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A B S T R A C T

In this work, an unsupervised isocontour based segmentation method is proposed, that is applied on the
detection of topographic highs with arbitrary basal shapes on Digital Elevation Models (DEMs). A series of
isocontour based segmentation maps is computed for decreasing altitude levels. During this process, the
isocontours are gradually merged providing a topological hierarchy of highs in an inclusion tree structure. A
novel formulation of a topographic high is given taking into account the volume evolution of an isocontour that
starts from the top of a high and grows, as decreasing the altitude level of isocontour, until a high of higher
altitude is reached. This formulation yields to a robust unsupervised algorithm that can be sequentially applied
to automatically recognize and discriminate the topographic highs of a region according to the inclusion tree
without any constraint on basal shapes. The proposed method is applied on real and synthetic DEMs, in order to
automatically detect the exact shape of complex topographic highs and some geomorphological based features
useful for high annotations, yielding high performance results, even if the highs are partially visible in the given
DEM.

1. Introduction

The automatic extraction of geomorphic features (Kweon and
Kanade, 1994) constitutes a rapid growing technology, widely used in
the interpretation of high resolution Digital Elevation Model (DEMs).
In recent years, the techniques of the automatic identification are
sufficiently stabilized, increasing the accuracy and reliability of the
interpreted features. In Podobnikar (2012), peak detection and shape
delineation is solved based on image-processing and spatial-analysis
techniques (e.g., developing inventive variables using an annular
moving window) under high quality DEMs. This work has some
similarities with the proposed method, since it also uses local peaks
as a local maximum in elevation as well as the isocontours (e.g. by the
relative elevation) to determine the peak shape features. Additionally,
isocontours were used by Obu and Podobnikar (2013) on the inverse
problem of high detection called karst depression.

In our previous work (Panagiotakis and Kokinou, 2014), a method
concerning the enhancement and identification of the geological faults
in the sea, has been proposed. According to this method, the Slope and
Aspect images as well as their derivatives are computed and efficiently
combined with a rotation and scale invariant filter and a pixel labelling

method, providing an enhancement of the sea faults and the detection
of points that may belong to them. In Panagiotakis and Kokinou
(2015), we extend the aforementioned method in onshore and offshore
environment by taking into account the topology of the geological faults
and adding constraints on the fault shape, in order to detect the linear
patterns of the faults. Inspired by Panagiotakis and Kokinou (2014,
2015), in the current paper we further continue the analysis of DEMs.

So, in this work, we study the problem of the automatic unsuper-
vised detection of topographic highs using digital elevation models
(DEMs). DEMs constitute a valuable source of information in a variety
of geoscientific disciplines, in order to recognize the surface features.
Topographic maps, aerial-satellite images and airborne-terrestrial laser
scanners are among the most important data sources, used in the last
years in high resolution topographic surveys to further improve the
terrain analysis (Tarolli et al., 2009; Slatton et al., 2007). For example,
high resolution topography is efficiently used in the recognition of
surface lineaments possibly related to faulting (Panagiotakis and
Kokinou, 2015), in the mapping of glacial landforms (Smith et al.,
2006), in the characterization of depositional features (Frankel and
Dolan, 2007), in the evaluation of landslide activity (Booth et al.,
2009), in the characterization of channel bed morphology (Cavalli and
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Marchi, 2008), in geo-archaeology (Davis, 2012) and many other
applications.

The proposed method of topographic high detection is based on the
volume expansion of isocontours, which provides a series of isocontour
based segmentation maps for decreasing altitude levels. It holds that
the more challenging problem is the detection and discrimination of
the topographic highs with complex shape that are close together. An
example of a complex DEM is given in Fig. 1(a) corresponding to an
environmentally protected area located in central Crete (Greece). The
elevation in this region is ranging between 102 m and 803 m with an
average altitude of 352 m. In this figure, the 232 tops, detected in the
region, are plotted using the black plus (+) symbol. The detection of the
topographic highs constitutes a quite difficult task, because.

• several tops are close together and

• some isocontours reveal quite complex shapes.

So, it is not clear how many highs have to be detected even in the
well discriminated central part of Giouchtas Mountain (see left part of
Fig. 1(a)), where the topographic point with the highest altitude is
located. In this work, we provide a formal definition of high proposing a
methodology to compute the topographic highs, by detecting an area
associated with a local maximum (i.e. mountain) (see Section 3).
Fig. 1(b) depicts the result of the proposed method that successfully
detect two highs in Giouchtas Mountain. The two detected highs are
depicted with colors corresponding to the altitude of their tops (803 m
and 736 m).

