dangerous elements. In order to approach this
problem, providing a sound basis for cost-benefit reclaiming
studies, an Indicator Block Kriging based methodology was
developed, aimed at associating the probabilities of exceeding a
given threshold with the correspondent sub-areas to be reclaimed,
and producing a series of maps where these sub-areas are located
in space. This methodology relies on the following assumptions:

(i) An indicator variable can be found to account for the
probability of surpassing, in each sample point, a certain
Fig. 1. General geological map of the Vale da
threshold derived from international regulations for upper
limits in deleterious elements concentration.

(ii) The estimation of such a variable in technologically
significant cells can provide a set of different sub-
areas, formed by contiguous cells and associated with a
range of estimated probabilities of exceeding the
threshold.

The Indicator Kriging technique was used along the lines put
forward by Journel (1983), and fully developed in environ-
mental applications by Goovaerts (1997) and Mohammad et al.
(1997).
s Gatas area showing the sampling sites.



Table 1
Basic statistics of the concentrations in samples

Element
(mg kg−1)

Minimum Arithmetic mean Maximum Variation coefficient

Cu 11.00 149.72 1241.00 1.5640
Pb 11.00 627.96 9708.00 2.5327
Zn 32.00 159.52 1210.00 1.0955
Ag 0.30 16.28 222.20 2.4939
Ni 2.00 18.75 40.00 0.4724
Co 1.00 9.87 39.00 0.4673
Mn 70.00 419.83 1536.00 0.4507
Fe (%) 0.71 2.70 6.44 0.3140
As 2.00 931.92 18312.00 2.5355
Cd 0.20 1.54 15.40 1.6993
Bi 3.00 77.25 1314.00 2.6279
Cr 6.00 28.40 92.00 0.4156
W 2.00 192.27 2095.00 2.3454
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The above outlined methodology is to be detailed in parallel
with each step of the data modelling process applied in a case
study referring to the Vale das Gatas mine, northern Portugal.

2. Case study presentation: geology and sampling

The Vale das Gatas mine is located in an important
geotectonic segment of the Iberian Massif denoted Center-
Iberian Zone, which is included in the Hercynian Chain (Lotze,
1945; Ribeiro and Pereira, 1982). The major lithological units
outcropping in the study area comprise metasedimentary rocks
of Pre-ordovician age (phyllites, psamites, greywackes, quart-
zites, limestones), which were intruded by Hercynian granitoids
of diverse chemical and mineralogical composition (see Fig. 1).
A number of late fracture systems (with predominant NNE–
SSW directions) filled by quartz and aplito-pegmatites intersect
all those lithologies (Sousa, 1982).

The mineralisation, which occurs in quartz veins that fill up
some of those fractures, is mainly composed of wolframite
(hubnerite, but also ferberite), cassiterite and schellite (Gaspar and
Bowles, 1985), which were the main components of the exploited
ore, during the period of the mine's life. Significant amounts of
Fig. 2. Separate PCASD for tail
sulphides (arsenopyrite, pyrite, chalcopyrite, pyrrothite, sphar-
elite, galena, stannite) and Bi–Pb–Ag sulphosalts as matildite,
pavonite and neyite are present as accessory minerals.

The mine ceased its economical activity in 1986, and no
environmental remediation action has been taken since then. As
expected, chemical oxidation and leaching of sulphides from the
old tailings produced a severe acid mine drainage (AMD). This
had an important contamination effect on stream sediments
located in areas where land use may be jeopardized by such an
environmental impact (Freire Ávila et al., 2001), being the results
presented in this paper the environmental-geochemical data
model to be used as a basis for launching the reclaiming project.

The data collected in this case study was obtained by two
sampling campaigns. The first refers to stream sediments (199
samples), and the second, and more specific, is composed of 21
samples aimed at tailings characterization (see Fig. 1). The samples
were dried at 40 °C and sieved at 80 mesh. After this, they were
crushed, homogenized and sieved, retaining theb200mesh fraction
for chemical analysis, as described in Freire Ávila et al. (2005). The
analytical methodology was supported on the multielement
chemical analysis of stream sediment and tailing samples.
Accredited procedures (based in Quality Systems) of Inductively
Coupled Plasma-Atomic Emission Spectrometry (ICP-ES) were
adopted for the total analysis of minor and trace elements: Cu, Pb,
Zn, Ag, Ni, Co, Mn, Fe, As, Cd, Bi, V, P, Cr, Ti and W.

The geochemical data obtained for the Vale das Gatas area
was extensively discussed by Freire Ávila (2003). From this
study it was concluded that As, Cu, Pb and Zn appear as the
most harmful elements from an environmental point of view.

