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A B S T R A C T

Obtaining accurate information on rock mass discontinuities for deformation analysis and the evaluation of rock
mass stability is important. Obtaining measurements for high and steep zones with the traditional compass
method is difficult. Photogrammetry, three-dimensional (3D) laser scanning and other remote sensing methods
have gradually become mainstream methods. In this study, a method that is based on a 3D point cloud is
proposed to semi-automatically extract rock mass structural plane information. The original data are pre-
treated prior to segmentation by removing outlier points. The next step is to segment the point cloud into
different point subsets. Various parameters, such as the normal, dip/direction and dip, can be calculated for
each point subset after obtaining the equation of the best fit plane for the relevant point subset. A cluster
analysis (a point subset that satisfies some conditions and thus forms a cluster) is performed based on the
normal vectors by introducing the firefly algorithm (FA) and the fuzzy c-means (FCM) algorithm. Finally,
clusters that belong to the same discontinuity sets are merged and coloured for visualization purposes. A
prototype system is developed based on this method to extract the points of the rock discontinuity from a 3D
point cloud. A comparison with existing software shows that this method is feasible. This method can provide a
reference for rock mechanics, 3D geological modelling and other related fields.

1. Introduction

A rock mass usually contains "planes of weakness". These planes of
weakness occur at all scales and have a statistical distribution of
spacing and orientation (Goodman, 1989). In rock engineering, these
planes of weakness are referred to as "discontinuities" and include
bedding planes, joints, fractures, and schistosity (Slob, 2010). The
geomechanical behaviour (such as deformation) of a rock mass is
determined by the overall fabric of discontinuities and intact rock.
Thus, obtaining information on these discontinuities is important to
understand the distribution of discontinuities within the rock mass and
to analyse the deformation and instability of the rock mass (Gigli and
Casagli, 2011; Slob, 2010). This information has been widely used in
rock mechanics, mining engineering and slope engineering (Hoek and
Bray, 1981; Hudson and Harrison, 2000). However, the traditional
compass measurement method is a single point of contact measure-
ment, which means that the information from the discontinuity is
directly measured using tape and a compass for every joint of the
discontinuity. When the position is easily measured and the number of
discontinuities is small, this method is highly accurate and inexpensive.

However, if the study area is vast, high and steep, this approach
requires substantial manpower, materials, financial resources and
time; this method can also be highly risky (Barton et al., 1974;
Franklin et al., 1998; Slob et al., 2005). According to previous
measurement experience, measuring 350 joint directions, processing
the data, and charting requires a total of 3 individuals working for four
days (Slob et al., 2005), which does not meet the requirements of
modern geotechnical engineering projects with heavy workloads and
tight time constraints. Therefore, a new method must be created to
quickly extract rock mass discontinuities.

Remote sensing techniques can be used to acquire three-dimen-
sional (3D) information from the terrain with high accuracy and high
spatial resolution (Jaboyedoff et al., 2012) without direct contact. Light
Detection and Ranging (LiDAR) and digital photogrammetry are two
widely accepted techniques for discontinuity analysis (Riquelme et al.,
2015). Using such techniques, one can obtain the point cloud of a rock
mass with 3D information (3D coordinates) using non-contact measur-
ing methods much more easily than with the traditional method. The
goal of this study is to semi-automatically extract points of different
joints based on a 3D point cloud of the study area. First, the point cloud
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is segmented into subsets. Then, the geometric parameters (dip
direction and dip angle, i.e., the orientation of a discontinuity) are
calculated through a series of calculations, such as LS (least-square),
and a principal component analysis (PCA) of the points of each subset.
Finally, the optimal class number can be automatically determined
using the cluster validity and stereographic projection of the orienta-
tion. Clusters of the same class are merged and coloured after being
classified with the FA (firefly algorithm) and FCM (fuzzy c-means, often
also referred to as fuzzy k-means) algorithms.

The remainder of this study is organized as follows. Section 2
introduces related work in this area. In Section 3, the data and methods
that are used in this study are introduced. The experimental results and
analysis are discussed in Sections 4, 5 and 6. Section 7 presents the
discussion and conclusions.