Image segmentation methods (Panagiotakis et al., 2011) group the
image pixels into non overlapping segments, so if we apply them to

solve the high detection problem we need an extra step to automatically
recognize the highs. Additionally, the application of most image
segmentation methods on highs detection mainly fail due to the fact
that there does not exist any clear boundary to determine highs. The
region growing algorithm, proposed in Panagiotakis et al. (2011), has
some similarities with the proposed method. It propagates initially
labelled regions (contours) towards the space of unlabelled image
pixels, where the initially labelled pixels are defined to be at the zero
level in the topographic map interpretation of a classification criterion.
In this work, isocontours are also propagated starting from local peaks.

In Kweon and Kanade (1994), a methodology is presented for
building high level terrain descriptions, referred to as topographic
maps, by extracting terrain features like “peaks”,“pits”,“ridges”, and
“ravines” from the contour map. Similarly with Kweon and Kanade
(1994), in the present work the topographic features are defined based
on isocontours and a tree-like structure (inclusion tree), that is a
hierarchical representation of the enclosure relationships among the
isocontours. Additionally, the method proposed in Hong and Sohn
(2010) has some similarities to our work. The goal of this work is to

Fig. 1. (a) The DEM of Giouchtas region. The tops are depicted with black plus sign. (b)
The detected highs of the proposed method in the main mountainous region of
Giouchtas. A reference grid has been selecting for indexing.

Fig. 2. The mountain detection results according to (a) (Miliaresis and Argialas, 1999) and (b) (Micheal and Vani, 2015) methods.

Table 1
Symbol table.

Symbols Definitions

I Given DEM
ν u, Two tops (local maxima) of I
r An altitude level of I
c r( )ν Isocontour of top ν and altitude level r

R r( )ν The region enclosed by the isocontour c r( )ν
R r| ( )|ν The area of the region R r( )ν
V r( )ν The volume of region R r( )ν as r decreases

V r˙ ( )ν The volume derivative of region R r( )ν as r decreases

NVD r( )ν The normalized volume derivative

u

cu(r) cu(r')
cv(r')

v cv(r)

r
r'

Vu(r) Vv(r)

Fig. 3. Schematic illustration of two isocontours' evolution.
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detect and segment salient regions in mammograms. A topographic
representation has been developed using isocontours like in our
framework. In a similar way with the present work, the topological
and geometrical structure of the image is analyzed using an inclusion
tree (Kweon and Kanade, 1994; Hong and Sohn, 2010). The detected
isocontours correspond to the boundaries of distinctive regions with
abrupt intensity changes retaining the same topology. The final
detection of breast boundary and the pectoral muscle is done using
anatomical information of the saliency of contours.

2. Material and methods

The automatic segmentation and classification of DEMs into several
classes has been well studied in literature. Iwahashi and Pike (2007)
proposed an iterative procedure that automatically divides a DEM into
categories of surface form based on three local features i.e. the slope
gradient, the local convexity, and the surface texture. The classification
step combines twofold-partitioned maps of the three variables con-
verted to greyscale images, using the mean of each variable as the
dividing threshold. Similarly, in Drăguţ and Blaschke (2006), the
elevation, the profile curvature, the plan curvature and the slope
gradient are computed. Next, the homogenous regions are computed
at several levels through image segmentation. The classification,

defined using flexible fuzzy membership functions, has nine classes:
peaks and toe slopes (defined by the altitudinal position or the degree
of dominance), steep slopes and flat/gentle slopes (defined by slope
gradients), shoulders and negative contacts (defined by profile curva-
tures), head slopes, side slopes and nose slopes (defined by plan
curvatures).

In literature, several works have been proposed to solve the
mountain detection problem from DEM. Miliaresis and Argialas
(1999) developed a methodology to classify the Global Digital
Elevation Model(GTOPO30) into three terrain classes (mountains,
basins and piedmont slopes). Seeds ridge, valley cells and selected
gradient-region growing criteria are taken into account in a region-
growing segmentation algorithm in order to extract the mountains and
the basins. In Dinesh (2006), a mathematical morphological based
algorithm to perform the extraction of mountains from DEM has been
proposed. First, ultimate erosion is used to extract the peaks of the
DEM. Finally, conditional dilation is performed on the extracted peaks
to obtain the mountain regions. Micheal and Vani (2015) proposed an
approach for mountain detection from lunar DEM. It consists of
several steps like denoising, extracting texture information, choosing
an appropriate threshold using the Renyi Entropy method, then the
post-processing (edge detection) to extract the boundary of the
mountain. Bohnenstiehl et al. (2012) presented an approach, called

Fig. 4. (a) A synthetic DEM of three tops. (b) The maximum expanded region R r( )ν min for the three tops of the synthetic DEM of (a). For each top, rmin and the corresponding area are

also plotted. A reference grid has been selecting for indexing the two images. In each detected topographic high the maximum altitude (m) the rmim (m) and the area (m2) are provided.