Table 1 summarizes the statistical characterization of the data
set on which the approach used in this paper relies (Freire Ávila
et al., 2005). The whole data set of 220 samples was used
jointly, given that the relationship structure between elements is
the same in tailings and sediment samples, as deduced from
Fig. 2, where a separate PCASD was performed for each sub-
set. It is worth noting that the similarity between the two sources
concentration structure for most elements is likely to stem from
the intense leaching process that occurred in the area, producing
resiliently contaminated sediments far away from the mine site.
ings and sediment samples.



Fig. 4. Graphic representation of samples in the factorial plan defined by axes 1
and 2.
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3. Global Contamination Index construction and discussion
of its estimation method

Stream sediments have been widely considered as good
environmental indicators. The interpretation of this type of data
by multivariate data analysis is commonly accepted, hence it
constitutes a successful tool to quantify anthropogenic effects
(Anazawa et al., 2004; de Carlo et al. 2005; Ali et al. 2006; Wu
et al. 2007; among others).

Principal Component Analysis of Standardized Data (PCASD)
was applied to the analytical results organized in a matrix of 220
samples by 16 variables: Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, Cd,
Bi, V, P, Cr, Ti andW. The results obtained revealed the existence of
two particular element associations (see Fig. 3). The first axis is
interpreted on the grounds of the elements that are characteristic of
the mineral paragenesis of Vale das Gatas mine (Pb, Ag, Bi,W, Cd,
As, Zn e Cu). Apart from the above identified harmful elements
(As, Cu, Pb and Zn), this group of strongly inter-correlated
variables contains alsoW fromwolframite, Bi/Ag from sulphosalts,
and Cd from spharelite. It is worth noting that this analysis,
referring to the whole data set, gives rise to the same results shown
in Fig. 2 only for the sub-set of stream sediment samples,
suggesting that tailings and mine waste material is intermingled
with sediments, as a consequence of the severe leaching process.
The second axis is explained by the association Cr, Fe, V, Ni, Co
and Ti, suggesting a signature related with the local geology (Freire
Ávila, 2003). The plot of samples represented in Fig. 4 shows a
dense cloud along axis 2 which is related to variations in the
geology, and a set of points, scattered along the positive semi-axis 1,
corresponding to contaminated sample sites.

In order to establish aGlobalContamination Index– IND– for
the study area, the coordinate of each sample in the first axis
(Fig. 4) was taken as a synthetic measurement of the effect
produced by the association of the above given group of elements.

This coordinate was confined between 0 and 1 by:

IND ¼ Coord�Minð Þ
Max�Minð Þ where,

IND is the required index and Coord is the projection of the
sample onto the first axis, contained between Max and Min.
Fig. 3. Graphic representation of variables in the factorial plan defined by axes 1
and 2.
The histogram of the proposed Global Contamination Index
is given in Fig. 5, showing a clear two-populations distribution:
the low classes correspond to the geological background and the
high values to contaminated samples.

The spatial distribution of the variable index in sample sites
is given in Fig. 6, representing the level of contamination of
each sample by a visual plot.

The combined analysis of Figs. 5 and 6 shows that high
values sub-population samples tend to cluster spatially in
particular segments of the entire area of the study, which
correspond obviously to contaminated sites.

Given the specific statistical and spatial characteristics of the
index variable, there is no point to estimate it by any linear
kriging method, as proposed, in a rather a different setting, by
Reed et al. (2001) for anthropogenic contamination and by
Wackernagel et al. (1988) for soil data. In fact, even though the
above constructed index may be viewed as a Regionalized
Variable summarizing the concentrations of set of meaningful
elements (avoiding by this token any type of co-kriging), it does
not meet stationary and homogeneous requirements, as
evidence provided by the geochemical-environmental study
supporting Figs. 5 and 6 fully demonstrates. Also, any type of
Fig. 5. Global Contamination Index Histogram.



Fig. 6. Perspective diagram allowing the visualisation of the spatial distribution of the level of contamination in sample points.

Fig. 7. Representation of the indicator variable in sample points.
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conditional simulation, as advocated by Bailly et al. (2006) for a
similar context, does not pursue the objectives of this case study,
since such a method does not identify the location of high
values, accounting instead for global variability. Moreover, the
universal kriging and external drift models are also inappropri-
ate for approaching the problem, since the patchy spatial
distribution of the variable does not exhibit any discernible
trend (the values of the index do not follow the hydrological
network, as it could be expected, being controlled by a blend of
factors that gives rise to the spiky spatial distribution of Fig. 6).