2. Related work

In recent decades, many scholars have studied non-contact mea-
suring methods, such as close-range photogrammetry, laser scanning
measurements, and the fusion of these two methods (Abellán et al.,
2014; Chen et al., 2016; Gigli and Casagli, 2011; Jaboyedoff et al.,
2012; Lato and Vöge, 2012; Oppikofer et al., 2009; Riquelme et al.,
2014, 2015, 2016; Slob et al., 2007; Sturzenegger and Stead, 2009).
The principles of these two methods are different. Point clouds can be
directly obtained from laser scanning measurements. A series of photos
could be acquired through close-range photogrammetry, and these
photos could be converted into point clouds. Based on these point
clouds, three types of procedures and software could extract the
discontinuities, including the following: (a) commercial software
packages, such as Split-FX (Slob et al., 2005), Coltop-3D (Jaboyedoff
et al., 2007), JMX Analyst (available on http://www.3gsm.at/static/
eng/home_eng.html), Sirovision (available on http://www.sirovision.
com), PolyWorks (available on http://www.innovmetric.com),
VirtuoZo (available on http://www.supresoft.com.cn/chinese/
Download/Documentation/VirtuoZo/), ShapeMetrix 3D (available on
http://www.3gsm.at/static/eng/home_eng.html) and LensPhoto
(available on http://www.lensoft.com.cn/); (b) procedures for
personal research, such as DiAna (Discontinuity Analysis) (Gigli and
Casagli, 2011) and PlaneDetect (Vöge et al., 2013); and (c) open-source
software, such as DSE (Discontinuity Set Extractor) (Riquelme et al.,
2014).

We can manually or semi-automatically extract information on
discontinuities according to 3D geological models that are based on
point clouds or that directly handle 3D point cloud data (Chen et al.,
2016; García-Sellés et al., 2011; Gigli and Casagli, 2011; Lato and
Vöge, 2012; Lato et al., 2009; Olariu et al., 2008; Slob et al., 2005;
Sturzenegger and Stead, 2009; Van Knapen and Slob, 2009; Vöge et al.,
2013). The manual method involves manually selecting the point of the
discontinuity in the 3D display scene. This approach has been applied
in both relevant commercial software (such as PolyWorks, VirtuoZo
and ShapeMetrix 3D) and the literature (Maerz et al., 2013; Yang and
Zhao, 2015). More knowledgeable and experienced operators could
clearly obtain more accurate information through this manual method.
The other method involves segmenting the point cloud to obtain small
rectangular patches, which are manually clustered into different
discontinuities (such as DiAna). Automatic/semi-automatic methods
are divided into two categories. The first category is based on the
principle of photogrammetry and a pattern recognition program and
usually involves constructing a 3D surface model of discontinuities
(such as PlaneDetect). This method has been extensively studied and
has a high degree of automation. However, complex and irregular cases
(such as cases that include folding or deep concavity) require more
accurate and complex 3D geological modelling technology, which is
often tedious, and the accuracy of the model thus cannot be guaranteed
(Frank et al., 2007; Gigli and Casagli, 2011; Natali et al., 2013).
Another category is the direct classification of point clouds (Riquelme

et al., 2014), which can avoid the process of model reconstruction and
directly obtain discontinuities from the original point cloud. This
method has high efficiency and high accuracy when the number of
points is not very large. When hundreds of thousands or millions of
points are present, however, the calculation and classification of each
point will take a long time (Slob et al., 2005).