Fig. 5. (a) R r| ( )|ν , (b) V r˙ ( )ν , (c) NVD r( )ν (d) P r( )ν corresponding to the highest top in the real data of Fig. 1(a).
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MBOA, for identification and characterization of topographic highs
having quasi-elliptical basal shapes designed for the study of volcanic
edifices in sub-aerial and sub-marine environments. Even if it is
designed for the study of volcanic edifices, it can be applied to identify
any enclosed topography feature within a DEM. Initially, MBOA
utilizes the results of a standard closed- contouring approach, and
then adjusts the elevation of the volcanic base by evaluating the shape
of the edifice along a series of topographic profiles. In our experimental
results, the proposed method is compared with MBOA. NETVOLC
(Euillades et al., 2013) is another recent algorithm for automatically
computing the boundary of volcanic edifices. It applies minimum cost
flow (MCF) networks for computing the best possible edifice outline
using a DEM and its first-and second-order derivatives.

Most of the aforementioned methods work well when the topo-
graphic highs are well separated with distinct boundaries, mostly
related to steep slopes. They detect sudden changes on slopes and
curvatures to determine the boundaries of the mountain without
optimizing any global criterion. Fig. 2 presents mountain detection
results according to Miliaresis and Argialas (1999) and Micheal and
Vani (2015) methods. According to the results of Fig. 2, it holds that
both methods well recognize the mountain structures, but they yield
under-segmented results concerning the high detection problem, since
they are not able to discriminate highs that belong on complex
mountain structures and are close together merging them into one
region. In Fig. 2(a) some closed highs are merged into the same
detected group, while in Fig. 2(b) the detected region can be divided
into several highs. The method proposed in Bohnenstiehl et al. (2012)
works under the assumptions that the topographic highs have quasi-
elliptical basal shapes. On the contrary, the proposed method has been
designed to solve this problem without any assumption on the number
and shape of highs. The highs' separation can be also used to enforce
the detection of geological faults (Panagiotakis and Kokinou, 2015)
both in direction and location, related to topographic highs and to
confirm the results of the automatic detection with field measurements,
as shown later in this work in the example concerning the geomor-

phological features of the Giouchtas region. At the same time, the
methods from literature ignore the necessary constraint that a high
boundary should be an isocontour like the proposed method does. The
proposed method is able to detect highs of complex basal shapes even if
they are partially visible in the given DEM.

Additionally, according to our knowledge the current work faces for
the first time the problem of the formal definition of a topographic high
based on volume evolution of isocontours. This formulation yields to a
robust unsupervised algorithm that is sequentially applied to auto-
matically recognize the topographic highs of a region. The highs'
boundaries are given as solutions of a probability optimization problem
based on the volume evolution of an isocontour starting from the top
and gradually growing, as decreasing the altitude level of the isocon-
tour. The proposed framework has been tested and compared with
Bohnenstiehl et al. (2012) on real and synthetic topographic data,
where highs of various orientation, density and size are presented,
yielding high performance results.

The rest of the paper is organized as follows: Sections 3 and 4
describe the problem formulation and the proposed methodology for
the high detection, respectively. The experimental results are presented
and discussed in Section 5. Finally, conclusion is provided in Section 6.

3. Problem formulation

In this section, we set the scene of the various aspects of the
problem that this paper addresses, and concurrently we present the
stepping-stones where our subsequent developments are based on.
Table 1 summarizes the symbols' definitions used in this work. The
input of the proposed method is a DEM I (e.g. see Figs. 1(a), 4(a)).
Hereafter, several notations and definitions are given related to the
problem of topographic high detection:

• Let ν I∈ be a top (local maxima) of a DEM I.

• Let R r( )ν be the region enclosed by the isocontour c r( )ν , with ν c r⊏ ( )ν ,
where ⊏denotes the spatial enclosure relationship, i.e., the point
(top) ν is spatially enclosed by the contour c r( )ν .

• Let V r( )ν be the volume of the 3D surface enclosed by the R r( )ν and
the DEM I.

