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A B S T R A C T

The giant Zijinshan Cu-Au deposit in the Zijinshan orefield, Fujian Province, southeastern China, is the first high-
sulfidation epithermal deposit identified in mainland China. The Cu and Au orebodies occur as veins and pods in
the NW-trending faults and breccias zones. Intensive and pervasive alteration is characterized by downward and
outward zoning from intensively leached silicic alteration (or vuggy quartz, Q), through alunite-quartz-pyrite
alteration (advanced aragillic alteration, Q-Alu) and the quartz-alunite alteration overprinting the sericite al-
teration (Q-Alu-Di-Srt), to sericite (or phyllic) alteration zone. Gold mineralization mainly occurs in the silicic
alteration zone, while the copper mineralization is confined in the alunite-quartz alteration zone. On the basis of
detailed petrographic study, an early porphyry type mineralization stage, characterized by chalcopyrite-bornite-
molybdenite-pyrite-sericite assemblage is recognized at Zijinshan, which is subsequently and strongly over-
printed by the sulfate alteration and high-sulfidation Cu-Au mineralization stages. A supergene stage is also
identified at shallow depth of the deposit, with gold largely enriched but copper commonly leached. The ore-
forming fluids related to the early sericite alteration and possibly porphyry type mineralization are high-tem-
perature, high-salinity magmatic water, characterized by the presence of the halite-bearing inclusions. The CO2-
H2O (C-type) inclusions are mostly vapor-rich and abundantly identified in the samples with advance argillic
alteration (alunite alteration). They are regarded to be the buoyant vapor phase by fluid boiling of a single-
phase, low- to moderate-salinity magmatic fluid at depth, where a separated saline phase and related porphyry
mineralization might be expected. A group of secondary inclusions coexisting with enargite grains are re-
cognized in the samples with alunite alteration and suggested to be trapped from the ore-forming fluids of the
Cu-Au mineralization stage. The total homogenization temperatures and salinities of the secondary inclusions
are below 300 °C (peaking at 260–280 °C) and under 10 wt% NaCl eqv., respectively. Intensive fluid boiling is
the major mechanism for the formation of the giant high-sulfidation Cu (covellite-, digenite-dominated) or-
ebodies in the Zijinshan deposit. It is a deep-seated high-sulfidation epithermal deposit according to the esti-
mated depth of 1.4–2.1 km from the C-type inclusions in quartz grains from the alunite alteration zone. By fluid
inclusion mapping of a nearly NW-trending cross section profile, the isotherms are extrapolated using the
average total homogenization temperatures and the possible heat source is suggested. It is indicated that the heat
source and possible concealed porphyry mineralization nearly coeval to the high-sulfidation Cu-Au miner-
alization at Zijinshan might be located at the southeastern Zijinshan deposit or the northern area between the
Zijinshan and Wuziqilong deposits, where deep drilling is encouraged.

1. Introduction

Epithermal deposits are important sources of copper, gold, silver,
lead and zinc, which can be further classified into the high-sulfidation

(HS) and low-sulfidation (LS) subtypes in terms of the diagnostic
gangue mineral assemblages, sulfide assemblages and contents
(Simmons et al., 2005; Hedenquist et al., 2000; Hedenquist, 1987;
Heald et al., 1987; Pirajno, 2009; Chen et al., 2012). South China is an
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important epithermal metallogenic province and hosts at least 43 epi-
thermal deposits, of which the Zijinshan Cu-Au deposit in Fujian Pro-
vince is the first and only typical HS deposit (Zhong et al., 2017a). Since
its discovery in 1980s,> 300 t gold (at 0.53 g/t) and 2.32 Mt copper
(at 0.36%) have been identified in the Zijinshan Cu-Au deposit (Zhang,
2013), making it the first discovered as well as the largest epithermal
gold-copper deposit in mainland China. Former publications about the
Zijinshan deposit focus on ore geology (Chen, 1999; Zhang et al., 1992;
So et al., 1998), mineralogy (Qiu et al., 2010; Wang and Jue, 2013; Liu
et al., 2011, 2016), fluid geochemistry (Zhang et al., 1992; So et al.,
1998) and geochronology (Zhang et al., 1992; Chen, 1996; Zhou and
Chen, 1996) of the samples collected from shallow parts of the deposit.
Recent drilling by the Zijin Mining Group revealed covellite- and di-
genite-dominated mineralization at depth of −400 m above sea level
(asl), indicating its vertical Au-Cu mineralization extended> 1500 m
(from ~1100 m to −400 m asl). The mineralogy of both the ore (Cu-
sulfides) and gangue minerals (e.g., alunite) at depth had been studied
(Qiu et al., 2010; Wang and Jue, 2013; Liu et al., 2011, 2016), yet the
ore-forming fluid geochemical features have not been detailedly in-
vestigated and the genesis of the thick orebodies remains unclear.
Moreover, concealed porphyry mineralization at depth in Zijinshan has
been suggested by many researchers (Qiu et al., 2010; Zhang, 2013; Liu
et al., 2016) by the comparison with other porphyry-epithermal mi-
neralization systems (e.g., Sillitoe, 2010; Hedenquist and Lowenstern,
1994; Heinrich, 2005), but the exact possible target locations of the
porphyry mineralization have not been predicted yet.

In this contribution, we present the systematic fluid inclusion re-
sults, especially for those samples collected from the deep part (below
+520 m or +330 m asl) of the Zijinshan deposit, and further discuss
the hydrothermal fluid evolution and ore mineral precipitation pro-
cesses. By vertical fluid inclusion mapping, we have determined the
possible heat source of the ore-forming fluids, and predicted the pos-
sible location of the concealed porphyry deposit at depth.

2. Regional geology

The Zijinshan orefield, the most well-developed porphyry-epi-
thermal mineralization system in China (Zhong et al., 2017c), includes
at least the Luoboling porphyry Cu-Mo deposit (Zhong et al., 2011,
2014, 2017a), the Yueyang LS Ag-Cu-Pb-Zn polymetallic deposit
(Zhang et al., 2003a; Zhong et al., 2017b), the Wuziqilong Cu deposit
(Chen et al., 2011), the Longjiangting Cu deposit (Chen et al., 2015;
Chen, 2013), and several other occurrences (Zhang et al., 2003b). The
orefield is located to the northeast of the NW-trending Shanghang-
Yunxiao deep fault in southwestern Fujian Province (Fig. 1; Zhong
et al., 2014, 2017b, 2017c). The major lithostratigraphic units herein
include the metamorphic rocks of the Neoproterozoic Louziba Group,
the Late Paleozoic clastic sediments, the Early Cretaceous volcanic as-
semblages and the Quaternary alluvial sediments. The oldest Louziba
Group is composed of low-grade metamorphic shallow-marine sedi-
ments, including two-mica schist, muscovite schist, phyllite, metasilt-
stone and metasandstone. The Late Paleozoic rocks are divided into the
Late Devonian Tianwadong and Taozikeng Formations and Early Car-
boniferous Lindi Formation. These formations comprise coastal to
shallow marine facies siltstone, sandstone and conglomerate, and are
locally intercalated with marl and felsic tuff. The Early Cretaceous
Shimaoshan Group, unconformably overlying the above-mentioned
rocks, includes dacite, rhyolite, ignimbrite and tuff, with minor con-
glomerate intercalations (Zhong et al., 2011, 2014).