Hence, the above mentioned approaches were discarded, in
favor of the Indicator Block Kriging technique, a non-linear
estimation method that, not only suits the peculiar conditions of
the data setting, but also matches the objective of the reclaiming
process. In fact, Indicator Block Kriging allows one to split the
index into a binary variable that accounts for the separation in
two populations by a given threshold, and also to estimate,
within technologically meaningful units, the probability of
exceeding such a threshold.

4. Indicator Block Kriging estimation and production of
probability maps

The first step of the application of Indicator Kriging to a
synthetic variable like the Global Contamination Index is to
derive an operational threshold to split the global population
into two sub-sets: the ‘contaminated’ and the ‘clean’ samples.
Since the index is an ‘artificial’ variable, such a threshold must
be derived from the concentrations of the elements that
contribute to its construction. The set of harmful elements
identified in section 3 that take part in the index are As, Cu, Pb
and Zn. For those elements there are international norms that
define upper limits in their concentration (mg kg−1), below
which the sediment is considered as ‘clean’ : As – 33, Cu – 150,
Pb – 130, Zn – 460, cf. WDNR (2003).

Hence, to get a threshold for the variable IND, a minimum
risk scenario was adopted: the sediment is considered ‘clean’ if
none of the above given limits is exceeded. The particular form
of PCA used here allows to back-transform variable coordinates
into sample projections by the transition relationships linking
factorial spaces Rp and Rn (Vairinho et al., 1990, p. 384),
providing the values of the index corresponding to particular
values of the original variables. Therefore, choosing the
minimum value of IND corresponding to the prescribed limits,
the practical threshold of 0.10 is found for the Global
Contamination Index.

At this stage, an Indicator variable can be established for the
Global Contamination Index: it takes the value 1 if IND≥0.1 and 0,
otherwise. The representation of this indicator variable in the sample
points is given in Fig. 7, showing that contaminated points are
clustered around themine and fairly scattered in the remaining area.

The omnidirectional variogram of the above defined
indicator variable is presented in Fig. 8, depicting the global
spatial structure of contaminated vs. ‘clean’ points. Given that



Fig. 8. Experimental omnidirectional variogram of the indicator variable and fitted model accounting for the number of pairs of points used for each class.

Fig. 9. Estimation map showing in black the contaminated cells for 20%, 40%, 60% and 80% of probability of exceeding the threshold.
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the indicator variable is not a continuous one, but reflects only
the effect of an ‘external’ cut-off applied to an ‘artificial’
variable, it is not surprising that no significant hydrological
driving force is controlling its two-phase spatial structure.
However, for the sake of acquiring a reasonable confidence in the
omnidirectional model (whose parameters are also given in Fig. 8,
together with the number of pairs averaged for each lag), it was
decided to test the global behavior of the model through a cross-
validation process, as described by Webster and Oliver (2001),
p. 189–190. This process consists of calculating the diagnostic
statisticsMeanError (ME) and theMean SquaredDeviationRatio
(MSDR), which should take the values of 0 and 1, respectively,
for the ‘perfect’ fit. The experimental values obtained for the
model of Fig. 8 were 0.0051 and 1.11, respectively. This statistical
validation, jointly with the phenomenological interpretation of the
spatial structure of contaminated sites, guarantees in practical
terms the consistency of the omnidirectional variogram model to
be used in the Indicator Kriging technique.

Once obtained a reliable variogram model, the kriging plan
was established: the block to be estimated is a square of
500×500 m, corresponding to the minimum size of a cell to be
‘cleaned’ by the technological reclaiming process; given the cell
size and the variogram range, a search radius of 7.000 m was
selected and a minimum of 4 samples was established for the
number of points to be weighted in the index estimation of a
given cell, approximated by a regular mesh of 25 points.

The estimated maps for different levels of probabilities (0.2,
0.4, 0.6, 0.8) of exceeding the above derived threshold are given
in Fig. 9.

5. Conclusions

This case study illustrates a methodology combining multi-
variate data analysis with non-linear geostatistics to calculate a
Global Contamination Index and to estimate the probabilities
that such an index exceeds a given threshold, within technolo-
gically meaningful units for a given remediation method.

The estimated probability maps provide a sound basis to
perform cost-benefit analyses focused on the specific reclaim-
ing process to be used in the contaminated area. Apart from the
total area to be reclaimed, which obviously shrinks when
increasing the level of accepted probability of surpassing the
minimum risk scenario put forward for the threshold definition,
it is also necessary to take into account the contiguity of the cells
corresponding to each sub-area for calculating the correspond-
ing remediation costs. Such an important remediation planning
parameter can also be deduced from the maps provided by the
Indicator Block Kriging method.
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