• r denotes the altitude level of an isocontour, where r r I ν∈ [ , ( )]min .

• rmin is the minimum value of r so that I ν I p( ) ≥ ( ), p R r∀ ∈ ( )ν .
Therefore, the maximum expanded region for the high correspond-

Fig. 6. (a) R r| ( )|ν , (b) V r( )ν , (c) NVD r( )ν and (d) P r( )ν corresponding to the highest top (883.6 m) in the synthetic data of Fig. 4(a).

Topographic
Image

Fig. 7. Scheme of the main steps of the proposed system.
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ing to the top ν is R r( )ν min .

• The topological relationship of isocontours, as r decreases, can be
represented by a tree structure, called the inclusion tree.

Fig. 3 depicts a schematic illustration of two isocontours evolution.
The isocontours c r( )ν and cu(r) and the corresponding volumes V r( )ν
and Vu(r) are depicted in gray color. The altitude level r′ is the rmin of
top ν, and the R r( )ν min is enclosed by the c r( ′)ν . Concerning the top u, it
holds that r = 0min , since I u I ν( ) > ( ). The inclusion tree of this example
has two levels and two nodes, the root (top u) and its leaf (top ν).

3.1. Topographic high properties

A topographic high has the following properties that are used in its
formal definition. As the altitude level r decreases, the area R r| ( )|ν and
its volume V r( )ν , that correspond to c r( )ν (isocontour of the top ν with
altitude level r), increase. Additionally, it holds that when the given
c r( )ν is smoothly expanded as r decreases, the first derivative of volume
with respect to r (volume derivative),

V r
dV r

dr
˙ ( ) =

( )
ν

ν
(1)

linearly increases, due to the fact that the area R r| ( )|ν quadratically
increases. The Normalized Volume Derivative NVD r( )ν by the area

(R r| ( )|ν ) is used to detect the topographic highs, since it is almost stable
when the isocontour c r( )ν is smoothly expanded.

NVD r
V r
R r

( ) =
˙ ( )

| ( )|ν
ν

ν (2)

Rapid and unpredictable changes of NVD r( )ν are used to discrimi-
nate regions that belong to different topographic highs.

3.2. Definition of a topographic high

The problem of topographic high detection, that we tackle in this
research, is defined as follows: The high's region (of optimal r) R r( )ν opt
with R r R r( ) ⊆ ( )ν opt ν min of a top (ν I∈ ) is defined by the cells enclosed by
a suitable isocontour c r( )ν opt so that

r Pr X NVD r r r ν I ν= argmin ( > ( )), ∈ [ ( ), ( )]opt r ν min (3)

Pr X NVD r( > ( ))ν is the probability of the random variable X to be higher
than the normalized volume derivative of top ν and altitude level r. To
simplify the notations, hereafter we use P r( )ν instead of
Pr X NVD r( > ( ))ν .

In Fig. 3, concerning the top u it holds that r r= ′opt , since
NVD r NVD r r r( ′)⪢ ( ), > ′u u . According to this definition, the problem of
high detection is reduced to the problem of selecting the suitable

Fig. 8. (a) The result of the subsampling step and the FS set (white plus). (b) The maximum expanded region R r( )ν min for the six tops of the FS set. The maximum altitude (in m) and the

rmin (m) are also provided for each detected topographic high, shown in different color. (c) The final results of the VOLEI method projected on Giouchtas DEM. The vertical scale
corresponds to the elevation (m) of the study area.

C. Panagiotakis, E. Kokinou Computers & Geosciences 102 (2017) 22–33

26



isocontour, where the probability of the volume derivative value is
minimized and can not be described by the current distribution of
volume velocities (e.g. due to tops merging).

In Fig. 4(a), a DEM of three synthetic topographic highs of almost
ellipsoid shape is shown. The three tops of highs are depicted with plus
symbols, having altitudes 883.6 m, 696.3 m and 647.5 m respectively.
Fig. 4(b) depicts with different colors the maximum expanded regions
R r( )ν min for the three tops of the synthetic DEM of Fig. 4(a). The top's
altitude is also given in parenthesis. The region corresponding to the
highest top can be expanded on the entire image. For each top, rmin

and the corresponding area (A) are also plotted. It holds, that the
maximum expanded area of the third top is higher than the maximum
expanded area of the second top due to their relative positions. The
inclusion tree of this example has two levels and three nodes, the root
(highest top) and two leaves (the two other tops).

