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The geological and metallogenic process is a typical non-stationary multifactor and multi-scale random
process. Multiple measurement data assess the performance of the integrated process, and the combined
data set is usually large and complex, among other characteristics. When different metallogenic pre-
diction targets exist, the data must be decomposed on different scales in space. The study of the scale
interval in which the object features are located can eliminate useless information and retrieve useful
scale data that are needed for metallogenic prediction. Thus, the model that the specific deposit presents
will be rapidly and accurately identified to enhance the efficiency of the prediction and analysis models.
This paper employs an improved bidimensional empirical decomposition method to decompose aero-
magnetic survey data and expresses and decomposes the spatial distribution of deposits with a mixed
Gaussian model. By comparing the decomposition results on various sampling data scales with the
distribution function for the deposit, the characteristic scale interval that contains the measurement
information that exhibits the greatest similarity to the distribution of the deposits can be identified. This
method was employed to analyse a Yunnan Gejiu tin–copper polymetallic deposit using aeromagnetic
sampling data to calculate suitable decomposition-scale parameters. This approach provides valuable
parameters for metallogenic prediction in other areas with aeromagnetic data.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Geological processes are typical, non-stationary and complex
temporal and spatially variable processes (Cheng, 2003; Turcotte,
1997; Bansal and Dimri, 2005a, 2005b, 2014). A basic task of
geological research is modelling this process to quantitatively and
accurately describe it. Due to the extreme complexity of the entire
process, reproduction of the whole geological process by estab-
lishing a single or several mathematical models is not feasible. A
feasible approach is to address subproblems and subprocesses in a
fractionised domain and to build a concrete model (Zhao, 1982,
2002; Zhao et al., 1994).

Geological data consists of measurement signals and a non-
stationary random process that are formed by the interaction of
various modulation mechanisms (Diks, 1999; Huang et al., 1996;
Widrow and Stearns, 1985). Scale decomposition and scale selec-
tion of geological signals are the primary focus of this paper.

The decomposition and reconstruction of signals are classic
problems. Frequency analysis tools and scale analysis tools can
completely expand the structures of a signal; depending on their
o).
application, they can be employed for selecting and re-organising
information to obtain a new desired signal (Cheng, 2004). This
study employs the HHT as the analysis tool. The basic principle of
the HHT is to decompose a signal based on the symmetry of the
signal at each scale. Compositions that are decomposed from each
characteristic scale are referred to as the intrinsic mode function
(IMF). For each IMF, the Hilbert transform was employed and the
instantaneous frequency spectrum was calculated. Then, the in-
stantaneous spectrum of each component was combined, and in-
formation about the signal frequency structure was obtained.
Therefore, the HHT is an integrated decomposition tool in the
space-wavenumber domain (Kantz and Schreiber, 1997).

In recent years, there have been many applications of the HHT
transform in geosciences researches (Chen and Zhao, 2011, 2012;
Hou et al., 2012; Huang et al., 2010; Jian et al. 2012); however,
many researchers use it as a conventional decomposition tool for
sample data processing, obtaining features from various scales,
and using these characteristics as parameters or input in different
mathematical models. This is only a basic application of the HHT.
For the former applications of the HHT for geosciences data pro-
cessing is a simple signal decomposition, neither the frequency
decomposition mechanism of the BEMD is discussed, nor the self-
adaption of the signal analysis is made by the mechanisms, a
deeper understanding of the HHT, the analysis of its mathematical
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properties and how to more deeply and reasonably apply the
characteristics of the HHT in the geosciences are problems that
remain to be studied.

In this paper, the basic principles of the HHT (Han et al., 2002;
Huang, 2005, 2006) are described and its scale decomposition
function is analysed. The effective scale decomposition ability of
the HHT is employed to reduce a signal to an integrated multi-
scale channel and identify components that are closest to the
specific metallogenic mode at each scale, which is the scale in-
terval in which the specific metallogenic mechanism serves a role.
Once a scale parameter has been determined, it can be employed
as a reference for metallogenic prediction or ore-forming process
analyses in other locations, which is performed by directly ap-
plying the data within the decomposed characteristic scale to
predict the metallogenic process using pattern recognition or
feature comparison. Calculation and analysis based on decom-
position data in the characteristic scale interval produces not only
higher accuracy but also greater efficiency (Bedrosian, 1963;
Flandrin and Gonçalves, 2004; Flandrin et al., 2004, 2005; Huang,
2001; Huang et al., 1998; Bendat, 1990).
2. HHT Analysis

The HHT method is a time-domain decomposition and fre-
quency spectrum analysis method that was proposed at the end of
the 1990s. It has the characteristics of simple calculation, strong
adaptability, instantaneous spectrum structure and strong ro-
bustness. It is a new signal processing mode of decomposition and
a breakthrough of various types of analysis tools based on the
Fourier transform.

