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A B S T R A C T

Autonomous rock image classification can enhance the capability of robots for geological detection and enlarge
the scientific returns, both in investigation on Earth and planetary surface exploration on Mars. Since rock
textural images are usually inhomogeneous and manually hand-crafting features is not always reliable, we
propose an unsupervised feature learning method to autonomously learn the feature representation for rock
images. In our tests, rock image classification using the learned features shows that the learned features can
outperform manually selected features. Self-taught learning is also proposed to learn the feature representation
from a large database of unlabelled rock images of mixed class. The learned features can then be used repeatedly
for classification of any subclass. This takes advantage of the large dataset of unlabelled rock images and learns a
general feature representation for many kinds of rocks. We show experimental results supporting the feasibility
of self-taught learning on rock images.

1. Introduction

1.1. Background and motivation

Autonomous geological detection is becoming an increasingly
important technique for robotic platforms exploring remote environ-
ments such as Mars (e.g. Francis et al. (2014a), (2014b)). It can
maximize the scientific return and reduce the need for human
involvement. In the case of Mars specifically, the bandwidth limit
and large time delay (3–22 min one-way travel time) of data transmis-
sion makes autonomous techniques even more critical and valuable.
The past two decades have seen tremendous achievements in Mars
exploration. Among them are Mars Exploration Rovers (MER) and
Mars Science Laboratory (MSL) missions. Both missions sent rovers to
the surface of Mars and explored their respective regions of interest
with various scientific instruments. Two autonomous onboard systems
have been developed for these rovers: the Onboard Autonomous
Science Investigation System(OASIS) (Castano et al., 2004, 2007,
2008), and the Autonomous Exploration for Gathering Increased
Science(AEGIS) system (Estlin et al., 2009, 2012). Both systems are
actively used and have enabled the rovers to autonomously identify and
react to serendipitous science opportunities by analyzing imagery
onboard with computer vision techniques. Tasks included locating
rocks in the images, analyzing rock properties, and identifying rocks

that merit further investigation through autonomous selection and
sequencing of targeted observations. However, the rovers still heavily
rely on explicit instructions given by scientists on Earth, which requires
extensive communication and frequent command cycles. As such, there
is still a long way to go before rovers will possess sufficient “intelli-
gence” to reason about science goals, make informed decisions, and
respond to discoveries autonomously (Francis et al., 2014b).

An alternative approach to AEGIS and OASIS is increasingly being
used in geosciences in the form of computer vision. For example,
Chanou et al. (2014) and Pittarello and Koeberl (2013) developed and
applied quantitative image analysis methods to analyze the images of
individual rock samples. In these approaches, components or particles
of a rock image are first segmented, which then allows the measure-
ment and quantification of various properties, such as shape complex-
ity, preferred orientation, size-frequency, and so on. A different
advanced technique that we focus on here is rock image classification
(Shang and Barnes, 2012). Instead of the exact quantitative measure-
ment of particles in rock images, the approach of rock image
classification is to identify the specific type of rock(s) based on visual
appearance. The identification of rock type is important as this
provides information as to the environment in which the rock was
created and its subsequently geological history (Gor et al., 2001). For
example, the size of crystals in igneous rocks can be used to estimate
cooling rates and provides constraints on the depth of formation; the
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grain size and shape of sedimentary rocks provides information as to
the mode of deposition; and the properties of rocks formed by
meteorite impact craters reflects the pressure and temperature of
formation and of the environment prior to impact. As such, autono-
mous rock classification has the potential to provide valuable informa-
tion about the origin and evolution of rocky planetary bodies through-
out the Solar System.

1.2. Related work

A typical framework of image classification (see Fig. 1) includes
extracting feature representation for input images and feeding the
feature representation into a classifier. In general, the performance of
image classifiers is heavily dependent on the selection of a feature
representation. Unfortunately, rock textures are seldom homogeneous.
As a result, the design of a feature representation is difficult, which
makes rock image classification extremely challenging. There have
been a few attempts at developing feature representation for rock
image classification to date. All these previous works use either hand-
engineered features manually selected for the specific application, or
automatically selected features chosen using time-consuming methods.