Figs. 5 and 6 depict the R r| ( )|ν , V r˙ ( )ν , NVD r( )ν and P r( )ν for the two
tops presenting the highest altitudes of Fig. 1(a) and 4(a), respectively.
In both cases, as the altitude level r decreases the R r| ( )|ν and the V r˙ ( )ν
increase, while the normalized volume derivative NVD r( )ν and the P r( )ν
are almost stable appearing rapid changes on altitude levels that
correspond to regions' merging. In the example corresponding to the
real data (see Fig. 5), rapid changes are present in some altitude levels
due to the high number of tops. Concerning the example of the
synthetic data (see Fig. 6), two distinct rapid changes are indicated
in the graphs of NVD r( )ν and P r( )ν , corresponding to the merging of the
second and third tops' regions, with the highest one.

3.3. Geomorphological features

In this section we define several geomorphological features based
on the proposed high detection method that can be used to annotate
the detected high. The following global geomorphological features are
computed based on the isocontour c r( )ν opt of the detected high of top ν.
Isocontours have been also used in Kweon and Kanade (1994) to define
high level local terrain descriptions.

• Orientation: It is given by the angle between the horizontal axis
and the major axis of the ellipse that has the same second order
moments (Panagiotakis et al., 2008) as the detected high region. The
orientation of zero or 180° angle is parallel on horizontal plane.
Usually, it holds that the main orientations of nearby highs are

similar that checks the quality of the automatic shape detection.

• Eccentricity: It is defined by the ratio of the distance between the
foci of the ellipse that has the same second order moments as the
detected high region and its major axis length. Its' value is between
zero (for circle) and one (for line).

• Average Slope: It is given by the basis angle of the cone that has
the same relative elevation of the high and circular basis area equal
to R r| ( )|ν opt . The relative elevation is given by the difference between
the elevation of the top I ν( ) and the elevation of the isocontour
c r( )ν opt , ropt. This metric is not affected by local shape variations. The
average slope is measured in the range of 0–90°.

• Shape Complexity: It is given by the ratio of the high area divided
by the area of the cone that has the same relative elevation of the
high and circular basis area equal to R r| ( )|ν opt . In both areas, we don't
take into account the bases of the 3D shapes. This metric is
correlated with the variance of local slope and it increases as shape
complexity (local surfaces variations) increases.

4. Methodology

The problem of high detection, that we tackle in this research, is
described hereafter. The input of the proposed method is a DEM I.
Taking into account the hierarchy of the tops in the inclusion tree, the
proposed method, called VOLEI, is able to automatically detect the
highs based on the VOlume EVolution of an Isocontour (VOLEI). The
pseudo-code of the proposed method (VOLEI) is depicted in Algorithm
1. The proposed method can be divided into the following steps that are
also depicted in Fig. 7:

• Initially, the local maxima (tops) of the DEM are computed. In order
to ignore highs corresponding to very low areas, the parameterMinA
is used to define the minimum possible expanded area of a high.
Therefore, for each detected high holds R r MinA| ( )| ≥ν opt . The para-
meter MinA is also used to sample the tops, that are very close
together, in order to reduce the computational cost without affecting
the method's performance. A top is selected if and only if it is the
highest top in its neighbourhood, that is defined by the block of size

MinA MinA× . Let ST be the set of selected tops (see lines 1–7 of
Algorithm 1). Fig. 8(a) depicts the result of subsampling. In this
example, we get only 92 tops (plus sign) from the 232 tops of
Fig. 1(a) using MinA=100 pixels (cells).

Fig. 9. The global map of locations of particular study areas.
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• Next, the sequence of isocontours for different decreasing levels r
are computed and the evolution of the area as well as the normalized
volume derivative (see Eq. (2)) are computed for each top of ST. In
this work, we have used 512 different equidistant levels r between
the highest and the lowest altitudes of the entire image. The tops
with R r MinA| ( )| <ν min are also removed from ST set, yielding the final
tops set (FT), lines 8–14 of Algorithm 1. Fig. 8(a) depicts the result
of this step, where only six tops (white plus sign) from 92 tops are
finally included in the FT set. Fig. 8(b) illustrates the maximum
expanded region R r( )ν min for the six tops of the FT set. The R r( )ν min of
the highest top (803 m) corresponds to the entire image. The
altitude of tops is also provided in parenthesis.