The HHT method employs a multi-scale analysis framework
that is similar to the wavelet analysis (Schlurmann, 2002); how-
ever, it does not consider the signal frequency as the basic object of
calculation. Its scale decomposition object is the symmetry of the
vibration on the time domain. This change abandons the con-
volution calculation, which is generally adopted by the Fourier
transform and wavelet analysis; it prevents the poor adaptability
that is caused by the pre-setting convolution kernel and is more
flexible and stable. Correspondingly, the disadvantage of this de-
composition is that does not have a clear boundary in the fre-
quency domain. For many applications, the scale analysis is more
important than the frequency analysis; thus, the HHT becomes
very suitable for these cases. For example, a substantial amount of
geological data that corresponds to the stochastic processes are
very suitable via use of the HHT. The majority of geological signals
are complex, are composed of a plurality of spectrum types, are
non-stationary and nonlinear (Tong, 1990; Wu et al., 2007), and
are combined with many local time variation processes. Use of a
highly adaptive and multiscale analysis tool, such as the HHT,
which is directly based on the spatial form, to decompose signals
with these characteristics is more suitable.

Numerous studies have applied HHT analysis to geoscience
problems (Coughlin and Tung, 2004; Coughlin and Tung, 2005;
Datig and Schlurmann, 2004; Duffy, 2004; Han et al., 2002; Huang
and Attoh-Okine, 2005; Huang and Shen, 2005; Huang et al., 2001;
Komm et al., 2001; Nuttall, 1966; Schlurmann, 2002; Zhang, 2006).

The HHT involves two parts: the first part is an iterative sifting
process, in which an original signal is decomposed into a trend
term and a plurality of the component function, which is referred
to as an intrinsic mode function (IMF) (Wu and Huang, 2005). Each
IMF has the characteristics of an approximate zero mean and en-
velope symmetry. This decomposition process is known as em-
pirical mode decomposition (EMD). The second part uses the
Hilbert transform to decompose the instantaneous frequency for
each IMF to obtain instantaneous spectra of the decomposed
signal (Chen et al., 2006; Huang et al., 2008). As the EMD algo-
rithm guarantees the symmetry of each IMF signal and the zero
mean characteristics, the IMF is very suitable for the Hilbert
transform; some common defects of the Hilbert transform would
not appear. These two parts are combined to constitute the HHT, in
which the function of the first part is the scale decomposition and
the role of the second part is the frequency analysis.

2.1. EMD decomposition

First, we discuss empirical mode decomposition. The decom-
position rules of EMD imply some assumptions and property re-
quirements of the HHT for signals: (1) the signal should be a
concussion signal, in which minimum and maximum values can be
applied to the decomposition procedure, and signals usually have
multiple concussion periods, so that the analysis has practical
significance; (2) the time interval between the extreme points and
the amplitude of the vibration are important scale characteristics
of the signal; however, the IMF enables variation in the two
characteristic scales. A relatively stable characteristic scale in-
dicates the high probability of a single vibration source; and (3) if
the signal data have no extreme points but have inflection points,
an extreme point can be obtained by differentiating the signal data
and integrating it to obtain the decomposition results (Xu et al.,
2006).

For the original signal ( )f x y, , the specific sifting process of the
EMD method is as follows: first, initialise the residual fun-
ction ( )res x y, and the current step signal ( )f x y,0 . Let

( ) = ( ) = ( )res x y f x y f x y, , ,0 . Second, calculate all extreme points of
the current signal ( )f x y,0 : employ a double three-spline inter-
polation function to calculate the upper envelope ( )up x y, of all
local maximum points and employ this same method to obtain the
lower envelope ( )low x y, of all local minimum points. Third, obtain
the average surface ( ) = ( + )mean x y up low, /2 of the two envel-
opes. The mean represents the development trend of the
data. Fourth, the trend from the original signal. Let the remai-
ning part be the signal of the next step, that is,

( ) = ( ) − ( )f x y f x y mean x y, , ,1 0 . Last, determine the relationship
between the current step signal f1 and the previous step signal f0
by placing them into the stop condition. If the stop condition is not
satisfied, repeat this fitting and subtracting of mean processes to
obtain f f,2 3,... until the stop condition is satisfied. The stop criter-
ion serves a critical role in BEMD; it determines the scale, which
resembles a frequency band, for which the current pass of de-
composition generates relatively stable components. Additional
levels are obtained for smaller thresholds. Let the current step
signal be fn. Then, fn is the minimum scale IMF of the first layer
that is sifted, which is denoted as imf1. Remove the decomposed
intrinsic mode function imf1 from the original signal and re-in-
itialise the remaining part as a new residual function and a current
step signal, i.e., ( ) = ( ) = ( ) −res x y f x y f x y imf, , ,0 1. Repeat this sift-
ing process for IMF2, IMF3,…, and the final residual function

( ) = ( ) = ( ) −res x y f x y f x y imf, , ,0 1 is obtained. Their relationship is

∑( ) = ( ) + ( )
=

f x y imf x y res x y, , , .
i

n

i
1

A flow chart of the EMD decomposition process is shown in
Fig. 1.