The pre-Mesozoic rocks were folded into a NE-trending anticline
which was intruded by Yanshanian granitoids along the axis (Fig. 1).
The Yanshanian granitoids contain the Middle–Late Jurassic and Early
Cretaceous granitic intrusions, including: (1) Middle Jurassic Zijinshan
granite batholiths with SHRIMP U–Pb zircon age of 168 ± 4 Ma (Zhao
et al., 2008) and LA-ICP-MS U–Pb zircon ages between 165 and 155 Ma
(Jiang et al., 2013; Li et al., 2015); (2) Late Jurassic Caixi monzogranite

pluton yielding a SHRIMP zircon U–Pb age of 150 ± 3 Ma (Zhao,
2007); (3) Early Cretaceous Sifang granodiorite pluton yielding a
SHRIMP zircon U–Pb age of 107.8 ± 1.2 Ma, a hornblende Ar–Ar
plateau age of 104.8 ± 0.8 Ma (Mao et al., 2002), and a LA-ICP-MS
zircon U–Pb age of 112 ± 1 Ma (Jiang et al., 2013); (4) cryptoexplo-
sive breccia pipes and granodioritic or dacitic porphyries outcropped in
the Luoboling, Zijinshan and Ermiaogou deposits, with LA-ICP-MS
zircon U–Pb ages ranging from 110 ± 0.4 Ma to 103.1 ± 1.1 Ma (Hu
et al., 2012; Jiang et al., 2013; B. Li et al., 2013; Li and Jiang, 2015);
and (5) small-size granitic porphyries as exemplified by the quartz
syenite porphyry in the Jintonghu deposit yielding two LA-ICP-MS
zircon U–Pb ages of 95.3 ± 0.9 Ma and 96.7 ± 0.9 Ma (Wu et al.,
2013). The Early Cretaceous porphyries and breccia pipes show a close
spatial, temporal and genetic relationship with the porphyry-epi-
thermal mineral system (So et al., 1998; Zhang et al., 2001; Zhong
et al., 2014, 2017a, 2017c). Previous researches suggest that the mi-
neralization is mainly controlled by the NW faults, while the NE-
trending faults controlled the emplacement of the intrusions in the Zi-
jinshan Orefield (e.g., Zhang et al., 1992; So et al., 1998).

3. Deposit geology

The Zijinshan Cu-Au deposit is located at the center of the Zijinshan
orefield (Fig. 1). The Middle Jurassic Zijinshan granitic complex is the
oldest lithologic unit in the mining area (Fig. 2), and mainly includes
the Jingmei coarse-grained cataclastic granite, the Wulongzi medium-
to fine-grained biotite granite and the Jinlongqiao fine-grained mus-
covite granite. The medium- to fine-grained biotite granite is most
widespread in the Zijinshan deposit and is the major host rock for the
Cu-Au orebodies. The Middle Jurassic Zijinshan granitic rocks show
geochemical characteristics of the S-type granite and are regarded to be
derived from partial melting of the Mesoproterozoic basement rocks,
yielding LA-ICP-MS U–Pb zircon ages from 165 to 155 Ma (Jiang et al.,
2013; Li et al., 2015). An Early Cretaceous volcanic dome complex was
recognized in the ore district, consisting of the central pipelike dacitic
porphyry and surrounding cryptoexplosive breccias, tuff and lava
(Fig. 2). Besides the breccia pipe surrounding the dacitic porphyry, a
series of NW-trending breccia veins also occurred to the northwest of
the volcanic dome (Fig. 2), and were favorable for Cu-Au mineraliza-
tion. Jiang et al. (2017) recently reported a Re–Os isochron age of
103 ± 4 Ma for seven pyrite samples, which is nearly coeval to the Cu-
related alunite 40Ar–39Ar age (~103 Ma, our unpublished data in
Zhong et al., 2017a). These isotopic ages are slightly later than the host
dacite porphyry in the Zijinshan deposit (105.0 ± 0.7 Ma and
105.0 ± 2.2 Ma, Hu et al., 2012), showing intimate spatial-temporal
relationship between the Cu-Au mineralization and dacite porphyry.

All the magmatic rocks in the Zijinshan Cu-Au deposit are in-
tensively and pervasively altered, and a typical high-sulfidation al-
teration zonation is recognized, including the silicic alteration zone
(vuggy quartz zone, Q), the quartz-alunite zone (advanced argillic zone,
Q-Alu), the quartz-alunite alteration overprinting the sericite alteration
zone (Q-Alu-Di-Srt), and the sericite alteration zone (Phy). The Q zone
occurs in the middle and shallower part (mostly above +650 m asl) of
the ore district, which gives way downward and outward through the
Q-Alu zone and the Q-Alu-Di-Srt zone, to the Phy zone (Fig. 2). The Q
zone is characterized by the vuggy quartz ores (Fig. 3a, b, c) formed by
acid leaching and later supergene oxidation, with diagnostic mineral
assemblage of fine-grained quartz (> 90% in volume), limonite, goe-
thite, jarosite, and dickite (or kaolinite). Economic gold orebodies are
confined in the Q zone, consisting of native gold, minor pyrite and
minor secondary covellite, malachite. The Q-Alu zone is spatially as-
sociated with the Cu mineralization in the Zijinshan deposit and mainly
contains hypogene platy alunite, quartz, pyrite, dickite, and minor
sericite (Fig. 4c, f). The dickite contents increases downward and a
narrow dickite alteration zone is suggested by Zhang et al. (1992) and
So et al. (1998). The major ore minerals in the Q-Alu zone include
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covellite, digenite, enargite, minor chalcopyrite, bornite (Fig. 5b–h, j–k)
and a variety kinds of tin-sulfide (Fig. 5g; Liu et al., 2016). The Phy
alteration zone is mainly composed of quartz, sericite, pyrite (Fig. 4b),
while the Q-Alu-Di-Srt zone contains quartz, alunite, dickite, sericite
(Fig. 4d, e). Minor covellite and digenite are identified in both the Phy
and Q-Alu-Di-Srt alteration zones. By detailed field investigation, drill
core logging and petrographic observations, it is suggested that the
sericite alteration is the earliest and overprinted by alunite alteration
and dickite alteration (Fig. 4d, e).

Both the Cu and Au mineralization in the Zijinshan deposit mainly
occur within the NW-trending hydrothermal breccias and veins in the
northwest part of the ore district (Figs. 2, 3d, g), controlled by a series
of NW-trending faults, fractures, fissures or joints. The Au ores are
mainly consisted of typically vuggy quartz (Fig. 3a, b), controlled by
fractures and/or hydrothermal breccias. The fragments of the breccias
are mainly the silicified host granite or dacitic porphyry, while the
mineralized matrix includes quartz, limonite, goethite and minor cov-
ellite (Fig. 3c). The Cu ores in the Zijinshan deposit mainly occur in
veins or stockworks (Fig. 3d, f, g) and hydrothermal breccias (Fig. 3e,
h). The Cu ore veins vary from several millimeters to tens of centimeters
in width (Fig. 3d, f, g), and are mainly consisted of dickite, pyrite,
covellite, digenite, enargite (Fig. 5c–f), crosscutting and postdating the
altered host rocks with alunite + pyrite + quartz assemblages. The

fragments of the Cu-bearing breccias range from several to tens of
centimeters in diameter and mainly comprises of the altered granitic
rocks, while the matrix is consisted of very fine-grained dickite, alunite,
quartz, pyrite and Cu-sulfides including covellite, digenite and enargite
and rock flour of host rocks (Fig. 3e, h).

4. Sampling and analytical methods

More than ninety samples of ores and host rocks were collected from
drill core Nos. DZK801, DZK702 and DZK1202 (locations in Fig. 2) in
the Zijinshan high sulfidation Cu-Au deposit, which were drilled from
+520 m (DZK801, DZK1202) or +330 m (DZK702) to nearly
−300 m asl. Seventy double-polished thin sections (0.03 mm thick)
were made for petrologic study, using both optical and electron mi-
croprobes. Fifty double-polished thin sections (~0.3 mm thick) were
made for fluid inclusion study, and eighteen of them (listed in Table 1)
were chosen for microthermometric and laser Raman spectroscopic
analyses.

The electron microprobe microanalyses of minerals were carried out
on a JEOL JXA-8100 electron microprobe in the Key Laboratory of
Orogen and Crust Evolution, Peking University. Operating conditions
were 20 kV accelerating voltage, 10 nA beam current with 10 s mea-
surement time and 1 μm spot size. Natural and synthetic minerals by
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the American SPI were used as standards. The ZAF method was used for
data reduction for sulfides.

Microthermometric measurements were carried out using a Linkam
THMSG 600 freezing-heating stage at the Institute of Geology and
Geophysics, Chinese Academy of Sciences (IGGCAS), Beijing.
Temperatures were calibrated using synthetic fluid inclusions provided
by FLUID INC, USA. The precisions for the measured temperatures are
estimated better than± 0.5,± 0.2, and± 2 °C at the temperature
ranges of −120 to −70 °C, −70 to 100 °C, and 100 to 500 °C, re-
spectively. During freezing/heating runs, the freezing/heating rates
were constrained at 0.5 to 10 °C/min, and reduced to 0.5−1 °C/min
near phase transformation points. Salinities (reported in wt% NaCl
eqv.) and densities (g/cm3) of the aqueous (NaCl-H2O) and carbonic
(CO2-H2O) inclusions were calculated based on final ice points (Bodnar,
1993) and the final temperatures of CO2-clathrate (Collins, 1979) using
the program Flincor (Brown, 1989).