• Finally, for each top ν of the FT set, according to the hierarchy of the
inclusion tree (starting from the highest top - see line 15 of
Algorithm 1)) we apply the equations presented in Section 3 to
compute P r( )ν . The high corresponding to a top ν is detected, only if

P rmin ( ) < 5%r ν (defined by trial and error), otherwise it is ignored
(see lines 17–26 of Algorithm 1). Additionally, in order to get non
overlapping segments (highs), when a high R r( )ν opt is detected, we
remove from the FT set the tops u that are enclosed by the
isocontour c r( )ν opt (see lines 19–23 of Algorithm 1). Due to the
hierarchy of the inclusion tree, it holds that the altitude of those tops
u is lower than the altitude of ν. Fig. 8(c) depicts the final result of
the VOLEI method projected on Giouchtas DEM, where six highs
have been detected. The isocontours (boundaries) of the detected
highs are plotted with black curves.

Algorithm 1. The pseudocode of the VOLEI algorithm.

input: I MinA, .
output: FT and c r ν FT( ), ∈ν opt

1 ST = ∅
2 foreach p I∈ do
3 x I y y p= argmax { ( ), 0 < | − | < }y

MinA
1 2

4 if I p I x( ) ≥ ( ) and ν zmin | − | >ν ST
MinA

∈ 1 2 then

5 ST ST p= ∪ { }
6 end
7 end
8 FT = ∅
9 foreach v ST∈ do
10 R P c r getIsoCurves I ν[ , , ( )] = ( , )ν ν ν opt

11 if R r MinA| ( )| ≥ν min then
12 FT FT ν= ∪ { }
13 end
14 end
15 FT sortInDescentedOrder FT I= ( , )
16 foreach v FT∈ do
17 if P rmin ( ) < 5%r ν then
18 FT FT ν= ∪ { }
19 foreach u FT∈ do
20 if u c r⊏ ( )ν opt then

21 FT FT u= − { }
22 end
23 end
24 else
25 FT FT ν= − { }
26 end
27 end

Results and discussion

The VOLEI method has been evaluated using elevation and bathy-
metric metadata. Bathymetry has been obtained from the European

Marine Observatory and Data Network (EMODNet) Hydrography
portal.1 Elevation data are from the topographic maps of a scale
1:50,000 and 1:5,000, respectively, published by the Hellenic Army
Geographical Service (H.A.G.S).

In this work, we used real data (Fig. 9) under different spatial
resolutions that correspond to three selected regions from Crete
(Greece) presenting different morphological characteristics, a bathy-
metric image that corresponds to Gavdos region (offshore South Crete)
and finally we applied the proposed method on the DEM of Crete
island. Fig. 9 depicts the locations of the particular study areas. So, the
four locations that are used in this work include:

• Giouchtas region with a spatial resolution of 30 m

• Heraklion region with a spatial resolution of 34 m

• Psiloritis Mountain with a spatial resolution of 50 m

• Gavdos region with a spatial resolution of 300 m

• Crete island with a spatial resolution of 50 m

5.1. Experimental results and comparisons

In this section, the experimental results of the proposed framework
and comparisons with MBOA method (Bohnenstiehl et al., 2012) are
presented. Fig. 10 depicts the results of MBOA (first column) and the
VOLEI method (second column) under different real elevation and
bathymetric images. The DEMs correspond to selected regions from
Crete (Greece), showing both rough and smooth topography, i.e.
Giouchtas region (Central Crete Figs. 10(a) and (b)), Heraklion region
(Figs. 10(c) and (d)) and Psiloritis Mountain (Fig. 10(e) and (f)) with
maximum altitudes 803 m, 298 m and 2440 m, respectively. In
Figs. 10(g) and (h), the bathymetric image corresponds to Gavdos
region (offshore South Crete) with maximum depth 3628 m. In the first
column of Fig. 10, the initial isocontours of the detected highs are
plotted with white curves and the final detections according to the
MBOA method are plotted with black curves. In the second column of
Fig. 10, the isocontours (boundaries) of the detected highs, according
to the VOLEI method, are plotted with black curves and the altitudes of
the tops (black plus sign) are also given in parenthesis. In Fig. 10(b),
(d), (f) and (h) six, ten, eleven and eight highs have been detected,
respectively. Under any case, the proposed method successfully detects
the complex shape of highs even in case they are close together (see
Fig. 10(b)) or partially visible (see Fig. 10(d)). On the contrary MBOA
method fails to discriminate some complex shape of highs (see
Fig. 10(c)) and highs that are close together (see Fig. 10(a)).