2.2. Hilbert Transform

Consider a one-dimensional function as an example to in-
troduce the Hilbert transform, which analyses the instantaneous
frequency of the decomposed IMFs. Let the original signal be ( )x t .
The Hilbert transform is the convolution of the signal and π( )−t 1:



Fig. 1. EMD decomposition process.
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This is the Cauchy principal value integral.
As ( )x t is a real signal, the real part of the frequency in the

frequency domain is evenly symmetric, and the imaginary part of
the frequency is oddly symmetric in the frequency domain. The
frequency characteristic of the signal satisfies

ω
ω ω ω
ω ω ω

( ) = ( ( )) =
( ) + ( ) >
( ) − ( ) <

⎧⎨⎩F F x t
j

j

Re Im 0
Re Im 0

,

where denotes the real part of its argument and Im represents
the image part of its argument, is the complex number, and

= −j 1 .

As the frequency characteristic of the Hilbert transform is

ω ω( ) = [ ] = − ( )H F H i sgn ,

the Hilbert transform is an all-phase shift π/2 transform.
Therefore, the Hilbert transform ( )x t becomes

ω
ω ω ω
ω ω ω

{ }( ) = ( [ ( )]) =
− ( ) − ( ) >

( ) + ( ) <

⎧⎨⎩F H F H x t
j

j

Re Im 0
Re Im 0

.

Therefore,
ω ω ω ω ω ω
ω

( ) + { }( ) = { + }( ) = [ ( ) + ( )] >
<

⎧⎨⎩F jF H F jH
j

1
2 Re Im 0
0 0

.

If ( ) = ( ( ))y t H x t , the frequency spectrum of ( ) + ( )x t jy t is po-
sitive. Thus, based on the Hilbert transform, let
φ ( ) = ( ( ) ( ))t y t x targ tan / ; then, the circular frequency ω φ( ) = ′( )t t .
Thus, we can calculate the instantaneous frequency of vibration

ω
π

( ) = ( )
f t

t
2

.

while the amplitude is

( ) = ( ) + ( )a t x t y t ,2 2

the original signal is

∫( ) = ( ) π ( )⎡
⎣⎢

⎤
⎦⎥x t a t eRe ,j f t dt2

where e is the base of the natural logarithm.
Assume that an original signal ( )X t that is decomposed by EMD

splits into n IMF functions ( )x ti and into the residual function
( )res t :

∑( ) = ( ) + ( )X t res t x t .
i

i

Then, the Hilbert transform is performed on each IMF function
to obtain the final synthetic signal expression as follows:
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∑ ∫( ) = ( ) + ( )π ( )⎡
⎣⎢

⎤
⎦⎥X t a t e res tRe .

i
i

j f t dt2 i

Although the Hilbert transform can analyse the instantaneous
frequency, its applicability is restricted by the form of the original
signal (Datig and Schlurmann 2004; Huang et al., 2003; Nuttall,
1966; Sharpley and Vatchev, 2006). For poorly formed signals,
such as very irregular signals, use of the Hilbert transform pro-
duces results that significantly differ from the actual physical
status. After EMD decomposition, the IMF functions have superior
characteristics with a small bandwidth, reasonable symmetry and
smooth envelope changes, which are suitable for the Hilbert
transform. Thus, the two parts are highly connected.
3. Improved HHT analysis: optimisation of the stop condition

In the EMD sifting process, a very important control parameter
is the threshold of the stop condition (Damerval et al., 2005). As-
sume that it currently has a split m-1 intrinsic mode function, in
which imf1, imf2,…, −imfm 1, imfm are calculated. The current pro-
cessing step is ( )−f x y,i 1 . The maximum of ( )−f x y,i 1 will fit an up
envelope, whereas the minimum of ( )−f x y,i 1 will fit a down en-
velope. The average of the two envelopes are the mean function. If
the mean is removed, then the signal ( )f x y,i is generated. To
clearly mark the level of decomposition for each operation signal,
we respectively denote the signals as ( )−f x y,m i, 1 and ( )f x y,m i, .
Then, ( )f x y,m i, can be employed as a stop condition for imf ,