Laser Raman spectroscopic (LRS) analyses were performed at the
Key Laboratory of Orogen and Crust Evolution, Peking University,
Beijing. The laser source was an argon laser with wave length of
514.5 nm and a source power of 1000 mW. Integration time was 10 s,
with ten accumulations for each spectral line. The spectral resolution
is± 2 cm−1 with a beam size of 2 μm.

5. Mineral paragenesis

On the basis of ore fabrics, mineral assemblage, and crosscutting
relationships, at least three mineralization stages are identified in the
Zijinshan Cu-Au deposit: the porphyry, the high-sulfidation and the
supergene enrichment mineralization stages, of which the high sulfi-
dation mineralization stage can be further divided into the sulfate al-
teration and Cu-Au mineralization substages (Fig. 6).

The porphyry mineralization stage is characterized by the occur-
rence of chalcopyrite, bornite, pyrite, and rare molybdenite (Fig. 5h, i–l,
Table 2), accompanied by the sericite-dominated alteration (Fig. 5l) or
alunite alteration overprinting the sericite alteration (Fig. 4e) in the

same ore samples. The chalcopyrite-bornite-pyrite ± molybdenite
mineral assemblage is common all over the orefield, including the
Luoboling Cu-Mo (Zhong et al., 2011, 2014, 2017c), Wuziqilong Cu
(Chen et al., 2011), Longjiangting Cu-Au (Chen et al., 2015) and even
the Yueyang Ag-Au-Cu (Zhong et al., 2017b) deposits. Therefore, it is
indicated that the porphyry mineralization stage is resulted from a
period of hydrothermal activities all over the orefield (Zhong et al.,
2017b). Although the porphyry type mineral assemblages are observed
in the Zijinshan deposit, they are mostly surrounded or overprinted by
the later high-sulfidation mineralization and limited in scale.

The sulfate alteration substage is represented by the presence of
alunite-pyrite-quartz assemblage (Figs. 4c, e, 5b), with minor pyr-
ophyllite, diaspore, rutile (Fig. 5b), sericite and/or dickite. The silicic
alteration is slightly later or nearly synchronous with the alunite al-
teration, predominantly consisted of fine-grained quartz and located in
shallower parts (above +650 m asl). The sulfate alteration substage is
followed by a Cu-Au mineralization stage, consisting of native gold,
covellite, digenite, enargite, anilite, geerite, djurleite and minor Sn-
sulfides, sphalerite, galena (Fig. 5; Table 2). Major gangue minerals
accompanying the Cu-Au ore minerals are dickite (Fig. 5d, e, f, i),
quartz and minor alunite. The Cu-Au minerals are mostly in veins,
stockworks, or in the matrix of the hydrothermal breccias (Fig. 3).

The Au-Cu mineralization above modern water table (above
+650 m asl) at Zijinshan is subsequently oxidized and leached by the
circulating meteoric water. The primary Cu-minerals, including di-
genite, enargite and hypogene covellite are mostly leached, while the
native gold (Fig. 5a) is further enriched, accompanied by limonite,
goethite, jarosite, quartz and minor secondary covellite.

6. Fluid Inclusion study

Eighteen samples, either vein-type or disseminated ores or host
rocks related to different alteration, were selected for fluid inclusion
petrographic and microthermometric studies (Table 1). Abundant fluid
inclusions (FIs) are identified in euhedral to subhedral quartz crystals
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from different alteration assemblages, i.e. the sericite-, alunite- and
dickite-dominated alteration assemblages.

6.1. Types of fluid inclusions

On the basis of their compositions (Chen et al., 2007) and phases at
room temperatures (21 °C) (Lu et al., 2004), three types of FIs were
identified, namely: the aqueous (W-type), CO2-H2O (C-type) and solid-
bearing type (S-type) inclusions.

The aqueous (W) type FIs are two-phase (liquid and vapor water)
NaCl-H2O systems (Fig. 7a–c) and can be found in all the analyzed
samples in the Zijinshan deposit. They are further divided into liquid-
rich (WL) and vapor-rich (WV) subtypes according to vapor/(vapor
+ liquid) [V/(V + L)] ratio and homogenization mode. WL-subtype
FIs, commonly with 10–45 vol% vapor phase, are common (> 70% in
all the samples) in the Zijinshan deposit and all homogenized into a
liquid phase. These FIs are usually round, ellipsoid, negative crystal in

shape and 5–16 μm in size (Fig. 7a–c). WV-subtype FIs are less common
(usually< 30% in proportion) but observed in most samples. The WV-
subtype inclusions, with V/(V + L) ratio > 60%, range from 5 to
15 μm in dimensions and are round and negative crystal in shapes
(Fig. 7b), and all homogenized into vapor phase on heating run. Besides
the WL- and WV-subtype FIs, pure liquid (Fig. 7c) or vapor (Fig. 7b)
aqueous inclusions were also identified. The pure liquid aqueous in-
clusions are commonly hosted in the microfractures between quartz
grains together with minor WL-subtype FIs (Fig. 7c) and regarded as
secondary in origin. The pure vapor aqueous inclusions are found to be
intergrown with the WV-subtype inclusions in certain quartz grains
(Fig. 7b).

The carbonic (C) type FIs are two-phase (CO2 + H2O) CO2-H2O
system and only recognized in the alunite-dominated samples. They are
ellipsoid, negative crystal or irregular in shape and 5–25 μm in size.
Most (> 80%) of them have CO2 phases of 60–90% in volume (Fig. 7d,
e) and homogenized into vapor upon heating, while few of them with
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Coarse voids are produced by the removal of feldspar and partly filled by dickite or kaolinite. The average grade of this type ore is< 1 g/t. (c) Breccia type gold ores. The fragments are
highly silicified, while the matrix is comprised of fine-grained quartz and iron oxide. (d) Cu ore veins with widths ranging from several to tens of centimeters, cutting and postdating the
Zijinshan granite with advanced argillic alteration (alunite alteration). (e) Breccia type copper ores, with fragments of the altered granite and matrix of fine-grained pyrite, covellite,
digenite, quartz and dickite. (f) Covellite- and digenite-bearing Cu ore stockworks cut the pyrite ± chalcopyrite veins in the alunite alteration zone. (g) Covellite-digenite ore veins
cutting the pyrite veins in the alunite alteration zone. (h) Breccia type Cu ore, comprising of the granite fragment with alunite alteration and matrix composed of dickite, pyrite, covellite,
digenite and minor enargite.
Abbreviations: Alu, alunite; Cv, covellite; Dg, digenite; Di, dickite; Py, pyrite.
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CO2 phases < 40% (Fig. 7f) homogenized into liquid. The “double-
eyelid” texture is identified for most C-type inclusions (Fig. 7d–f). Three
pure CO2 inclusions (PC-type) in negative crystal shape were re-
cognized in the Zijinshan Cu-Au deposit, ranging from 8.7, 9.7 and
10.2 μm in size, respectively. The phase boundaries of the PC-type in-
clusions all too vague to get systematic microthermometric results. Both
the C-type and PC-type inclusions are either isolated or occur in the
growth zone in quartz, implying a primary origin.

The solid-bearing (S) type FIs refer to the daughter mineral-bearing
FIs, consisting of one or more daughter minerals. They are ellipsoidal or
negative crystal in shape and 5–20 μm in size, which can be observed in
both the alunite- and sericite-dominated alteration samples. As revealed
by laser Raman spectroscopy analysis, the vapor bubbles of the S-type
inclusions are either H2O or CO2. The S-type inclusions with CO2 vapor
phase are rare and termed as the SC-subtype. They commonly have an
opaque daughter mineral (Fig. 7e) that do not disappear during heating.
The S-type FIs with H2O bubble are further divided into the SH- and
SM-subtypes in terms of halite presence or absence. The SH-subtype
refers to the inclusions with a transparent halite (Fig. 7i), probably
accompanied by other minerals including sylvite (Fig. 7g), and uni-
dentified opaque or transparent ones (Fig. 7h). The SM-subtype inclu-
sions, however, contain opaque and/or transparent unknown daughter
mineral, but no halite daughter mineral. The SH-subtype FIs are only
observed and analyzed in the sericite-dominated samples, while the SM-
subtype FIs with sylvite and/or other opaque daughter minerals are
recognized in both the sericite- and alunite-dominated samples. Be-
cause the opaque minerals neither disappear upon heating, nor affect
the vapor and liquid phase changes in the host inclusions, the SM- and
SC-subtype FIs with only an opaque daughter mineral are treated as the
W- and C-type inclusions during microthermometric measurement and
data processing.