Fig. 11 depicts the results of the proposed method under Crete
DEM (1:50.000). We applied the proposed algorithm on the DEM of
the entire island of Crete in order to check its efficiency in larger areas
and smaller scale topographic data. The results of the proposed
methodology (Fig. 11) are quite satisfactory. In this example, 303
highs in Crete are detected. The topographic highs of the three major
mountains (i.e the White Mountains or Lefka Ori (2452 m), the Idi
Range (2456 m) and the Dikti Mountains (2148 m)) are automatically
detected with great accuracy in location and shape. Additionally, highs,
belonging to the rest mainland having lower elevations are also
successfully detected.

Additionally, for the purpose of this research a synthetic dataset has
been created, consisting of 180 DEMs (300×300 grid cells). Each DEM
Ik j, of the synthetic dataset is given by the sum of k k, ∈ {2, …, 10} 2D
Gaussian functions Gk j, , of random orientation θ, altitude
(H ∈ [500, 1000]), center (x y,0 0) and spreads (σ σ, ∈ [5%, 10%]x y of
image diagonal), as defined in Eq. (4). For each number k, we have
created 20 DEMs ( j ∈ {1, …, 20}). So, the synthetic dataset consists of
9 × 20 = 180 DEMs.

1 http://www.emodnet-hydrography.eu
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Fig. 10. Results of the MBOA method (first column) and the VOLEI method (second column) under different real DEMs. Vertical scale in (a), (b), (c) corresponds to the elevation (m)
while in (d) to the sea depth (m). In the first column, the maximum altitude (m) of the detected topographic highs is given in parenthesis. WGS84 reference system has been selected for
the DEMs of the MBOA method while a reference grid has been selected for indexing the DEMs of the VOLEI method.
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Fig. 11. Result of the VOLEI method under the Crete DEM. The vertical scale corresponds to the elevation (m). WGS84 reference system has been selected for Crete's DEM.

Fig. 12. First row: DEMs from synthetic dataset for different values of k. Second row: The detected highs according to MBOA method. Third row: The detected highs according to the
VOLEI method.

Fig. 13. Results of the VOLEI method under different levels of SNR on real (top) and synthetic (bottom) DEMs. A reference grid has been selecting for indexing. (a) 20 db (b) 10 db (c)
20 db (d) 10 db.
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∑I x y G x y x y( , ) = ( , ), , ∈ {1, …, 300}k j
i

k

k j,
=1

,
(4)

The definition of a 2D Gaussian function G x y( , ) is given in the
Appendix section. In order to get well discriminated highs, the
minimum distance between two tops is 20% of the image diagonal.
The number of the Gaussian functions k determines the number of
almost elliptical shape highs on the DEM.

Fig. 12 depicts nine DEMs from the synthetic dataset for different
values of k (first row), the corresponding high detections of MBOA
(Bohnenstiehl et al., 2012) (second row) and the VOLEI method (third
row). The isocontours (boundaries) of the detected highs are plotted
with black curves (third row). It holds that under any case VOLEI
method correctly detects the highs even if their tops are close together
or are partly visible, while MBOA usually merges highs that are close
together and fail to detect highs that are partly visible. More specifi-
cally, MBOA method provides average precision of 100% and recall of
64.6% in the detection of the highs' tops in the synthetic dataset. The
VOLEI method, that clearly outperforms the MBOA method, yields
100% precision and 97.6% recall, respectively. Additionally, we have

computed the average recall in detection of the highs' tops for the nine
groups of different values of tops k (each group contains 20 DEMs).
MBOA method yields lowest average recall 51.1% observed for k=9,
while for each k ≤ 5 it gives more than 61% average recall. The VOLEI
method yields lowest average recall 93.5% observed for k=10, while for
each k ≤ 5 we get more than 99% average recall.

5.2. Robustness to noise effects

In order to evaluate the robustness of the proposed framework to
noise effects, Gaussian white noise of 10 and 20 dB Signal to Noise
Ratio (SNR) was added on the real DEM of Fig. 1(a) and on the
synthetic DEM of Fig. 12. Especially, the case of 10 db was selected, to
show the good performance of the proposed scheme on very complex
DEMs. Fig. 13 depicts the isocontours (boundaries) of the detected
highs with black curves. The proposed method yields high performance
results on both real and synthetic data, without any false alarm,
although it has not any noise removal step. In the case of 10 db, some
very close highs have been merged, but the accuracy of the boundary
detection remains high enough even if the resulting isocontours are

Fig. 14. High detection results of VOLEI method on Giouchtas region under different values of the parameter MinA. (a) MinA=100 (b) MinA=200 (c) MinA=300 (d) MinA=400.