Prior works mostly involve manually selected features. In order to
reduce the time-consuming process of manual identification of rock
samples, Ślipek and Młynarczuk (2013) and Młynarczuk and Górszczyk
(2013) conducted autonomous classification of microscopic images of
rocks by four pattern recognition methods - nearest neighbour, k-
nearest neighbours (k-NN), nearest mode, and optimal spherical
neighbourhoods. Sharif et al. (2015) built a small library of grayscale
images from a total of 30 hand samples, and used Bayesian analysis to
classify them with selected Haralick textural features (Haralick et al.,
1973). In order to distinguish adjacent outcrops, Francis et al. (2014a)
started with some fundamental visual “channels” such as colour and
difference between colour channels, then utilized multi-class linear
discriminant analysis (MDA) to identify the principal visual compo-
nents. Harinie et al. (2012) utilized Tamura features (Tamura et al.,
1978) to classify hand samples of rocks into the three major categories,
namely, igneous, sedimentary and metamorphic. Dunlop (2006) stu-
died features such as shape, albedo, colour and textures, then
conducted rock classification with different feature combinations.
Singh et al. (2004) compared 7 well-established image texture analysis
algorithms for rocks classification and the results suggested that Law's
masks (Laws, 1980) and co-occurrence matrices (Haralick et al., 1973)
were best. Lepistö et al. (2003) classified rock images by methods based
on textural and spectral features. The spectral features are some colour
parameters and the textural features are calculated from the co-
occurrence matrix. In order to improve the classification accuracy,
Lepistö et al. (2005) combined colour information in Gabor space (Tou
et al., 2007) to the texture description. Given that various visual
descriptors extracted from images are often high dimensional and non-
homogenous, Lepistö et al. (2006b) conducted rock images classifica-
tion based on k-nearest neighbour voting, which combined k-NN base
classifiers for different descriptors by voting. A similar idea of
combining base classifiers came to Lepistö et al. (2006a). Each feature
descriptor had a corresponding separate base classifier, and better
classification accuracy can be achieved by combining opinions provided
by each base classifier.

Other works have concentrated on feature selection. Chatterjee
(2013) used the genetic algorithm to select features, and then classified
limestone with multi-class SVM (Support Vector Machine). Shang and
Barnes (2012) utilized a reliability-based method and mutual informa-
tion to select features, then classified rocks images in a more general

dataset. Both works showed that their own feature selection methods
worked well in their dataset, but feature selection itself is time-
consuming. When the dataset becomes complicated, one might have
to think of what kind of feature pool to select from, or even devising a
brand new feature representation.

All the previous representations used for rock images consist either
of an entirely manually crafted feature set or a set of features
automatically selected from a set of manually crafted features. These
manual features are not good enough to represent inhomogeneous rock
images and are time-consuming to get. Our proposed methods address
this deficiency by automatically learning the feature representations.
Our experimental results demonstrate that the learned feature repre-
sentations have the potential to be more flexible and powerful.

1.3. Introduction to this study

We have approached the problem of feature selection for geological
classification in two ways in this paper. First, we propose an unsu-
pervised feature learning technique (Coates et al., 2011) to extract
features for rock images. The approach is to autonomously learn the
feature representation from a large amount of data rather than
manually choosing the features. This has the benefit of making the
feature representation much more flexible when using different data-
sets. The feature learning method we utilized is based on K-means
(Coates and Ng, 2012), which is fast and easily implemented. We
applied this method to the classification of rock images with SVM
(Support Vector Machine). (Both K-means and SVM are described
below).

The second autonomous feature selection method we propose in
this paper is called self-taught learning (Raina et al., 2007; Wang et al.,
2013). The concept behind self-taught learning is to learn a feature
representation from unlabelled images of mixed-class and then train a
classifier on a subset of the data that has been labelled to identify
certain subclasses represented within the original data set. For image
classification, having enough labelled images is important. Basically,
the more images you have, the better learning you get. However, it is
usually difficult and expensive to label images. Though researchers
have resorted to tools such as AMT (Amazon Mechanical Turk) to have
a large number of people help with labelling, there are still financial
costs and concerns about the quality of labelling. Thus the ability to use
unlabelled images would greatly enhance an autonomous feature
identification technique. In addition, it is highly unlikely that a
particular dataset will only contain the classes of the images we are
interested in. It is much more likely that a dataset will comprise a mix
of all kinds of possible rock classes. As such, we utilized self-taught
learning to directly learn feature representation from unlabelled rock
images of mixed-class and then applied the feature representation to
labelled rock images which we are interested in for classification. In
such an approach, the unlabelled images do not have to follow the same
distribution as the labelled images, and the labelled images for
classification can belong to merely subclasses of the unlabelled images
(Raina, 2009). This attribute is particularly important for applications
such as planetary exploration where the potential rock types will be
uncertain.