6.2. Laser Raman spectroscopy analysis

To constrain the fluid compositions of inclusions, representative FIs
were analyzed using laser Raman spectroscopy.

In the W-type FIs, the vapor and liquid phases are dominated by
H2O (Fig. 8a, c, d). The liquid phase of some W-type FIs in quartz from
the alunite-dominated samples contains SO4

2−, as indicated by the
peak of 982 cm−1 (Fig. 8d).

In the C-type FIs, abundant CO2 is detected, supported by the di-
agnostic peaks of 1284 cm−1 and 1388 cm−1 (Fig. 8b, c). The liquid
phase also contains some CO3

2− and H2O (Fig. 8c). Although not de-
tected, small amounts of other gases (e.g., CH4) might be present in
certain C-type FIs as supported by the maximum clathrate-melting
temperatures exceeding 10 °C (Diamond, 2001).

The vapor phase of the S-type FIs is composed of H2O and CO2. The
commonly observed irregular or round opaque daughter minerals are
too small to be detected.

In summary, the laser Raman spectroscopy analysis indicated that
the ore-forming fluids of the Zijinshan Cu-Au deposit are very complex
in composition and at least contain Na+, K+, Cl−, SO4

2−, CO3
2−, CO2

and H2O, etc.

6.3. Microthermometry

Microthermometric measurements were carried out on> 800 FIs
from the sericite-dominated (porphyry mineralization-related), the
alunite-dominated and dickite-dominated (associated to the high-sul-
fidation Cu-Au mineralization) samples. The results are summarized in
Table 3 and Figs. 9, 10, and discussed as follows.

Quartz in the sericite-dominated samples contains FIs of WL-, WV-,
C-, SH-, SC- and SM-subtype. The WL-subtype FIs yielded ice-melting
temperatures from −13.9 to −0.2 °C, with corresponding salinities of
0.4–12.4 wt% NaCl eqv. They homogenized into liquid at temperatures
of 158–446 °C, with calculated densities ranging from 0.51 to 0.92 g/
cm3. The WV-subtype FIs are ellipsoidal and irregular in shape and iced
at temperatures of −2.5 to −0.2 °C, with salinities of 0.7 to 9.9 wt%
NaCl eqv. They finally homogenized into vapor at temperatures of 212
to 458 °C, with densities of 0.47 to 0.85 g/cm3. The C-type inclusions
are rare in the sericite-dominated samples, with solid CO2 melting,
clathrate-melting and total homogenization temperatures ranging from
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Fig. 4. Major gangue minerals in different alteration zones.
(a) Fine-grained dickite aggregates replace feldspar in host granite (crossed polars). (b) Sericite aggregates in the sericite alteration zone (crossed polars). (c) Platy alunite intergrown with
pyrite in the alunite alteration zone (crossed polars). (d) Dickite replacing sericite along microfractures (crossed polars). (e) Platy alunite replacing sericite in the alunite alteration zone
(crossed polars). (f) Fine-grained dickite surrounding euhedral alunite plate (backscatter electron image).
Abbreviations: Alu, alunite; Di, dickite; Py, pyrite; Qtz, quartz; Srt, sericite.
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−56.8 to −56.6 °C, 5.7–8.8 °C and 262–421 °C, corresponding to
salinities and densities of 2.4–8.0 wt% NaCl eqv. and 0.39–0.52 g/cm3,
respectively. The SH-subtype inclusions are only observed and mea-
sured in the sericite-dominated samples. Halite crystals disappeared at
temperatures of 213 to 393 °C during heating, yielding salinities of 32.5
to 46.7 wt% NaCl eqv.. They all homogenized into liquid by halite
dissolution with total homogenization temperatures ranging from 213

to 393 °C, and the densities ranging from 1.07 to 1.13 g/cm3. The SC-
subtype FIs are all vapor-rich and homogenized into vapor at
366–388 °C. The solid CO2 melted at −56.8 to −56.6 °C and the
clathrate-melting temperatures range from 5.7 to 8.1 °C, corresponding
to salinities and densities of 3.8–8.0 wt% NaCl eqv. and 0.40–0.44 g/
cm3. The SM-subtype FIs mostly homogenized into vapor at tempera-
tures from 170 to 389 °C. Their ice-melting temperatures vary from
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Fig. 5. Major ore minerals in the Zijinshan Cu-Au deposit.
(a) Native gold grain in the vuggy quartz zone. (b) Subhedral-anhedral pyrite grains intergrown with platy alunite and minor rutile residual. (c) Covellite replaces digenite in the Cu ore
vein. (d) Pyrite is replaced by digenite, where fine covellite exsolution occurred. (e) Covellite intergrown with dickite in the Cu ore vein. (f) Enargite coexisting with dickite in the Cu ore
vein in the alunite alteration zone, suggesting that the Cu-Au mineralization postdated the sulfate alteration. (g) Sn-sulfide replaces and surrounds bornite and fine-grained anhedral
pyrite. (h) Covellite replaces and surrounds bornite and chalcopyrite, showing two-stage mineralization events. (i) Covellite and digenite replacing and surrounding bornite and exsolved
chalcopyrite blade. Also shown is the sphalerite intergrown with covellite. (j) Cu-sulfides replaces pyrite in the alunite alteration zone. A pyrite boundary between Cu-sulfides and alunite
plates indicates that they are formed by varied ore-forming fluids in different mineralization stages. (k) Covellite replacing chalcopyrite along intergranular microfractures. Also shown
are minor alunite plates replacing chalcopyrite. (i) Molybdenite-pyrite-quartz vein develops at nearly −200 m above sea level (asl) in drill core No. DZK1202.
Abbreviations: Alu, alunite; Bn, bornite; Cpy, chalcopyrite; Cv, covellite; Dg, digenite; Di, dickite; En, enargite; Mo, molybdenite; Ng, native gold; Py, pyrite; Q, quartz; Rt, rutile; Sp,
sphalerite.
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−8.2 to −0.1 °C, with calculated salinities of 0.2 to 11.9 wt% NaCl
eqv. and densities of 0.64–0.90 g/cm3. Both the small opaque daughter
minerals in the SC- and SM-subtype FIs do not disappear upon heating.

The alunite-dominated alteration samples sometimes contain Cu-
sulfide ore veins and are dominated by the WL-, C-, WV-, and SM-, SC-
subtype FIs. The WL-subtype FIs all homogenized into liquid at tem-
peratures ranging from 169 to 442 °C. The ice-melting temperatures
range from −0.1 to −10.0 °C, yielding corresponding salinities and
densities of 0.2–13.9 wt% NaCl eqv. and 0.52–0.94 g/cm3, respectively.
Six WV-subtype FIs all homogenized into vapor at temperatures from
280 to 382 °C, yet the ice-melting temperatures are not determined due
to the vague liquid-vapor phase boundaries (Fig. 7b). The C-type and

SC-subtype FIs are abundant in the alunite alteration samples and yield
solid CO2 melting temperatures of −57.7 to −56.6 °C, below the
triple-phase point of CO2, indicating the existence of minor components
other than CO2 dissolved in the carbonic phase (Lu et al., 2004). Their
clathrate-melting temperature, calculated salinities and densities are
1.1–9.6 °C, 0.2–15.3 wt% NaCl eqv. and 0.29–1.01 g/cm3, respectively.
The C-type and SC-subtype inclusions mostly homogenized into vapor,
but few of them homogenized into liquid or by critical behavior at
temperatures of 210–424 °C. The SM-subtype FIs all homogenized into
liquid at 168–383 °C, with ice-melting temperatures, salinities and
densities ranging from −0.8 to −9.8 °C, 1.4−13.7 wt% NaCl eqv,
0.61–0.95 g/cm3, respectively. It is worth noting that the FIs in the
alunite-dominated samples are clustered in two groups in the total
homogenization temperature (Th) histogram (Fig. 9), namely peaking
at 320–360 °C and 240–260 °C, which is suggested to be resulted from
the superposition of two-stage ore-forming fluids and will be discussed
in Section 7.2.