∬

∬
ω

( ) − ( )

( )
<

−

−

f x y f x y dx dy

f x y dx dy

, ,

,
.x y m i m i

x y m i

, , , 1
2

, , 1
2 0

Consequently, the relative change rate ω is defined as the
symmetry factor; its physical meaning is a measure of the ap-
proximate symmetry degree of the current function, which varies
from the symmetry axis zero. ω0 is referred to as the permission
symmetric threshold and indicates the acceptable degree of
symmetry of each IMF in the EMD process. In a practical compu-
tation, the value of ω0 falls in the interval [ ]0.01, 0.3 . The smaller
the ω0 value, the greater the number of IMFs that will become
decomposed.

We consider the one-dimensional IMF calculation process as an
example to estimate the value range of the symmetry factor. The
previous explanation of the HHT is derived on the time domain for
simplicity. However, the space domain variable s is adopted in the
formulas instead of t in the following sections due to the fact that
magnetic data and synthesised functions are based on the space
domain. Assume that the current signal ( )x s is close to an IMF
function, which may be equivalent to an approximate irregular
circular motion. The slowly varying radius is ( )a s , and the slowly
varying phase is φ ( )s . Thus, the signal is φ( ) ( ( ))a s scos . The accurate
envelopes of the maxima and minima of this signal should be ( )a s
and − ( )a s . Due to the limitations in practical calculations, the
obtained envelopes have errors. For example, using the cubic
spline interpolation to approximate the envelope, the true envel-
ope cannot be approximated with orders greater than two.

Assume that in a practical calculation, the upper envelope is
( ) + ( )a s e s1 and the lower envelope is − ( ) + ( )a s e s2 , where ( )e s1 and
( )e s2 are the error functions. Then, the mean value of the envelope

is as follows:

( ) =
( ) + ( )⎡⎣ ⎤⎦

e s
e s e s

2
.

1 2

As

= − = −− − −f f c f e,m i m i m i m i, , 1 , 1 , 1
where −cm i, 1 are the (i�1)-th central function for the m-th pass. By
substituting it into the stop condition, we obtain

ω

ω

ω

ω

<

⇔ <

⇔ <
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∫

∫

∫

∫

∫

∫

∫

∫
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( ) − − ( )

( )

( )
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( )
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−

−

− −

−

.

f s f s ds

f s ds

f s e f s ds

f s ds

e s ds

a s s ds

e s ds

a s ds

0

0

cos
0

0

D m i m i

D m i

D m i m i

D m i

D

D

D

D

, , 1
2

, 1
2

, 1 , 1
2

, 1
2

2
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2

2

as ( )e s1 and ( )e s2 are the results from the cubic spline interpolation,
( ) = (Δ )e s O s1 and ( ) = (Δ )e s O s2 . Then,

= =Ψ Ψ−M M e M M eandn n
s cs pt csb d

is the transverse spacing between the maxima or minima. In
the interval of Δs, we obtain

∫ ∫( ) = [ (Δ )] = (Δ )⎡⎣ ⎤⎦e s ds O s ds O s .
D D

2 2 3

when ( )a s slightly varies in the interval, ( ) ≈a s a can be con-
sidered; therefore, in the interval, we obtain

∫ ∫( ) ≈ = (Δ )a s ds a ds a O s .
D D

2
2

2

Therefore,

∫
∫

( )

( )
=

(Δ )
(Δ )

= (Δ )−
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

e s ds

a s ds

O s

a O s
a O s .D

D

2

2

3

2
2 2

Let

∫
∫

ω ω=
( )

( )
<

e s ds

a s ds
,D

D

2

2 0

We define ω as the symmetry factor, where the agreed
threshold is denoted as ω0.

As ω = (Δ )O s a/ 2 in our experiment, λ= ΔK s a/ is applied as a
dynamic adjustment factor to adjust the stop threshold ω0, which
ensures that the stop threshold is sufficiently small when the wa-
venumber is high and the amplitude is large; when the wavenumber
is low and the amplitude is small, the stop threshold is sufficiently
large. In the two-dimensional case, it only needs to replace Δs with
the characteristic scale Δ Δx y, . Therefore, the dynamic adjustment
factor is λ= (Δ Δ )K x y amin , / . The improved stop condition becomes

∬

∬
ω

( ) − ( )

( )
<

−

−

f x y f x y dx dy

f x y dx dy
K

, ,

,
.x y m i m i

x y m i

, , , 1
2

, , 1
2 0

In the experiment, the general value of ω0 is [ ]0.1, 0.3 , and the
value of λ is [ ]0.5, 2 .
4. Characteristic scale and local HHT

We define (Δ ( ) ( ))L x y a x y, , , of an IMF that is decomposed from
a signal using the HHT as the characteristic scale at the point ( )P x y, ,
where ΔL is the average spacing between extreme points in the
vicinity of point P and ( )a x y, is the amplitude near point P . For the
entire signal or a local interval of the signal, if the variation in ΔL
and a is relatively small, we can approximately define the mean
value of ΔL and a in this range as the characteristic scale of the IMF.