Below, we first present the rock image dataset. Next we provide
background on the set of manually selected features, the K-means
feature learning approach and the self-taught learning approach.
Finally, we show the effects of parameter selection for the feature
learning methods as well as the results of classification with both the
manual features and both types of learned features.

2. Rock image dataset

We photographed 9 different types of rock hand samples to
generate a rock image dataset. The samples are provided by
Department of Earth Science in Western University. These rocks are

Fig. 1. The typical framework of image classification.
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randomly selected. Table 1 lists all these rocks and the brief descrip-
tions. Each type of rock reveals different appearance such as colour,
structure, texture and grain size.

A dataset of approximately 700 textural images was generated from
these 9 different types of rocks. There are roughly 80 images in total for
each type of rock. Each image has size of 128 × 128 × 3 pixels and is
between 1 and 2 cm across in reality (Fig. 2). Note that, the scale of the
rocks was not accurately measured. Thus, we didn't research on how
different scales will affect the classification in this study.

3. Methods

Our first set of experiments compares the behaviour of a Support
Vector Machine (SVM) classifier using two different feature sets:
Manually selected features, and autonomously selected features. To
provide the needed background, in the first two parts of this section, we
present the two competing feature sets (manual features and features

learned based on K-means) and the background of the SVM classifier.
The final part of this section presents the needed background to the

concept of self-taught learning, which is used in our second set of
experiments.

3.1. Feature representations

3.1.1. Manual features
Among manual features, texture is commonly used to describe and

represent the rock images (Lepistö et al., 2003; Paclík et al., 2005). It is
determined by the way in which the grey levels are distributed over the
pixels and describes an image as orderly or coarse, smooth or irregular,
homogeneous or inhomogeneous (Shang and Barnes, 2012). It has
been shown that first and second order statistics of texture can
reasonably provide a small number of relevant and distinguishable
features (Aggarwal and Agrawal, 2012). Note that, these features do
not have any geological meaning. They are carefully hand-crafted by
computer scientists.

First-order statistics describes the pixel intensity distribution of
the image. If I(i) stands for intensity of pixel i in image, and N is the
number of pixels in the whole image, then five of the first-order
statistics can be represented as

• Mean

∑I
N

I i= 1 ( )
i

N

=1 (1)

• Median – intensity value which separates the higher half of pixel
intensity from the lower half
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• Kurtosis

Table 1
9 types of rocks used for classification in this study.

Rock types Description

Limestone It is a sedimentary rock consisting largely of calcium carbonate. It is light grey and smooth to touch.
Volcanic breccia It is formed from angular gravel and boulder-sized clasts cemented together in a matrix. The angular nature of the clasts indicates that they have not been

transported very far from their source. The texture is coarse-grained. Clasts are poorly sorted.
Oolitic limestone It is made up mostly of ooliths which are sand-sized carbonate particles that have concentric rings of calcium carbonate. The colour is grey and texture is fine

grained and porous.
Dolostone It is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite. It has a stoichiometric ratio of nearly equal amounts of

magnesium and calcium.
Rhyolite It is a silica-rich volcanic rock. Its texture is porphyritic and very compact. The groundmass with varying amounts of glass is also dense and fine grained. The

colour is light reddish.
Granite It is a felsic plutonic rock. It contains high percentage of light coloured constituents and low percentage of dark minerals. So the colour is basically light and

texture is phaneritic. The size of the individual constituents is very varied.
Andesite It is an extrusive rock intermediate in composition between rhyolite and basalt. It is basically grey and lighter coloured than basalt. Texture is porphyritic and

interweaved. The groundmass is fine grained and glassy.
Peridotite It is a very dense and coarse-grained igneous rock. The colour is generally dark greenish-grey and the texture is phaneritic. It is olivine-rich and has low silica

content and very little feldspar.
Red granite It has an equigranular texture with much pink orthoclase, grey quartz and biotite. It is coarse grained and the grains are developed enough to be recognised

by the naked eye.