The FIs in dickite-dominated samples are predominately the WL-
subtype inclusions, with minor WV-subtype and C-type ones. The WL-
subtype inclusions all homogenized into liquid at temperatures of
158−391 °C. Their ice-melting temperatures are between −0.5 and
−5.1 °C, with salinities of 0.9−8.0 wt% NaCl eqv. and densities of
0.58–0.93 g/cm3. Only one WV-subtype inclusion yields ice-melting
temperature of −0.8 °C and total homogenization temperature of
350 °C. The C-type FIs have solid CO2 melting temperatures, clathrate-
melting temperatures and total homogenization temperatures of −56.8
to −56.6 °C, 1.5–9.9 °C and 238–334 °C, with salinities and densities of
2.6–6.6 wt% NaCl eqv. and 0.85–0.91 g/cm3, respectively. Most of the
inclusions in the dickite-dominated samples homogenized below
300 °C, peaking at 260–280 °C (Fig. 9), which is consistent with the
thermal stability of dickite (Hedenquist et al., 2000 and reference
therein).

The microthermometric results indicated that the ore-forming fluids
varied in different alteration samples (Figs. 9, 10 and Table 3). The ore-
forming fluids related to the sericite alteration are of high-temperature,
high-salinity, and characterized by the occurrence of the SH-subtype
and minor C- and SC-subtype FIs. The ore-forming fluids resulting in the
alunite alteration are featured by the presence of abundant vapor-rich
C-type and SC-subtype inclusions, with total homogenization tem-
peratures and salinities close to those of the sericite alteration. The ore-
forming fluids for the dickite alteration, however, are dominated by the
WL-subtype inclusions, with low temperatures and low salinities.

Table 1
Geological characteristics of selected samples from the Zijinshan Cu-Au deposit for fluid inclusion and Laser Raman spectroscopic studies.

Sample no. Sample location (above sea level) Dominated alteration Mineral assemblage Host mineral Analyzing method

ZJ1-1 DZK801, +506 m Sericite Srt, Qtz, Alu Qtz FI, LRS
ZJ1-5 DZK801, +394 m Alunite Alu, Qtz, Srt, containing Py-Cv vein Qtz FI, LRS
ZJ1-11 DZK801, +296 m Sericite Srt, Qtz, Alu, Di, containing Py-Cv-Dg vein Qtz FI, LRS
ZJ1-13 DZK801, +184 m Alunite Alu-Qtz alteration halo of the Qtz-Py vein Qtz FI, LRS
ZJ1-20 DZK801, −46 m Dickite Di, Qtz, Alu, containing Py-Dg-Cv vein Qtz FI, LRS
ZJ2-2 DZK1202, +504 m Alunite Alu, Qtz, (disseminated) Cv, Dg Qtz FI, LRS
ZJ2-5 DZK1202, +441 m Alunite Alu, Qtz, Di, (disseminated) Cv, Dg Qtz FI, LRS
ZJ2-10 DZK1202, +366 m Sericite Srt, Alu, Qtz, containing Py vein Qtz FI
ZJ2-13 DZK1202, +283 m Sericite Srt, Alu, Qtz, (disseminated) Py Qtz FI, LRS
ZJ2-17 DZK1202, +155 m Alunite Alu, Qtz, (disseminated) Cv, Dg Qtz FI, LRS
ZJ2-21 DZK1202, +65 m Sericite Srt, Alu, Qtz, (disseminated) Py Qtz FI, LRS
ZJ2-31 DZK1202, −178 m Sericite Srt, Qtz, Di, Alu Qtz FI, LRS
ZJ2-33 DZK1202, −253 m Sericite Srt, Di, Alu, Py-Qtz vein Qtz FI, LRS
ZJ4-7 DZK702, +240 m Alunite Alu, Qtz Qtz FI
ZJ4-9 DZK702, +161 m Alunite Alu, Qtz, Di, containing Py vein Qtz FI, LRS
ZJ4-10 DZK702, +114 m Alunite Alu, Qtz, Di, containing Py-Cv vein Qtz FI
ZJ4-12 DZK702, +26 m Dickite Di, Alu, Qtz, containing Py vein Qtz FI
ZJ4-16 DZK702, −118 m Sericite Srt, Qtz, Py Qtz FI

Abbreviations: Alu-alunite; Cv-covellite; Di-dickite; Dg-digenite; Srt-sericite; Py-pyrite; Qtz-quartz; FI-fluid inclusion microthermometry; LRS-Laser Raman spectroscopy.
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6.4. Trapping pressure and mineralization depth

According to partial and total homogenization temperatures, and
the ratios of vapor CO2 of the C-type FIs, the minimum trapping pres-
sures and the isochrones of the FIs can be estimated using the Flincor
program (Brown, 1989) and the formula of Bowers and Helgeson
(1983) for the H2O-CO2-NaCl system. Abundant C-type FIs are re-
cognized in the Cu-bearing ore samples with alunite alteration, which
can be used for the estimation of the trapping pressures and miner-
alization depth. Taking the average total homogenization temperature
of 320 ± 25 °C into calculation, the average trapping pressures are
estimated to be 14.0–58.3 MPa (Fig. 11).

Considering the characteristics in the magmatic-epithermal en-
vironment (Fournier, 1999), i.e., pulsating hydraulic broken-and-
healing caused by fluid boiling and precipitation, the fluid system can
be interpreted as a state of frequent alternations between supralitho-
static to lithostatic and hydrostatic pressures. Therefore, the lowest
trapping pressure of FIs represents the hydrostatic system, whereas the
highest trapping pressure reflects the lithostatic to supralithostatic
system. Given the average density of the host granitic rocks to be
2.85 g/cm3, the corresponding depths of the alunite alteration samples
range from 1.4 to 2.1 km, which were nearly identical to those of the
nearby Luoboling porphyry Cu-Mo deposit (1.0–2.8 km, Zhong et al.,
2014). The estimated depths of the Zijinshan deposit indicated that it is
a deep-seated high-sulfidation epithermal deposit with mineralization
depth exceeding the maximum depth of most other epithermal miner-
alization systems (< 1.5 km, Hedenquist et al., 2000; Simmons et al.,
2005), even considering the estimation deviations of the pressures and
depths. The great depths are favorable for the preservation of the Cu-Au
orebodies and indicated that the Cu-Au mineralization at Zijinshan

might be the product of multistage mineralization events.

7. Discussion

7.1. Sources of CO2 related to the alunite alteration

The carbonic inclusions (C-type and SC-subtype) are mostly
common in the alunite-dominated samples. They are mostly vapor CO2-
rich that can be formed by (1) interaction between the acidic ore-
forming fluids and host carbonate; (2) metamorphic origin (Chen, 2006;
Chen et al., 2007; Goldfarb et al., 2005; Zhong et al., 2013); and (3)
magmatic origin in the porphyry-epithermal mineralization systems
formed in intra-continental tectonic settings (Hedenquist and Henley,
1985; Chen and Fu, 1992; Chen and Li, 2009; Chen and Wang, 2011; Li
et al., 2012a, 2012b; Yang et al., 2013; Wang et al., 2014; Chen et al.,
2016). The carbonate sequences are absent in the Zijinshan orefield,
which rules out the possibility of the first explanation. The Zijinshan
Cu-Au deposit is a high-sulfidation epithermal deposit as indicated by
the geological characteristics, which are believed to be genetically as-
sociated with the coeval magmatic-hydrothermal fluids, rather than the
metamorphic solutions (Hedenquist and Lowenstern, 1994; Simmons
et al., 2005; Sillitoe, 2010; Chen et al., 2007; Chen and Li, 2009). The
magmatic origin of the ore-forming fluids in Zijinshan is further sup-
ported by the D-O stable isotopic compositions (Zhang et al., 1992; Hua
et al., 1998; Zhou et al., 1998). In fact, the magmatic origin of ore-
forming fluids in other HS epithermal systems is also confirmed, in-
cluding the Rodalquilar, Spain (Arribas et al., 1995) and Lepanto,
Philippine (Hedenquist et al., 1998). Heinrich (2005), Williams-Jones
and Heinrich (2005) and Sillitoe (2010) proposed that the advanced
argillic alteration (represented by the occurrence of alunite) is formed

Table 2
Electron probe microanalysis of major ore minerals in the Zijinshan deposit (wt%).