The characteristic scale can serve as a reasonable expression of
the scale characteristics of a signal for use as an index to design a
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targeted optimisation decomposition method and as a valuable
research direction. For example, as described in the previous sec-
tion, dynamically adjusting the symmetry factor by the ratio of
two characteristic scales can produce excellent decomposition
results. Similarly, the recognition of a complex signal, using a
characteristic scale that is based on the initial decomposition to
perform local optimisation decomposition in geological studies,
may have many applications (Wang et al., 2006 ).

Assume that the fluctuation of (Δ )L a, at the local range is re-
latively small. We define this fluctuation as the characteristic do-
main. The emergence of a characteristic domain frequently implies
the existence of a relatively ideal vibration component. First, we
employ the dynamic symmetry factor threshold to preliminarily
decompose the global signal and identify the characteristic do-
main of each decomposition function. For the common char-
acteristic domain of multiple levels, we consider this local part to
be a distinct multi-scale signal region. Second, we re-decompose
the original signal in the region to obtain better decomposition
results. This type of transformation process is defined as the local
HHT. We can calculate accurate characteristic scale parameters
using the re-decomposed signal.
5. Application of the local HHT in mineral information ex-
traction and prediction of mineral deposits

5.1. Matching parameter calculation

In previous geoscience studies, the HHT is frequently and di-
rectly applied as a decomposition tool for analysing some geolo-
gical datasets and obtaining decomposition images. However, this
type of study resembles an interpretation instead of a prediction. A
local HHT and a method with a characteristic scale that can es-
tablish the relationship between geological mineral deposit mod-
els and some measurement signals are proposed in this paper.
After the deposit information is located in the measurement sig-
nals using strategies such as pattern recognition, metallogenic
prediction can be achieved.

The basic approach is divided into several steps:

) Establish a spatial model using the geographical distribution
information of a deposit, which will be treated as a two-di-
mensional signal. Then, apply the HHT to the signal to achieve a
complex multi-scale decomposition signal. Remove the trend
that has no major effect on the characteristics, and calculate the
characteristic scale of the IMF signal at each level as char-
acteristic variables, which can help to establish the corre-
sponding relationship.

) Perform BEMD decomposition of some geological measurement
signals (such as aeromagnetic data) as the location of the de-
posit is known; the local HHT in the range of the deposit needs
to be applied. Using the characteristic scale of the deposit de-
composition signal, which is calculated as a guide, each IMF of
the measurement signal and each IMF of the deposit signal are
compared to find the closest signals. After all matching is
completed, each characteristic scale of the measurement de-
composition signal as a parameter of an identifier is recorded.

) In the future, if we obtain the same measurement signal in
another area, we recognise the characteristic region of the sig-
nal, apply the local HHT, and compare each IMF parameter that
has already been calculated with the IMF parameter that
was obtained using the local HHT (which can be calculated
by a variety of pattern recognition algorithms) to obtain the
mineralisation prediction results.
5.2. Deposit distribution model

Generally, a deposit is a three-dimensional distribution with a
fuzzy boundary and an internal distribution that is not always
continuous. It is neither realistic nor necessary to establish a space
model that is strictly in accordance with the real physical situation.
In this paper, we utilise a two-dimensional mixed Gaussian model
to express the distribution of ore deposits.

Select n main deposit locations for the ore field and represent
their positions as { }P P P, , ... , n1 2 . Let the mineral reserves of each
position be { }Q Q Q, , ... , n1 2 , respectively, and let { }q q q, , ... , n1 2 be
their normalised positions, where

( )=q
Q

Qmax
.i

i

i
i

Let the spatial parameters of each represented ore deposit be

{ }( ) ( ) ( )θ θ θL W L W L W, , , , , , ... , , , ,n n n1 1 1 1 2 2 2

where θ( )L W, , represents the length, the width and the axis an-
gle, respectively, of the Gaussian model of the deposit. Then, the
mixed Gaussian functions of the distribution deposits are ex-
pressed as

∑ ⋅ θ

=

⎡
⎣⎢

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎤
⎦⎥q G P

L W
R ,

2
,

2
,

i

n

i i
i i

1

i

in which θR i is the rotation transformation and σ σ( ( ))G P, ,x y is the
Gaussian function. The model can represent the metal distribution
of the deposits, which is considered to be a signal, and the re-
lationship between the target measurement signal and the actual
distribution of mineral deposits can be established.