Fig. 2. Sample images from dataset. Each sample stands for one class. All images have
size of 128 × 128 × 3 pixels and are between 1 and 2 cm across. From top to bottom, the
first column – rhyolite, volcanic breccia, limestone; the second column – granite,
andesite, oolitic limestone; the third column – red granite, peridotite, dolostone.
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Here, skewness is used to measure the symmetry of the histogram
distribution and kurtosis is used to describe the flatness of the
histogram distribution.

Second-order Statistics describes the information about relative
positions of the various intensities. It is calculated from a grey level co-
occurrence matrix (GLCM), which describes how frequently two grey
levels of pixels appear (Haralick et al., 1973). For two-dimensional
images, there are four grey level co-occurrence matrices in total, by
orientation of 0°, 45°, 90°, 135° respectively. Among the second-order
statistics calculated from GLCM, four of them are used in this paper,

• Angular Second Moment (ASM)

∑ASM P I I= ( , )
I I,

1 2
2

1 2 (5)

• Entropy

∑Entropy P I I logP I I= − ( , ) ( , )
I I,

1 2 1 2
1 2 (6)

• Contrast

∑Contrast I I logP I I= | − | ( , )
I I,

1 2
2

1 2
1 2 (7)

• Correlation

∑Correlation
I μ I μ P I I

δ δ
=

( − )( − ) ( , )

I I,

1 1 2 2 1 2

1 21 2 (8)

Here, P I I( , )1 2 is the frequency of co-occurrence matrix (Haralick
et al., 1973). Four directions(i.e., 0°, 45°, 90°, 135°) are averaged out,
which could make it rotate invariantly. ASM is to measure the
smoothness or uniformity of the image region. Entropy is to measure
the disorderliness. Contrast is a measure of local level variations which
takes high values for image of high contrast. Correlation is a measure
of correlation between pixels in two different directions.

With both first and second order statistics, there will be 9 textural
features. If calculated in all colour channels, there will be 27 features in
total for each image. In order to show how different feature configura-
tions affect classification results, both the whole feature set and 4
subsets were used to represent the images during our experiments. The
configurations of these feature sets are denoted as following.

• MF I – all first and second order statistics;

• MF II – only first-order statistics;

• MF III – only second-order statistics;

• MF IV – 5 features including Mean, Skewness, Kurtosis, Entropy,
Correlation;

• MF V – 5 features including Skewness, Kurtosis, ASM, Entropy,
Correlation.

3.1.2. Unsupervised feature learning based on K-means
Among various feature learning methods (Lee et al., 2006; Le et al.,

2011), an approach based on K-means has previously been identified as
fast and easily implemented (Coates and Ng, 2012). The basic frame-
work is as follows. First, n random sub-patches (i.e., small red squares
on Input image in Fig. 4) are extracted from the unlabelled dataset.

Each sub-patch has a size of w w d× × pixels, where w refers to
receptive field size (width of sub-patch) and d is the number of colour
channels. Hence, in terms of pixel intensity, the extracted patches can
be represented as vectors (x x,…, n1 ) in N , with N w w d= · · . Next, K-
means (Kanungo et al., 2002) algorithm is used to generate K centroids
C C,…,1 K, where each centroid Ci is also a vector in N . All these
centroids are the feature filters for the whole dataset and represent a
basis set for all images. Fig. 3 shows the 60 centroids learned from
training dataset of rock images. The parameter configuration is
provided in Table 2. It is worthwhile to note here that these extracted
features may not intuitively make much sense, and do not necessarily
represent geologically meaningful properties. However, on visual
inspection, some of them (e.g., the one in first row and third column)
are clearly to detect edges, which are fundamental elements for rock
textural images.

With K learned centroids, each patch xj can be mapped to a K

vector f x( )j , and each element of the vector can be represented as

f x μ z i( ) = max{0, − }, 1 ≤ ≤ Ki j i (9)

where, z x C= ∥ − ∥i j i 2, μ is the mean of all zi. Essentially, this
operation represents all image patches as a weighted combination of
the set of identified features. The max operation is used so patches “too
far” from a particular centroid are treated as independent of that
centroid.