Stage Mineral Calculated molecular formula Fe As S Ni Pb Cu Ag Zn Cd Au Sb Total

Porphyry mineralization stage Pyrite FeS2 45.59 0.04 53.98 0.02 0.13 2.81 0.08 0 0 0 0 101.65
Pyrite FeS2 46.6 0 54.26 0 0.13 0.43 0 0 0 0 0 100.41
Pyrite FeS2 42.39 0 54.11 0.04 0.1 0.4 0.04 0 0.06 0.25 0 100.38
Pyrite FeS2 42.49 0.06 54.67 0 0.08 0.57 0.01 0 0.04 0 0.02 100.93
Pyrite FeS2 46.62 0.07 52.87 0.08 0.08 0.29 0.02 0.04 0 0 0 100.07
Pyrite FeS2 47.12 0 51.93 0 0.16 0.79 0.01 0 0 0 0 100
Chalcopyrite FeCuS2 29.43 0 35.59 0.03 0 32.45 0.01 0 0 0.01 0 100.52
Bornite Cu5FeS4 11.13 0 25.58 0 0.04 62.38 0.02 0.03 0 0 0 99.18
Bornite Cu5FeS4 11.37 0.01 25.68 0 0.01 62.51 0.09 0 0.04 0.1 0.01 99.81
Bornite Cu5FeS4 11 0.03 25.63 0 0.1 65.01 0.04 0 0.01 0.04 0 101.85
Bornite Cu5FeS4 11.25 0 25.35 0 0.04 64.23 0.06 0.05 0.03 0.24 0.02 100.27
Bornite Cu5FeS4 11 0 25.36 0.02 0.04 64.4 0.05 0.03 0 0 0.03 99.91

Cu-Au mineralization stage Digenite Cu1.77S 2.93 0 21.6 0.03 0.13 76.61 0.27 0 0 0 0 101.58
Digenite Cu1.77S 2.81 0.04 21.64 0 0 72.43 0.16 0 0.01 0.13 0 101.23
Digenite Cu1.78S 0.27 0.06 21.84 0 0.06 77.58 0.08 0 0.02 0 0 99.9
Digenite Cu1.84S 0.09 0 21.25 0 0.08 78.41 0.1 0.03 0.03 0 0 99.98
Digenite Cu1.84S 0.06 0.08 20.76 0.03 0 72.43 0.09 0.02 0 0 0.01 97.47
Digenite Cu1.88S 0.02 0.06 20.88 0.02 0.05 78.69 0.07 0 0 0.18 0 99.97
Anilite Cu1.73S 0.02 0 22.32 0.04 0.1 77.25 0.08 0 0 0 0 99.82
Anilite Cu1.74S 0.08 0 22.38 0 0.07 77.74 0.08 0 0.01 0 0 100.34
Anilite Cu1.76S 0.67 0 22.04 0.01 0.05 77.47 0 0.01 0.02 0 0.02 100.29
Covellite CuS 0.27 0.01 32.61 0.03 0 66.8 0.07 0.02 0 0.06 0 99.87
Covellite Cu1.03S 0.1 0.06 32.47 0 0.07 67.07 0.15 0 0.01 0 0 99.92
Covellite CuS 0 0.07 33.09 0 0 67.71 0.09 0 0 0 0 100.96
Geerite Cu1.58S 0.14 0.1 24.76 0.01 0.04 75.19 0.1 0.02 0.01 0.09 0 99.44
Djurleite Cu1.86S 0 0.01 20.93 0.03 0 77.95 0.14 0 0 0.3 0.04 99.39
Djurleite Cu1.96S 11.05 0 25.53 0 0.02 62.93 0.02 0 0 0.16 0 99.7
Djurleite Cu1.90S 47.31 0.01 52.73 0 0.14 0.12 0 0.02 0.03 0.12 0 100.48
Enargite Cu3AsS4 0.91 19.22 30.22 0 0.03 42.18 0.04 7.76 0.16 0 0.12 100.65
Enargite Cu3AsS4 0.31 19.67 32.88 0 0.07 47.53 0.05 0 0 0 0.31 100.83
Enargite Cu3AsS4 0.11 20.45 32.82 0.03 0.08 47.48 0.01 0.03 0.01 0 0.25 101.27
Enargite Cu3AsS4 0 19.81 32.35 0 0.18 47.94 0.06 0.09 0.03 0.12 0.23 100.8
Enargite Cu3AsS4 0.03 19.74 31.96 0.02 0.14 47.33 0.02 0.11 0 0 1.22 100.57
Sphalerite ZnS 0 0 32.93 0 0.05 0 0 67.14 0.48 0.2 0.01 100.81
Sphalerite ZnS 0 0 32.67 0 0.04 0.09 0.04 66.89 0.45 0.07 0 100.24
Sphalerite PbS 0.21 0 12.95 0 85.21 1.78 0.01 0 0.01 0 0 100.16
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synchronously to the underlying potassium alteration, which are re-
sulted from the separated vapor phase and saline phase by fluid im-
miscibility from a single-phase, low- to moderate-salinity liquid of
magmatic origin at depth.

The large amounts of the carbonic inclusions (C-type and SC-sub-
type) in the magmatic-hydrothermal fluids at the Zijinshan HS Cu-Au
deposit are uncommon in most other epithermal mineralization systems
worldwide, such as the Lepanto Cu-Au deposit in Philippine (Mancano
and Campbell, 1995; Hedenquist et al., 1998), the Chinkuashih Au-Cu
deposit in Taiwan, China (Wang et al., 1999; Wang, 2010), the Jinxi-
Yelmand Au deposit and other high sulfidation systems in northern
Xinjiang, China (Xiao et al., 2005; Chen et al., 2012), etc. Chen and Li
(2009) indicated that the CO2-rich FIs in ore-forming fluids are diag-
nostic for those intrusion-related hypothermal deposits in in-
tracontinental tectonic settings (e.g., Chen and Wang, 2011; Yang et al.,
2012, 2013; Li et al., 2012b; Wang et al., 2014), and are resulted from
the magmatic source of continental crust or lithospheric mantle with
high CO2/H2O, K/Na, and F/Cl ratios. However, very few CO2-rich
inclusions in the nearby Luoboling porphyry Cu-Mo deposit were
identified (Zhong et al., 2011, 2014, 2017c), indicating that besides the
magmatic origin in intracontinental setting, more parameters should be
taken into consideration to decipher the CO2 origin in the Zijinshan
deposit.

Lowenstern (2000, 2001) suggested that the solubility of the CO2 in
granitic magma decreased at decreasing pressures and elevated

temperatures. Fogel and Rutherford (1990) and Blank et al. (1993) also
demonstrated that CO2 would be exsolved before H2O, Cl at higher
pressures. Giggenbach (1997) indicated that the effervescence in the
granitic magma with 0.1 wt% CO2 would occur at ~2 kbar, but the
pressures would rise to> 20 kbar if the CO2 content increased to 1 wt
%. Therefore, the CO2 contents in exsolved ore-forming fluids in the
magmatic-hydrothermal mineralization systems seem to be largely af-
fected by the emplacement depth of the causative magma; the deeper
the causative magma intruded, the more CO2 components could be
exsolved. The nearby Luoboling Cu-Mo deposit is a shallow-seated
porphyry mineralization system and the emplacement depth of the
causative granodiorite porphyry is estimated to be ~4.1 km by alu-
minum-in-hornblende geobarometry (Zhong et al., 2014; D.P. Li et al.,
2013). The mineralization depth of the Zijinshan Cu-Au deposit has
already exceeded 1.5 km so far, yet the concealed porphyry is still
unrevealed and a greater depth is suggested, which might be an im-
portant reason for the occurrence of CO2 vapor-rich inclusions.

In addition, both the bulk (Zhang et al., 1992) and single fluid in-
clusion composition analyses (this study) indicated that the ore-forming
fluids in the alunite alteration samples are rich in CO3

2− and HCO3
−.