The HHT trend is similar to the DC component of the Fourier
transform: it only reflects the total trend in the characteristics and
has no effect on the alternating characteristics of the signal.
Therefore, we continue the deposit distribution decomposition
function and only analyse the individual IMF components.
6. Case study

We consider the aeromagnetic data from the Gejiu area as the
analysis object, apply this method, and discuss and analyse the
dynamic control parameters and characteristic scale of the deposit
prediction model, based on an HHT.

6.1. Background introduction

Gejiu is the most important tin–copper polymetallic deposit
and mining area in China. Its geologic structure is typical and
distinct, with very distinct characteristics of controlled metallo-
genic tectonics. It not only has a long mining history but also has
produced very detailed studies with abundant data. Thus, Gejiu is
a suitable location for a case study of the development of digital
and geological metallogenic prediction models.

The geotectonics of Gejiu’s tin and copper polymetallic deposits
are located at the joint of the Yangtze block, in the Southern China
fold system and the Indochina block and on the western margin of
the Youjiang geosynclinal fold belt in southern China’s geosyncl-
inal fold area.

The main types of ore deposits are divided into an interlayer
sulphide tin polymetallic ore deposit, a granite contact zone
skarn-type tin polymetallic ore deposit and an ore vein. The main
ore sections are as follows: Damoshan, Malage, Songshujiao, Lu-
tangba, Laochang, Shuangzhu, Jinguangpo, and Kafang.



Fig. 2. Aeromagnetic data in the southeast Yunnan region.
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6.2. Aeromagnetic data pre-processing and feature domain
determination

In this paper, we employ aeromagnetic data that were collected
from the southeast Yunnan region at longitude [102.5°E, 104°E] and
latitude [23°N, 25.5°N] as the experimental data source (as shown
in Fig. 2). As southeastern Yunnan is located at a low latitude, the
aeromagnetic data need to be pole pre-treated. We employed a
standardised polar transform algorithm to calculate the data by a
declination value of 22.5° and an inclination value of 49°.

The larger images on the left depict the entire aeromagnetic
sampling data in mesh form and image form. The two smaller
images on the right show the study area by mesh and image.

Fig. 2 shows that the magnetic anomalies in the lower left



Table 1
Presumed positions of tin deposits in the Gejiu area.

Deposit Latitude Longitude Deposit Latitude Longitude

1 23.339138 103.144698 23 23.293472 103.209088
2 23.345509 103.158496 24 23.288161 103.203339
3 23.332767 103.161945 25 23.277539 103.215987
4 23.325334 103.149297 26 23.279663 103.230935
5 23.326396 103.164245 27 23.350818 103.218287
6 23.326396 103.118252 28 23.344978 103.213113
7 23.310466 103.102154 29 23.339138 103.211963
8 23.313652 103.167694 30 23.335953 103.218287
9 23.301969 103.118252 31 23.329581 103.213688

10 23.312590 103.184942 32 23.325865 103.222886
11 23.310466 103.160795 33 23.334360 103.221162
12 23.291348 103.142398 34 23.358249 103.225761
13 23.292410 103.156196 35 23.363027 103.244158
14 23.279663 103.171144 36 23.384788 103.225186
15 23.271165 103.195290 37 23.384788 103.233235
16 23.254166 103.175743 38 23.327989 103.061910
17 23.245665 103.171144 39 23.334360 103.032589
18 23.240352 103.164245 40 23.340731 103.041788
19 23.248853 103.150447 41 23.347632 103.051561
20 23.239290 103.150447 42 23.358249 103.010742
21 23.230789 103.157346 43 23.348694 102.986021
22 23.297721 103.219437
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corner of the region are caused by metal deposits in Gejiu, which
is the focus of this paper. Therefore, a characteristic region near
Gejiu is selected as the research domain. According to the geo-
graphical coordinates of Gejiu and a radius, we constrained the
general reference region. Then, we decomposed the aeromagnetic
data for the entire southeast Yunnan region using HHT decom-
position. We discovered a square characteristic area around the
reference area with a relatively stable characteristic scale Δ( )L a,
using a sampling method that is based on the previously men-
tioned principles. The final calculation generates a geographical
spatial window [E102.81667, E103.31667] [N23.0834, N23.51667]
as the research domain. The calculation processes five levels of
HHT decomposition on the magnetic field data; consequently, the
variation range of the characteristic scale (Δ )L a, of low wave-
number IMF1–IMF3 in this region is within 15%.