In substance, the extraction of discontinuity sets based on a 3D
point cloud is a point cloud classification problem, namely, to
distinguish points that belong to different discontinuities. The classical
classification method, which is known as the FCM algorithm, is simple
and relatively rapid (Hammah and Curran, 1998). The classification
results depend on the number of groups and the initial clustering
centres, which are selected by the user, so this method is highly
subjective, and the results may fall into local optima. The genetic
algorithm (Cai et al., 2005), niche algorithm (Lu et al., 2007), particle
swarm algorithm (Song et al., 2012) and other bionic algorithms have
been introduced to overcome the random selection uncertainty of the
initial clustering centres for the FCM algorithm, although the complex-
ity of the encoding and decoding limits the efficiency of these
algorithms. The FA (Yang, 2008) simulates the swarm behaviour of
fireflies. The stochastic optimization algorithm has been widely used in
many fields, such as multi-objective and industrial optimization
problems, scheduling problems, and image processing. The FA has
global optimization and high convergence speed and thus can be
applied to determine the initial cluster centres for discontinuity
extraction. Some scholars have attempted clustering analysis based
on the FA for the dominative attitudes of rock mass discontinuities that
are measured with compasses and tape (Song et al., 2015), and the
results were acceptable. However, the FA has not yet been applied to
the extraction of rock mass discontinuities based on 3D points. The FA
is used to find the best initial cluster centres, and then the FCM
algorithm is used to classify discontinuity clusters. Clusters that belong
to the same class (the same discontinuity set) are merged.

3. Methodology

In this study, a method that combines the FA and FCM algorithms
and is based on point cloud classification is proposed to semi-
automatically extract the joint points from extensive 3D point cloud
data. The optimal number (number of discontinuity sets) is determined
by the clustering parameters. The extraction process of rock mass
discontinuity sets is designed as follows: (Fig. 1).

Fig. 1. Flowchart of the methodology.
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1. Original data pre-processing.
2. Data partitioning: the imported data are segmented into point

subsets according to the octree method or a fixed size cube.
3. Factor calculation: the orientations of the best fit plane of the subsets

are computed by the LS method or PCA. A stereographic projection
is applied during the analysis of the orientation data using Dips
(available on https://www.rocscience.com/rocscience/products/
dips/) to obtain the range of the number of discontinuity sets.

4. Cluster analysis: the FA is used to obtain the initial cluster centres,
and the FCM algorithm is used to calculate the best classification
result.

5. Merging and displaying of the results: clusters that belong to the
same discontinuity are merged and displayed in the same colour in
the 3D frame.

3.1. Description of the datasets

Three cases were used in this study: three field point clouds with
different numbers of points and different numbers of discontinuity
sets. Case study 1 was intended to provide a comparison between this
method and the DSE software. The data from case study 2 were used
for the parameter sensitivity analysis. The data from case study 3 were
used to test the efficiency of the proposed method.

(1) Case study 1. The data from case study 1 (Fig. 2), which were
collected in Padua, Italy, were provided by Siefko Slob and collected by
Alessia Viero and Antonio Galgaro from the Department of
Geosciences, University of Padova, Italy. These data contain natural
fracture surfaces and vegetation points. A total of 148,298 points were
collected. The size of the entire study area was 36.06 m by 47.87 m by
19.02 m. The data were stored in the XYZ format, with each line storing
the x, y, and z coordinates and the RGB value of a point.

(2) Case study 2. The laser scanning data from case study 2 were
obtained from https://www.researchgate.net/publication/289523409_
raw_point_cloud_data_-_ascii_x_y_z_intensity_-_metadata (Slob's
personal website at Research Gate). Photos from case study 2 are
shown in Fig. 3. A portion of the slope (the area that was selected by the
black rectangle; an enlarged display is shown on the right side) was
used in this analysis. The photos were taken near the village of Torroja,
Spain, along road number TP 7403. A total of 77,302 points were
collected, and the resolution was approximately 6 mm by 6 mm. The
data were scanned from a distance of approximately 15 m, and the
entire study area was 1.38 m by 0.64 m by 1.11 m. The storage format
was the same as in case study 1.

(3) Case study 3. The laser scanning data from case study 3 were
obtained from http://geol.queensu.ca/faculty/harrap/RockBench/
dataDownloads/index.html. A photo from case study 3 is shown in
Fig. 4. The photos were taken near Ontario, Canada, along road
number 15. The data were obtained using the Leica HDS6000 laser
scanning equipment, and the point spacing was less than 1 cm. A total
of 2,087,187 points were collected. The data were scanned from a
distance of approximately 15 m, and the entire study area was 13.28 m
by 4.21 m by 3.71 m. The storage format was the PLY format, which
contains colour information on the points and their coordinates.