The ore-forming fluids are also suggested to be highly acid due to the
disproportionation reaction of SO2 (4SO2 + 4H2O = 3H2SO4 + H2S;
Stoffregen, 1987; Williams-Jones and Heinrich, 2005). The CO2 con-
tents would largely increase due to the reaction between H+ and
CO3

2−, HCO3
− (2H+ + CO3

2− = H2O + CO2; H+ + HCO3
− = H2O
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Fig. 7. Photomicrographs showing fluid inclusions in the Zijinshan deposit.
(a) Liquid-rich aqueous (WL-subtype) inclusions. (b) Coexistence of the liquid-rich (WL-subtype), vapor-rich (WV-subtype) and pure vapor aqueous inclusions with similar total
homogenization temperatures (Th), implying fluid boiling process. (c) Liquid-rich (WL-subtype) and pure liquid aqueous inclusions developing in the healed intergranular microfractures
in quartz grains from the Cu ore samples with alunite-dominated alteration, which are interpreted to be trapped from the ore-forming fluids of the Cu-Au mineralization stage. (d) Typical
CO2-rich (C-type) inclusion in quartz of the alunite-dominated samples, with vapor phase accounting for> 90% in volume. (e) Solid bearing (SC-type) inclusion with vapor CO2 (CO2

phase is nearly 60% in volume) and an identified opaque daughter mineral. (f) Rare C-type inclusion with the CO2 phase < 40%, of which the carbonic phase homogenized into liquid
CO2 upon heating. (g) SM-subtype inclusion with a sylvite daughter mineral in the alunite-dominated samples. (h) SM-subtype inclusion with both opaque and transparent daughter
minerals. (i) Halite-bearing inclusions (SH-subtype).
Abbreviation: LH2O, H2O liquid; VH2O, H2O vapor; VCO2, CO2 vapor; LCO2, CO2 liquid; H, halite; Op, opaque mineral; Sy, sylvite; Tr, transparent daughter mineral.
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+ CO2) in the ore-forming fluids.

7.2. Origin and evolution process of the ore-forming fluids

The occurrences of the S- and C-type inclusions with total homo-
genization temperatures higher than 300 °C indicated that the ore-
forming fluids related to the sericite (or porphyry mineralization) and
alunite alteration are mainly magmatic fluids in origin. The FIs in the
dickite (high-sulfidation Cu mineralization-related) and the silicic (Au
mineralization-related, Zhang et al., 1992) alteration zones, however,
are dominated by the liquid-rich aqueous inclusions with total homo-
genization temperatures below 300 °C, implying a meteoric-dominated
origin. This is consistent with the stable isotopic compositions obtained

by Zhang et al., 1992, Hua et al., 1998 and Zhou et al., 1998 (Table 4;
Fig. 12). The D-O systematic also indicated that the ore-forming fluids
of the Cu-Au mineralization stage are meteoric water in origin.

Hedenquist and Henley (1985), Wilkinson (2001) and Canet et al.
(2011) summarized the variation trend between the salinity and total
homogenization temperature data for FIs underwent fluid dilution,
boiling and cooling from high and low gas epithermal systems as shown
in Fig. 10d. Trend 1 is the hypothetical result of the boiling of a gas-
poor fluid, with continued boiling and steam loss resulting in a slight
enrichment of the dissolved salts with cooling (a maximum of about
30% enrichment from adiabatic boiling and steam loss of a 300 °C fluid
to 200 °C, Hedenquist and Henley, 1985). Trend 2 displays the simple
cooling or pressurization trend, with no salinity change. Trend 3 shows
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Fig. 8. Laser Raman spectra of fluid inclusions in Zijinshan.
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Table 3
Microthermometric data of FIs in quartz from the Zijinshan Cu-Au deposit.

Dominated alteration Type N. Tm, CO2 (°C) Tm, Cla (°C) Tm,ice (°C) Tm, NaCl (°C) Th (°C) Salinity (wt% NaCl) Density (g/cm3)

Sericite WL 226 −13.9 to −0.2 158–446 0.4–12.4 0.51–0.92
WV 17 −2.5 to −0.2 212–458 0.7–9.9 0.47–0.85
C 5 −56.8 to −56.6 5.7–8.8 262–421 2.4–8.0 0.39–0.52
SH 6 213–393 213–393 32.5–46.7 1.07–1.13
SC 6 −56.8 to −56.6 5.7–8.1 366–388 3.8–8.0 0.40–0.44
SM 20 −8.2 to −0.1 170–389 0.2–11.9 0.64–0.90

Alunite WL 225 −0.1 to −10.0 169–442 0.2–13.9 0.52–0.94
WV 6 280–382
C 92 −57.7 to −56.6 1.1–9.6 210–424 0.2–15.3 0.29–1.01
SC 5 −56.8 to −56.6 4.2–8.6 294–359 2.8–10.3 0.54–0.86
SM 29 −0.8 to −9.8 169–383 1.4–13.7 0.61–0.95

Dickite WL 56 −0.5 to −5.1 158–391 0.9–8.0 0.58–0.93
WV 1 −0.8 350 1.4 0.59
C 5 −56.8 to −56.6 1.5–9.9 238–334 2.6–6.6 0.85–0.91

Notations: N-number of FIs analyzed; Tm, CO2, melting temperature of solid CO2; Tm, Cla, melting temperature of clathrate; Tm,ice, last ice-melting temperature; Tm, NaC, melting temperature
of solid halite; Th, total homogenization temperature of all the phases in FIs.
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the dilution trend of a high temperature, high salinity end-member by
cold groundwater, while trend 4 is explained by the result of boiling
with effervescence in a volatile-rich system (e.g., CO2-bearing), where
the salinities of inclusions are largely controlled by the CO2 contents.
The Th-salinity bivariate plot is used to decipher the mineralization
mechanism and ore-forming processes for the ore-forming fluids in this
study.

The earliest sericite alteration related to the porphyry Cu-Mo mi-
neralization in the Zijinshan deposit is characterized by the typical fluid
boiling assemblage, i.e., the high-salinity SH-subtype, relatively low-
salinity vapor-rich WV-subtype, SC-subtype, C-type and liquid-rich WL-
subtype inclusions with similar Th but contrasting salinities in a single
quartz grain (Fig. 10a). The vapor-rich WV-, SC-subtype and C-type
inclusions display a near-vertical salinity decrease trend with Th de-
crease, whereas the salinities of the liquid-rich WL-, SM-subtype in-
clusions are plotted into a broad range in the Th-salinity diagram
(Fig. 10b), both showing the boiling or effervescence trend. The mag-
matic ore-forming fluids related to the sericite alteration are further
diluted by the low-temperature, low-salinity meteoric water, as sup-
ported by the Th-salinity trend for the inclusions with Th below 300 °C
and H-O isotopic compositions (Zhang et al., 1992; Hua et al., 1998;
Zhou et al., 1998). Pervasive fluid boiling lead to the temperature de-
crease of the ore-forming system and vapor CO2, H2O escape, which are
both favorable mechanisms for metal precipitation (Chen et al., 2007;
Fan et al., 2011; Drummond and Ohmoto, 1985) and might trigger the
formation of the chalcopyrite-bornite-molybdenite-pyrite veins or
stockworks, although the mineralization scale might be limited.

Alunite alteration following the sericite alteration is also resulted
from fluid boiling by magmatic-dominated fluids as shown by the

similar Th-salinity trend of the C-type, W-type and S-type inclusions
with the sericite alteration (Fig. 10c), while the meteoric water-domi-
nated dickite alteration might also be resulted from fluid boiling as
indicated by the relatively broad salinity range with similar Th
(Fig. 10d). Fluid boiling in the alunite alteration is further supported by
the occurrence of the ore-hosting cryptoexplosive breccias (Fig. 3e, h),
which are commonly related to the escape of vapor CO2 (Chen et al.,
2009; Fan et al., 2011; Li et al., 2012a). The formation of alunite is
essentially resulted from the SO2 disproportionation reaction
(4SO2 + 4H2O = 3H2SO4 + H2S), producing isotopically light sulfide
(commonly pyrite) and heavy sulfate (alunite) (Stoffregen, 1987). The
alunite grains can be also formed from the transformation of sericite
(e.g., Fig. 4e) by the reaction:

+ + = +
− +KAl Si O (OH) 2SO 4H KAl (SO ) (OH) 3SiO ,3 3 10 2 4

2
3 4 2 6 2

during which the hydrogen ions are largely consumed, resulting in the
hydrolyzation of H2S and increase of the HS− contents in the residual
ore-forming fluids. This would further lead to increase of the solubility
of the Cu-Au complex and is not conducive for Cu-Au mineral pre-
cipitation. Although large-scale mineralization in the sulfate alteration
(alunite alteration) stage is absent, the micro-fractures, fissures resulted
from fluid boiling are favorable locations for later Cu-Au minerals.