6.3. Spatial deposit distribution model

As previously mentioned, we utilise a Gaussian mixture model
(GMM) to construct the spatial distribution of a magnetic anomaly
that is caused by deposits or tin-containing rock point factors. For
the convenience of the calculations in the test algorithm, the an-
isotropic Gaussian function is not applied with the same direction
as the basis function; instead, the standard Gaussian function is
employed to construct the basic unit of the GMM. The parameters
of the Gaussian base are completely consistent; the shapes of
different Gaussian functions are not adjusted by controlling the
variance σ and the vertical scaling factor k. As long as an ore oc-
currence position is based on mineral reserves and the deposit
spatial shape proportionately interpolates additional ore occur-
rences, it can also predict the directional control and control of the
height and breadth of the distribution function; this approach is
simpler. The only requirement is the need for more accurate data.
The Gaussian model that is employed in this paper is expressed as
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where σ = 0.01 and = −k 1.6.
According to previous exploration data from Gejiu, deposit

extraction distribution information from Gejiu, the ore occur-
rences and ore deposit reserve and grade data, a discrete ap-
proximation sample of the distribution of tin–copper polymetallic
ore deposits in Gejiu can be generally established.

Specific ore occurrence information is shown in Table 1 and
Fig. 3A.

Assuming that the magnetic anomaly amplitude caused by tin
deposits is proportionate to the ore reserves and using the data in
Table 1 and the GMM, we can approximately simulate the spatial
distribution of the magnetic signals of tin deposits in Gejiu, as
shown in Figs. 3B and 4.

Fig. 3A shows the distribution of tin ore occurrences in Gejiu,
and Fig. 3B shows the distribution of the magnetic anomaly gen-
erated by the GMM, which is caused by tin deposit factors.

Fig. 4A shows the generated negative anomaly signals, Fig. 4B
shows the grid form of the GMM, and Fig. 4C shows the contour
distribution of the GMM.

Fig. 5 shows the contrast between the actual aeromagnetic
sampling data and the algorithm-simulated magnetic data for the
tin deposits in Gejiu. It depicts a plot of the relative error, which
belongs to the [0,1] interval, in our sample window. By removing
the trend, simulated magnetic data can satisfy the actual sampling
aeromagnetic data. In the southwest corner of this area, the
magnetic field shows a positive anomaly, which is primarily at-
tributed to metal mineral distribution chaos or other conditions
that affect the magnetic field intensity in west Gejiu. However, the
eastern region is relatively flat, and dense mineral deposits form a
significant negative abnormal distribution of a geomagnetic field.
Its distribution of fluctuation characteristics basically fits with our
model, and the only large deviation is observed in the south-
eastern region, which was probably caused by incomplete data.

6.4. HHT dynamic decomposition and the selection of a character-
istic scale

The GMM approximately represents the magnetic signals caused
by tin deposits, whereas aeromagnetic acquisition comprises the
magnetic field signals that are actually formed by the comprehensive
geology. The main purpose of this paper was to search for the pattern
that was contained in the magnetic signals caused by the tin deposits
from the actual signals. First, we decomposed the GMM. After the
removal of the trend, we determined the scale at which the pattern
of the magnetic field of tin deposit exists, typically in the decom-
posed IMFs. Then, we decomposed the original magnetic field signals
using HHT at various levels, searching for a characteristic scale that
resembled the pattern of the tin deposit signals and finding the most
similar scale combination. The characteristic scale range obtained
from the combination is considered to be the proposed scale when
HHT decomposition is employed to process aeromagnetic signals to
search for the existence of deposits.

Assuming that the signal channel obtained from the GMM,
which is applied by the HHT, is Gi, all IMF sets are denoted as SG.
Let Mi denote the signal component of the aeromagnetic sampling
data decomposed by the HHT and the denote the entire set as SH ,
where s s,g h are the subset of SG and the subset of SH , respectively.
Thus, the search characteristic scale problem can be summarised
as an optimisation problem as follows:
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i.e., searching for the IMF subsets decomposed by the GMM and
IMFs, which are decomposed by aeromagnetic data with a minimum
relative error. To reduce the large number of combinations, we only
computed the subsets that are composed of continuous IMF layers.

The IMF layer that is decomposed by HHT has many possibi-
lities, and different stop factors may result in a different number of



Fig. 3. Tin ore occurrence distribution and simulating magnetic field distribution in Gejiu.