3.2. Data partitioning

The density of a 3D point cloud enables us to consider point subsets
that meet the coplanarity conditions as a whole, which can improve the
efficiency of point cloud processing. The advantage of point cloud
segmentation is that the original point cloud can be directly analysed
without surface reconstruction (Fig. 5).

3.2.1. Data pre-processing
The noise points in the cube both influence the orientation of the

fitting plane and may lead to judgement errors regarding whether a
cube is available. Therefore, data pre-processing was performed before
the data partitioning to remove outlier points, such as points of
vegetation, dust and insects. These points reduced the accuracy of
the point extraction when determining the discontinuity and increased
the execution time. Thus, these noise points had to be removed before
the discontinuity extraction. These isolated outliers could be automa-
tically removed with software (CloudCompare and Geomagic).
However, the number of these points was relatively small, and the
characteristics of these points were unclear (Lato et al., 2010). Thus,
these noise points could not be automatically removed with a single key
in the software, and some manual operations were required during
data pre-processing.

3.2.2. Fixed cube segmentation
If the original point cloud is uniformly distributed, the 3D point

cloud can be divided into equally sized cubes to avoid great differences
in the number of points in each subset. Data partitioning is actually the
gridding of a point cloud. A cube of fixed size (Size0) was used to
segment the point cloud (Fig. 7b). The minimum bounding box of the
point cloud, which had three lengths x0, y0, and z0 in the x, y, and z
directions, respectively, was used as the fundamental box. The funda-
mental box was then divided into N0 cubes
(N N N N N N N= * * , = , = , =x y z x

x
Size y

y
Size z

z
Size0 0 0 0

0 0 0 ). Cubes that contained
fewer than 4 points or had no points were considered non-conformers
and were removed. After that, the normal vector of the points in every
cube were calculated.

The cube size was decided by the density of the point cloud and the
roughness of the rock mass. Point clouds that were obtained by
different laser scanners with different minimum angle steps or different
angles of incidence for the laser beam (Lato et al., 2010) had different
densities. Considering the difference in the roughness of the rock mass
in different study areas, the cube size had to be manually set by the
user. In accordance with the conclusion of the nearest neighbour points
in the literature (Riquelme et al., 2014), the average number of points
in the cube ranged between 15 and 30, and the cube size could be set
between 4ρ and ρ7 when the point spacing ρ(the unit is millimetres)
was known. If the minimum scale of the discontinuity (the smaller of
the length and width of the minimum discontinuity) was S, the cube
size was between S1/3 and S. Therefore, the user could obtain the best
cube size range according to this feedback.

3.2.3. Octree partitioning
Segmenting a point cloud with a fixed cube is simple and

convenient, but the size of the cube must be set in advance. The octree
approach was used to segment the point cloud in this work to improve
the segmentation and management of points.

The minimum bounding box of a point cloud was considered the
“root node” of the octree, which was then segmented into 8 equally
sized sub-cubes. Sub-nodes that met the constraint conditions were not
split further. Otherwise, the corresponding sub-cubes continued to be
divided into 8 equally sized sub-cubes until the entire space cube met
the constraint conditions. Fig. 6 shows the octree partitioning princi-
ple.

Two parameters were set during this step: the minimum number
(nmin) and maximum number (nmax) of the points in each cube. Then,Fig. 2. Raw data for case study 1.
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the point cloud was divided by the octree principle; this division should
satisfy that the number of points in one cube should be larger than
nmin and less than nmax. Meanwhile, the coplanar test was conducted
for the points in each cube; the average distance of all these points to
the fitting plane should be less than a coplanarity threshold.

3.3. Calculation of normal vectors of point clusters

The LS can be used to calculate the fitting plane equation of point
subsets (Feng et al., 2001). The LS method is feasible when the number
of points is small, but this approach is slow and may not meet the
requirements when the number of points is large, potentially reaching
millions of points. Therefore, we introduced the PCA method to
calculate normal vectors of the point subsets for a large number of
point clouds.