The above steps explain how to transform an input patch from N

to K. With this transformation complete, we can now extract a
representation of an entire image by applying the transformation to
many sub-patches in the whole image. The framework of this process is
shown in Fig. 4. The whole image is first cropped into many sub-
patches of the same size (w w d× × ) with stride (step size) s. If we
assume that the entire image has a size of a b d× × and stride s is 1,
then there will be a w b w( − + 1)*( − + 1) sub-patches in total mapped
to K for each image. After reducing the feature dimensionality with
pooling (e.g., split the yij into four equal-sized quadrants and compute
the sum of the yij in each quadrant), each image will be represented as a
feature vector ϕ ϕ ϕ[ , ,…, ]T

1 2 4 K in the same feature space.

3.2. Classification method

Support Vector Machine(SVM) (Cortes and Vapnik, 1995; Burges,
1998) was used to classify rock images with both manual features and
learned features. It is one of the most powerful and widely used
methods for classification. It learns a hyperplane or set of hyperplanes
in high-dimensional space, which separate data points with the largest
margin.

The rock classification here is a multi-class classification problem.
Thus, we used one-vs-all linear SVM in the experiments. The objective
function is L2-SVM as shown in formula (10), where w defines the
classifier and ξi is the slack variable to deal with outliers of data. We
used L2-SVM regularization term because it is differentiable and
imposes a bigger loss for data which violate the margin (Koshiba and
Abe, 2003).

∑w C ξ

s t y w x b ξ i n
ξ i n

min 1
2

∥ ∥ +
2

. . ( + ) ≥ 1 − , = 1,…,
≥ 0, = 1,…,

i

n

i

i
T

i i

i

2

=1

2

(10)

The regularization parameter C was determined by 5-fold cross-
validation. In 5-fold cross-validation, we first divided the training set
into 5 subsets of equal size. Sequentially each subset was tested using
the classifier trained on the remaining 4 subsets. Thus, the cross-
validation accuracy is the percentage of images which are correctly
classified in all of the subsets. Various C values were tried and the one
with the best cross-validation accuracy was picked. The training is
based on the demonstration code from Coates et al. (2011).
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3.3. Self-taught learning

The method discussed above, using K-means clustering and SVM,
requires a fully labelled data set. Unfortunately, in machine learning
settings, unlabelled datasets are significantly easier to obtain than
labelled ones (Duda and Hart et al., 1973; Blum and Mitchell, 1998).
Thus, our goal in this second part of the work was to utilize an
algorithm (known as self-taught learning) that is able to take as much
advantage of unlabelled data as possible. Self-taught learning consists
of two stages (Raina et al., 2007). In the first step, a feature
representation is learned from unlabelled images. In the second step,

the learned features are then used to train a classifier on a smaller,
labelled data set. Once the general feature representation has been
learned in the first stage, it can be used repeatedly for different
classification tasks. Unlike semi-supervised learning (Zhu et al.,
2003), we do not assume that the unlabelled images were drawn from
the same distribution as labelled images. Hence, self-taught learning is
more general and powerful (Wang et al., 2013).

As an example, suppose the task is to identify basalt and limestone.
It is time-consuming to gather a large dataset which consists only of
basalt and limestone. A more common case and an easier approach is
to collect a dataset containing various types of rocks (e.g., breccia,
gneiss, sandstone, etc.) including basalt and limestone, be it from the
internet or manually photography. Given that labelling images is costly
(requires time of a trained geologist), it would be inefficient to label all
images in the dataset if the goal is only the identification of basalt and
limestone. The self-taught learning approach would be to use the entire
large initial data set for feature learning. The large size of the initial
data set means that we learn a generic set of features about rocks of all
types. Then, we apply the learned feature representation to another
small labelled dataset containing only basalt and limestone to train a
classifier. The reason why this approach works is that the other types of
rocks contain some basic visual patterns (“basic elements” as men-
tioned in Raina et al. (2007)) similar to ones in basalt and limestone,
such as edges. Therefore, self-taught learning learns how to represent
images in terms of these basic elements. By applying this learned
representation to labelled images, we can obtain a higher level
representation of labelled data as well, thus an easier supervised
learning task.

The formalism of self-taught learning is as follows. We have
unlabelled dataset Xu of n examples drawn from k classes,
X x x x= { ,…, ,…, }u

C
i
C

n
C

1
j k1 . In addition, there is also a set of m labelled

examples X x x x= { ,…, ,…, }l
C

i
C

m
C

1
u v w . These labelled examples come from

classes C C C{ ,…, ,…, }u v w , which is just a subset of original classes, i.e.
C C C C C C{ ,…, ,…, } ∈ { ,…, ,…, }u v w j k1 . The task is to learn feature repre-
sentation from Xu, and then apply the feature representation to Xl for
further classification. Fig. 5 shows the general framework.