Fig. 15. The main orientation (in degrees), eccentricity, average slope (in degrees) and shape complexity of the detected highs of Giouchtas region. The orientation of zero or 180° angle
is parallel on horizontal plane. A reference grid has been selecting for indexing.
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noisy.

5.3. Sensitivity analysis

This section presents the sensitivity analysis of the results concern-
ing the user defined parameter MinA that determines the minimum
possible expanded area of a high. Fig. 14 depicts the detected highs in
Giouchtas region based on VOLEI method under different values of the
parameter MinA ∈ {100, 200, 300, 400}. The isocontours of the detected
highs are plotted with black curves. It holds that the results of the
VOLEI method are not really affected by this parameter that is mainly
used to ignore highs corresponding to very low areas. It holds that as
the MinA increases, the number of detected highs decreases. For
example, when MinA is set to 100, then six high are detected (see
Fig. 14(a)), while when MinA is set to 400, only three highs are
detected (see Fig. 14(d)).

5.4. High annotations based on geomorphological features

Digital Terrain Analysis (DTA) is the process of describing the
terrain's quantitative attributes (Wilson and Bishop, 2013; Hengl et al.,
2003) also referred as geomorphological analysis, landform parame-
trization and land surface analysis. VOLEI method provides four
terrain parameters (see Section 3.3 and Fig. 15), i.e. orientation,
eccentricity, average slope and shape complexity in order to quantify
the morphology of a terrain. The previously mentioned terrain para-
meters have been selected because they are considered of great
importance in earth sciences (geology, geomorphology, tectonics,
hydrology, oceanography, ecology and others). Among others, these
terrain parameters are used to model (Wilson and Bishop, 2013) the
erosional and depositional processes, to evaluate slope hazards and
wildfire propagation, to improve vegetation mapping, to predict water
flow and accumulation and to study the role of surface processes on
mountain evolution. For example, the shape complexity is used to
describe the geometry of polygons in the sense of how oval is a detected
geomorphological structure (peaks, ridges, pits, valleys). Fig. 15 depicts
the main orientation (in degrees), eccentricity, average slope (in
degrees) and shape complexity of the detected highs of the Giouchtas
region (Kokinou et al., 2015). Prevailing orientations of the topo-
graphic highs in the study area are 55–65° (northeast-southwest) and
80–100° (almost north-south), while the eccentricity, the average slope
and the shape complexity generally reveal large values probably due to
the fact that this area is tectonically strongly deformed (Kokinou et al.,
2015). Specifically in the work of Kokinou et al. (2015) the Giouchtas
region was studied based on morphotectonic analysis in combination

with detailed geological and tectonic survey. Field measurements of
outcropping geological faults were used to determine the fault geome-
try and to reconstruct the structural development of this area.
Furthermore, the geomorphic indices, used in the pre-mentioned work,
i.e. the mountain front sinuosity index (Smf) and the valley floor/width
ratio index (Vf) assigned this area to tectonic class I, corresponding to
higher tectonic activity especially towards the north and northeast that
is in agreement with the results of the geomorphological parameters
revealed by the VOLEI method.

6. Conclusions

In this paper, we have proposed a framework for automatic and
unsupervised detection of topographic highs. The ambiguity of the
highs' boundaries is efficiently solved by suitable isocontours that are
derived as solutions of a probability based optimization problem, based
on the volume evolution of an isocontour starting from the top and
gradually growing, as decreasing the altitude level of the isocontour.
The order of the topographic high detection is given by the inclusion
tree that represents the enclosure relationships among the isocontours.

The proposed approach has been evaluated on real and synthetic
DEMs corresponding to the onshore (land) and offshore (sea) environ-
ment. The experimental results demonstrate the high performance of
the VOLEI method on several real and synthetic topographic data and
its outerperformance against MBOA method, especially under highs of
complex basal shapes or partially visible in the given DEM even if they
are close. This work is also considered of great importance because a
formal definition of highs based on volume evolution of isocontours is
proposed for the first time. The results of the proposed method can be
applied in a wide range of the geoscientific disciplines such as remote
sensing, topography, geology, geoarchaeology, oceanography and
others. As future work we plan to apply the present methodology to
enforce the detection of extensional geological faults both in direction
and location, related to topographic highs and to confirm the results of
the automatic detection with field measurements.
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Appendix

A 2D Gaussian function G x y( , ) of orientation θ, amplitude H, center (x y,0 0) and spreads σ σ,x y is given by Eq. (8).

a θ
σ

θ
σ

= cos ( )
2

+ sin ( )
2x y

2

2

2

2
(5)

b θ
σ
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σ
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4
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σ
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2
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