Fig. 5. Relative error of aeromagnetic sampling data and GMM-simulated data of
tin deposits in GEJIU.
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layers and a specific IMF at each layer. Simultaneously, the subset
of s s,g h with minimum relative error must be determined.
Therefore, the computational complexity of the optimisation pro-
blem for two variables is difficult to imagine when searching the
entire computational domain; the calculation cannot be com-
pleted. Therefore, we employed a single variable optimisation
iterative algorithm with two circular levels and an approximated
reduced search domain to obtain a better solution. For the con-
venience of description, we agreed on a form DATA [(a, b), C] to
represent an sg or an sh. When DATA is GMM, the GMM model is
decomposed, and when DATA is MEG, the aeromagnetic sampling
data are decomposed. C denotes the number of layers of the de-
composed HHT, namely, the C IMF functions and a residual func-
tion (a, b), which indicates a subset formed by the a–b layers.

We processed a 2–5 layer HHT decomposition with a dynamic
stop condition on the GMM and a 3–8 layer HHT decomposition
on the aeromagnetic sampling function. Then, we calculated the
distance between a randomly selected s s,g h subset with a total of
100 tests. The pre-test calculation was employed to determine the
Fig. 4. Magnetic field distribution established by the GMM.



Fig. 6. Matching results of HHT decomposition of the GMM and aeromagnetic data.
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initial decomposition layer number of the GMM function, the HHT
decomposition and the aeromagnetic sampling HHT decomposi-
tion function. The test results are GMM [(2,3),3] and MEG [(3),4].

Then, a two-level iterative optimisation is employed to solve
the problem. First, fix the selected sg; then, search the optimal sg

within the majority of the eight layers of aeromagnetic data de-
composition. Second, fix sh and search for the optimal sh within the
majority of the six layers of the GMM decomposition function.
Iterate until the optimum s s,g h pair is obtained.

Lastly, the results for the best matching signals are GMM [(2),
2] and MEG [(3,4), 5]; these results offer a reasonable decom-
position scale parameter for predicting the magnetic field pattern
of the tin deposit model of aeromagnetic data. This parameter can
be used to predict other problems and to improve the prediction
accuracy and efficiency. The results are shown in Fig. 6.

The first row shows the HHT decomposition results of the
GMM, and the second and third rows show the HHT decomposi-
tion results of the aeromagnetic data, in which GMM [(2),2] and
MEG [(3,4),5] yield the best matches. GMM [(2), 2] indicates that
the simulation data of the GMM model is decomposed into two
layers of IMFs and that the subset is formed by the second layer;
MEG [(3,4) 5] indicates that the aeromagnetic sampling data are
decomposed into five layers of IMFs and that the subset is formed
by the third and fourth layers.
7. Conclusions and discussion

This paper discusses the mechanism of the HHT signal de-
composition tool and proposes that the characteristic scale of
signal decomposition is an important feature of the signal com-
ponents. A self-adaptive HHT decomposition method and a dy-
namic adjustment stop condition are proposed.

As actual geological sampling data are usually representative of
complicated geological factors, a particular factor, such as a signal that
is induced from the signal source, is usually only distributed at a
characteristic scale interval in the original signal. From the point of
view of the HHT, it falls in the signal pathway that is constructed by
some of the IMF functions. Therefore, the parameters of the signal
pathway can be obtained with analysis and calculations, which help to
improve the accuracy and efficiency of a metallogenic prediction. We
used the aeromagnetic sampling data from Gejiu in a numerical test to
validate the method. The tin deposit magnetic field distribution is
approximately expressed by a GMM model and addresses the char-
acteristic search problem, inwhich the target signal is a two-parameter
optimisation problem; the calculation is performed using a heuristic
iterative algorithm to obtain the best matching signal channel.

The matching results provides not only effective technical
parameters for searching magnetic field data for other tin deposits
but also the framework of the method, which can also be em-
ployed for other metallogenic prediction problems.



J. Zhao et al. / Computers & Geosciences 88 (2016) 132–141 141
However, the algorithm has many problems. First, the training
data for the channel parameter calculations are very important;
gaps in the deposit data may cause a substantial difference be-
tween the distribution of the GMM and the actual situation, which
may affect the validity of the algorithms. Second, the dynamic HHT
decomposition that is proposed in this paper substantially relies
on the calculation and estimation of the characteristic parameters
(Δ )L a, . However, a simple estimation sampling method is per-
formed in the paper; a more accurate estimation method requires
further study. The calculations of the characteristic signal channel
parameters in this paper are only based on the aeromagnetic data
from Gejiu. This approach is equivalent to the training process of
machine learning technology. When applied to actual metallo-
genic predictions, we need to test the prediction results using this
method for other deposits. Lastly, the method must be practical for
real geological prospecting problems. We also need to study the
characteristics matching problem in multi-data source conditions.
These considerations are important for future research.
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