Direct fluid inclusion analyses for the high sulfidation Cu-Au mi-
neralization veins are absent in the Zijinshan deposit due to the lack of
suitable minerals for microthermometric studies. However, a group of
secondary inclusions intergrown with small enargite grains are re-
cognized (Fig. 13) in the ore-hosting alunite alteration samples and
present a normal distribution in the total homogenization histogram,
with temperatures below 300 °C and peaking at 260–280 °C (Fig. 9).
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The secondary FIs are therefore considered to be trapped from the ore-
forming fluids in the Cu mineralization stage. The temperature of the FIs
during the Cu mineralization stage below 300 °C is consistent to the thermal
stability of the major gangue mineral dickite (Hedenquist et al., 2000) in the
Cu sulfide-bearing veins or stockworks (Fig. 5e, f, i) and the homogenization
temperatures of the samples from dickite alteration zone. The temperature
range is also nearly identical to a few reported microthermometric results of
the inclusions in enargite, including those in the Lepanto Cu-Au deposit,
Philippine (166–285 °C, Mancano and Campbell, 1995) and Julcani deposit,
Peru (201–320 °C, Deen et al., 1994). The major Cu-Au mineral precipita-
tion is also attributed to fluid boiling as suggested by the temperature-
salinity trend. The formation of major gangue mineral dickite would

increase the H+ concentrations, probably by the reaction:
2KAl3(SO4)2(OH)6+ 6SiO2 + 3H2O= 3Al2Si2O5(OH)4 + 2 K++ 6H+

+ 4SO4
2−, which would cause the formation of H2S by the association

between H+ and HS−, and further lead to the instability of bisulfide or
sulfur complex of Cu-Au and the precipitation of Cu-Au minerals.

7.3. Possible location of the concealed porphyry mineralization

The advanced argillic alteration (characterized by the occurrence of
alunite) is believed to be co-genetically and synchronously formed to-
gether with a concealed high-temperature potassium alteration and
porphyry mineralization (Williams-Jones and Heinrich, 2005; Heinrich,
2005; Sillitoe, 2010), exemplified by the Lepanto-Far Southeast por-
phyry-epithermal mineralization system (Hedenquist et al., 1998).
Therefore, it is commonly advocated that a porphyry mineralization
system might be concealed at depth of the Zijinshan deposit (Zhang
et al., 1992; Qiu et al., 2010; Liu et al., 2016), yet the exact location still
remains ambiguous.

In this manuscript, the average total homogenization temperatures
(Th) of each sample from drill core Nos. DZK702, DZK801 and
DZK1202 are plotted on a cross section profile and the isotherms are
constructed by Kriging interpolation method (Fig. 14). It is shown that
the average Th decreases downward in all the three boreholes in ver-
tical section, as well as from the southeastern volcanic edifice to the
northwestern parts in plane section. The downward decreasing trend of
Th is consistent with the thermal stability of dominant gangue minerals
from alunite to dickite (c.f., Hedenquist et al., 2000). Wang and Jue
(2013) systematically analyzed the alunite compositions in the Zijin-
shan deposit and it turns out that the Na contents decreases from the
southeastern volcanic edifice northwestward. Stoffregen and Cygan
(1990) suggested that the Na content in alunite is in positive correlation
with its formation temperature, indicating a temperature decrease
trend from southeast to northwest in Zijinshan. Moreover, Dai (2011)
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and Liu et al. (2014) suggested that the element primary halos evolved
from the high-temperature W-Cu element assemblage in the south-
eastern deep part to low-temperature Au-Ag-Hg-Bi element assemblage
in the northwestern shallow region of the Zijinshan deposit, which is
also in agreement with our microthermometric results.

Given the isotherms in this study, and considering that the ore-
forming fluids are transported along the NW-trending faults or frac-
tures, the major conducting structures should be the NW-trending faults
or fractures above +520 m asl, while the possible heat source and the
porphyry mineralization coeval to the high-sulfidation Cu-Au miner-
alization might be located either in the southeast of the Zijinshan de-
posit or in the north between the Zijinshan and Wuziqilong deposits at
depth (Figs. 2a, 15), rather than in the southwestern Zijinshan at depth
as illustrated by Zhang (2013). Recently, Duan et al. (2017) reported
newly discovered porphyry Cu-Mo mineralization in the southeastern
part of the Zijinshan deposit. This is very inspiring and more drilling
work are encouraged to be carried out herein, and also the northern
part between the Zijinshan and Wuziqilong deposits.

Since the major conduit faults or fractures is located above
+520 m asl, the digenite- and covellite-dominated orebodies at depth
of nearly −400 m asl are actually distal mineralization to the heat and
mineralization center, which is in agreement with the pinching trend of
the high-sulfidation Cu orebodies at depth of the drill cores (e.g.,
Fig. 2b). It is also believed that the variation from alunite to dickite

from center to distal region is largely controlled by the heat recession
and acid component decrease outward. Hence, the vertical extend of
the orebodies > 1.5 km does not represent the actual mineralization
depth. However, as discussed in Section 6.4, the mineralization depth of
the Zijinshan deposit ranges from 1.4 to 2.1 km, which is still beyond
the maximum depth for other epithermal mineralization systems
worldwide (Simmons et al., 2005; Hedenquist et al., 2000). We suggest

Table 4
The δD and δ18O ratios (‰) for the Zijinshan Cu–Au deposit.

Sample no. Major mineralization or alteration Mineral δ18OQ (‰) δ18OH2O (‰) δD (‰) Th (°C) Data source

D2-2 Au ore Qtz 13.99 0.89 −60.9 190 Zhang et al., 1992
D2-3 Silicified granite Qtz 13.02 −5.17 −60 140 Zhang et al., 1992
Z-218 Silicified Au–Cu ore Qtz 13.94 −4.25 −62.1 140 Zhang et al., 1992
Zj62 Silicified host rock Qtz 14.7 −4.49 140 Zhang et al., 1992
Zj67 Dickite vein Di 8.4 2.26 180 Zhang et al., 1992
Zj145 Silicified host rock Qtz 14.2 −3.99 140 Zhang et al., 1992
Zj385 Host rocks with phyllic alteration Qtz 10.8 1.16 250 Zhang et al., 1992
Z11 ? Qtz 12.85 6.9 −50.2 350 Hua et al., 1998
Z19 ? Qtz 10.16 5.95 −51.2 378 Hua et al., 1998
Z34 ? Qtz 9.69 −1.63 −48.9 218 Hua et al., 1998
Z36 ? Qtz 10.93 2.2 270 Hua et al., 1998
1 Host rocks with phyllic alteration Qtz 10.8 0.4 −64 250 Zhou et al., 1998
2 Host rocks with alunite alteration Qtz 13.99 2.5 −55 230 Zhou et al., 1998
3 Au-Cu ore Qtz 13.94 4.5 −62.1 250 Zhou et al., 1998
4 Au ore Qtz 13.99 2.5 −60.9 230 Zhou et al., 1998
5 Host rocks with dickite alteration Qtz 8.4 −5.2 −108 250 Zhou et al., 1998
6 Host rocks with silicic alteration Qtz 14.68 −5.6 −62.8 140 Zhou et al., 1998
7 Host rocks with silicic alteration Qtz 14.35 −5.9 −60 140 Zhou et al., 1998
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that the great mineralization depths at Zijinshan are resulted from the
superposition of the high-sulfidation mineralization onto an early por-
phyry mineralization (see detail in Section 5).

8. Conclusion

1. Four mineralization stages are recognized in the Zijinshan Cu-Au
deposit: porphyry Cu (chalcopyrite + bornite, related to sericite or
phyllic alteration), the sulfate alteration, the high-sulfidation Cu-Au
mineralization (associated with dickite alteration), and the later
supergene leaching stages.

2. D-O isotope signatures, microthermometric results and LRS analyses
of the fluid inclusions show that the ore-forming fluid system
evolved from a high-temperature, high-salinity, CO2-rich magmatic
in both the sericite (related to porphyry Cu mineralization) and
alunite alteration zone to low-temperature, low-salinity, CO2-poor
meteoric-dominated in the dickite alteration and Cu-Au miner-
alization stages. Intensive fluid boiling and possibly the replacement
of the early-stage porphyry type Cu minerals resulted in the for-
mation of giant high-sulfidation Cu (covellite-, digenite-dominated)
orebodies in the deposit.

3. The mineralization depth of the Zijinshan Cu-Au deposit range from
1.4 to 2.1 km, exceeding the maximum depth of the epithermal
mineralization system (1.5 km), which indicated that the Zijinshan
deposit is a deep-seated epithermal deposit.

4. The isotherms constructed by the microthermometric data of FIs in
cross section profile suggested that the heat source of the Zijinshan
deposit might be located at the southeastern Zijinshan deposit or the
northern area between the Zijinshan and Wuziqilong deposits,
where concealed porphyry mineralization could be expected.
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