4. Experimental design

We conducted experiments to test both approaches discussed in
this paper. To test the performance of unsupervised feature learning,
we first compared classification performance using various combina-
tions of manual features (i.e. first and second order statistics) and with
classification performance using a feature set learned using the K-
means approach. Fig. 6 shows how we separated the dataset into a
training set and a testing set. For all manual features and unsupervised
feature learning, the whole dataset was split into 70% as training data
and 30% as testing data.

Fig. 4. Framework of representing a rock image with learned features.

Fig. 3. 60 centroids learned from training dataset, each centroid has size of 12 × 12 × 3,
configuration of parameters refers to Table 2.

Table 2
Parameter configuration for feature learning. stride – step size between two adjacent
sub-patches, rfsize – receptive field size, K – number of centroids, numPatches – number
of sub-patches extracted for training.

stride 1
rfsize 12
K 60
numPatches 50,000
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In the second part of the work, we explore the concept of self-taught
learning. In this case, the whole initial dataset was split half-and-half
into a labelled part and an unlabelled part (“unlabelled” here means we
ignored the labels). We used the unlabelled half of the data to perform
the feature identification step. In the labelled half, only samples from
rock type #1 ∼rock type #4 (which are rhyolite, volcanic breccia,
limestone and granite) were picked to classify, and this sub-dataset was
separated as 60% for training and 40% for testing.

5. Results and discussion

5.1. Parameters for unsupervised feature learning

There are several tunable parameters for unsupervised feature
learning, such as the receptive field size (rfsize), the step size (stride)
and the number of centroids (K) (Coates and Ng, 2012). Below, we
present the results of experiments that investigated how these para-
meters affect the performance and how to choose these parameters.

5.1.1. Number of centroids
We extracted feature representations with 10, 15, 20, 30, 45 and 60

centroids and fixed the receptive field size (6 pixels) and stride (1
pixel). Fig. 7 clearly shows that the test accuracy generally goes up as
the number of the centroids (K) increases. This is reasonable because a
larger dictionary of feature bases is usually better able to capture
structures and patterns inherent in the images. This is consistent with
the work of Van Gemert et al. (2008) and Coates et al. (2011), who also
observed that learning large numbers of features can substantially
improve supervised classification results. As such, it is best to set K as
large as computing resources will allow.

5.1.2. Stride
Stride is the space between sub-patches where features will be

extracted (See Fig. 4). In this experiment, we fixed the number of
centroids (60) and receptive field size (6 pixels), and then chose the
stride over 1, 2, 4 and 8 pixels (Fig. 8). There is a clear downward trend
in performance with increasing step size as expected. The smaller stride

is able to cover more details in the images, so it will provide a better
representation of the images. However, a small stride is also compu-
tationally more expensive. Thus, as with our recommendations for the

Fig. 5. Framework of self-taught learning.

Fig. 6. Dataset separation. MF-manual features, FL-feature learning, STL-self-taught
learning.
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Fig. 7. Performance vs. number of centroids, rfsize=6, stride=1.
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Fig. 8. Performance vs. stride, K=60, rfsize=6.
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number of centroids, it is best to set stride as small as compute
resources will allow.

5.1.3. Receptive field size
Receptive field size represents the size of an area in an image from

which the features are extracted. In general, a larger receptive field size
should result in the learning of more complex features that cover a
larger region of the images. However, this will increase the dimension-
ality of the feature space (see Section 3.1.2) and may require the
learning of more feature bases or require more images in order to get
the same performance. We evaluated the effect of receptive field size by
testing it on 6, 8, 10 and 12 pixels. For the other parameters, we used
stride of 1 pixel and 60 centroids. Fig. 9 shows that all the numbers
performed similarly and the 6 pixels outperformed others slightly. It is
unclear as to whether there is, or could be, a general rule for choosing
the receptive field size. However, given that the small receptive field
size produces a low dimensionality of the feature space, which in turn
reduces computation and also that our experiment showed the small
size can work reasonably well, it is suggested to use a small receptive
field size if the computing resources allow a large K and a small stride.