PCA is based on dimensional reduction, namely, transforming
multiple indicators into a small number of the most important
indicators. Therefore, this method is very efficient and suitable for
the calculation of a large amount of point cloud data (Jolliffe, 2002).

Ax By Cz D+ + + = 0 (1)

The normal vector of the fitting plane (A, B, C) can be obtained
from the equation of the fitting plane (formula 1) of points within a
cube. The normal vector is normalized to the unit normal vector
n l m n⎯→( , , ). Then, the orientation (dip/direction (α) and dip (β)) of the
subset can be calculated according to formula (2) and formula (3):

⎛
⎝⎜

⎞
⎠⎟α tan m

l
Q= +−1

(2)

where if l > 0 and m > 0, Q=0°; if l > 0 and m < 0, Q=360°; otherwise,
Q=180°.

⎛
⎝⎜⎜

⎞
⎠⎟⎟β tan n

l m
=

+
−1

2 2 (3)

After the orientation data were obtained, the pole density contour
map (Fig. 7c) was obtained using the stereographic projection software
Dips. The number or number range of discontinuity sets was also
obtained. The projected pole was the directional data from each fitting
plane of points within a cube, namely, each cluster.

Fig. 3. Photos for case study 2 (Slob, 2010).

Fig. 4. Photo for case study 3 (Lato et al., 2012).

Fig. 5. Fitting plane (blue grid) of points within a cube (red points). The black arrow
(N A B C
⎯→

( , , )) is the normal direction of the plane. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Octree principle. (a) Structure of the octree. (b) Space partition based on the octree.
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3.4. Cluster analysis of directional data

Different discontinuities have different directions, so the cluster
analysis method is based on the normal vector. A pole in a stereo-
graphic projection refers to the dip direction and dip angle (also called
the orientation) of a cluster of points in the 3D space within a cube.
Here, we clustered these poles mathematically while actually clustering
these clusters of points. The classical clustering algorithm FCM is a
local optimization algorithm, and the initial centres and number of
discontinuity sets are specified by the user, which results in a lack of
objectivity. If the initial centres are not reasonable, a satisfactory result
cannot be obtained. The FA has global convergence, and the conver-
gence speed is fast (Wong, 2012). Therefore, the FA was combined with
the FCM algorithm in this study to obtain the global optimum centres
and the best clustering results. We obtained a set of optimal initial
cluster centres by FA; then, the directional data were classified
according to the FCM algorithm. The number or number range of
discontinuity sets was obtained according to a stereographic projection
of the orientation data. If a number range was obtained, the cluster
validity function was then introduced. Cluster validity parameters of

different classification numbers were compared to find the optimal
number of discontinuity sets.

3.4.1. Fuzzy c-means algorithms(FCM)
Therefore, the FCM algorithm is considered the optimal algorithm

for the cluster analysis of directional data from rock mass disconti-
nuities (Hammah and Curran, 1998). The dataset is divided into a
certain number of classes according to the membership degree of each
group. The membership degree ranges from zero to one; the greater the
probability that the data belong to a collection, the closer the degree of
membership of this collection to a value of 1 (Slob, 2010).

The dataset was X=(X X X, ,…, N1 2 ), where N is the number of
directional data points and the unit normal vectorX l m n= ( , , )i i i i . The
purpose of clustering is to divide the directional data into C sets with C
cluster centres V=(V V V, ,…, c1 2 ), V l m n= ( , , )i i i i , 1≤i≤C. The following
objective function (Jm) is minimized (iteratively) during this process.

∑ ∑J u d X V= ( , )m
j

N

i

C

ij j i
=1 =1

2 2

(4)

where d X V( , )j i
2 is the distance between pole Xj and cluster centre Vi .