5.2. Performance comparison

We used one group of parameters (Table 2) for unsupervised
feature learning, and compared the classification result based on it
with the results based on using manual features. Among the para-
meters, numPatches is the number of extracted sub-patches for
learning features. The value of it depends on the size of dataset and
the size of individual image sample.

Table 6 shows the testing accuracy for all the methods. Note that

accuracy varies considerably for different combinations of manual
features. MF I has accuracy as high as 96.24%, while MF III only
achieves 66.20%. It is apparent that, for our dataset, pure first order
statistics (MF II) outperforms second order statistics (MF III) con-
siderably in representing rock images – 95.77% VS 66.20%. However,
adding second order statistics to first order statistics can further
improve the performance (from 95.77% (MF II)) to 96.24% (MF I).
The goal, however, was not to compare the manual feature combina-
tions and see which one provides the best result, but rather to show
how much variability there is in the results depending on the features
used. As it turns out, even slight changes in feature combinations may
cause large difference in performance, such as MF IV (92.02%) and MF
V (74.18%). So, it clearly indicates that manually selecting appropriate
features is difficult.

In this case, one may resort to automatic feature selection methods
such as filter and wrapper methods (Chandrashekar and Sahin, 2014).
With these feature selection methods, one may know what features
contribute much to representing images. However, there still exist
limitations such as what feature selection method to use and what
features to choose from. In addition, there is no guarantee that well-
selected features for one image dataset A can be applied to another
dataset B. For example, the dataset we used here appears to yield good
results with the first-order statistics, but there may be other datasets
that instead require the second-order statistics. Therefore, one has to
conduct different feature selections for different datasets and to make
sure the pool containing the features is large enough. If not, hand-
crafting new and complicated features such as SIFT (Lowe, 1999)
might be needed.

While selecting manual features is time-consuming, unsupervised
feature learning is more straightforward. The feature learning based on
K-means we implemented in this paper can autonomously learn feature
representation from training data, and get a relatively higher testing
accuracy as high as 96.71%. Although we cannot guarantee this feature
learning method would outperform any manual feature setting other
than first and second order statistics, this flexible and easily imple-
mented method is capable of working well.

Self-taught learning gets test accuracy as high as 90.32% (Table 3).
Features are learned from “unlabelled” data (first half of the whole
dataset) with the same feature learning method and parameter config-
uration as in Table 2. The reason why the accuracy for this approach is
not as good as FL is that we are using fewer data to both learn feature
representation and train the classifier. This is not unexpected, because
the more data available for learning features will result in a more
generalized representation and more data for training will also result in
a better classifier. Another reason is we are applying the feature
representation learned from one subset (“unlabelled”) to another
subset (“labelled”), rather than to the same subset as in FL, where
learning feature and training classifier share the same subset (70% of
the whole dataset). So, just as classifier typically performs better with
the training data than testing data, feature representation performs
better on the same training subset in FL.

6. Conclusion

In the first part of the work, we conducted rock image classification
with various combinations of manual features as well as unsupervised
feature learning. The results of these experiments show that different
combinations of manual features affected classification substantially;
whereas unsupervised feature learning based on K-means performed
pretty well. While there is no guarantee that this feature learning
method can absolutely outperform any manual features configuration,
it is easily implemented and more flexible than the manual features.

We also explored the use of self-taught learning based on unsu-
pervised feature learning for classification of rock images. The
approach proved promising. It can learn the feature representation
directly from unlabelled images of mixed rock types, and then
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Fig. 9. Performance vs. receptive field size, K=60, stride=1.

Table 3
Performance of different methods. MF-manual features, FL-feature learning, STL-self-
taught learning.

Features Test accuracy

MF I 96.24%
MF II 95.77%
MF III 66.20%
MF IV 92.02%
MF V 74.18%

FL 96.71%
STL 90.32%
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repeatedly apply the feature representation to different sub-classes of
rocks. We suggest that the fundamental reason as to why this approach
works is that rock images share some basic visual patterns or elements.
As such, as long as these basic patterns can be learned from the whole
mixed dataset, they can be well utilized for representing the new groups
of images belonging to the sub-class.

This autonomous rock image classification with learned features
can enhance the capability of robots on planetary exploration, and
enlarge the scientific returns. This technique can also be applied to
geological image archive (e.g. autonomous labelling) or image retrieval
etc. Future work will be to improve and test this technique on a larger
and more general rock image dataset.
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