Because the clusters were classified according to the normal vector, the
sine value of two normal vectors was used to measure the proximity of
the two clusters, which we called the "distance". Thus, d X V( , )j i

2 could
be represented as follows (Hammah and Curran, 2000):

d X V X V( , )=1 − ( ∙ )j i j i
2 2 (5)

where uij is the membership degree between cluster j and centre i and
0≤uij≤1, where i=1,2,…,C and j=1,2,…,N.

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∑u

d X V d X V
= 1

( , )
1

( , )ij
j i k

C

j k
2

=1
2

−1

(6)

The update of the centres is

∑ ∑V u X u= /i
j

N

ij j
j

N

ij
=1

2

=1

2

(7)

3.4.2. Firefly algorithm (FA)
The principle of the FA is as follows. Each firefly represents a

solution to the problem, namely, a group of cluster centres (Yang,
2008). The brightness of the firefly represents the superiority of the
solution. To quantify the brightness of the firefly I s( ) (see formula (8)),
the objective function (formula (4)) was used to express the specific
relationship between the superiority of the solution (Song et al., 2012)
and the data. The firefly with the maximum brightness was the optimal
solution.

I s
J

( ) = 1
+1m (8)

In nature, the brightest firefly will attract fireflies with less bright-
ness. Based on this algorithm, the optimal solution of the problem can
be obtained via iteration. The firefly Fi is attracted by firefly Fj and
moves to firefly Fj. Changes in the position of the firefly Fi update this
firefly; the position of Fi after moving can be determined as follows:

V V η V V ξ rand= + ( − )+ ( −0. 5)i i j i (9)

where V Vandi j are the positions of Fi and Fj, respectively; η is the
attraction between fireflies V Vand ;i j ξ is the step size; and rand is a
random number in [0,1].

The firefly attraction η between fireflies is related to the environ-
mental medium and distance (r) between fireflies:

η η exp γr= * (− )0
2 (10)

where η0 is the greatest attraction, namely, the attraction when r=0,
and γ is related to the light absorption factor for the medium.

Fig. 7. Results of case study 1. (a) Point cloud after pre-processing. (b) Sketch of the
segmentation of the point cloud. (c) Stereographic projection of the vector data. A total of
7084 poles were present. (d) Final classification figure.
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The distance between the fireflies is set as the sum of the distances
between the corresponding centres:

r d X X d X X d X X= ( , ′) + ( , ′)+…+ ( , ′ )C C
2 2

1 1
2

2 2
2 (11)

where C is the number of centres.
When using the FA in the classification of clusters, the first step is to

initialize the parameters, namely, the number of fireflies N , maximum
attraction η0, light absorption factor for the medium γ , step size ξ,
number of clusters C , and maximum number of iterations Tmax. The
implementation of the FA involves an initial solution through iteration
to obtain the optimal solution. Therefore, the parameters (such as the
maximum attractiveness degree, the light absorption factor and the
step length) merely affect the number of iterations to some extent but
barely affect the final results. In theory, the greater the number of
fireflies and number of maximum iterations, the more reliable the
results become. However, this iterative process is convergent, so when
the loop is stable, the increase in these two parameters has little effect
on the results. Therefore, we can refer to the parameter settings of the
algorithm in the existing literature. The maximum attractiveness
degree, the light absorption factor and the step length were set to 1,
0.8, and 0.5, respectively. The number of fireflies and the maximum
number of iterations were set to 30 and 15, respectively.

Algorithm 1. Firefly Algorithm

Algorithm 1:
For t=0 to Tmax

For i=0 to n
For j=0 to n
If VI( )j > VI( )i , then
Compute ηij using formula 10

Update Vi using formula 9
Update Ui using formula 6
Update I V( )i using formula 8
End if
End for
End for
The fireflies are sorted by their brightness in ascending order. The
brightest firefly is the optimal solution.

End for

First, the initial position of the fireflies V V V, ,…, N1 2 is obtained.
Then, the membership degree matrix Ui and brightness I V( )i of each
firefly can be calculated according to formula (6) and formula (8),
respectively. The fireflies are sorted by their brightness in ascending
order and updated through an iterative process. The pseudo code is
shown in algorithm 1.

The final optimal solution results in the best centres. The member-
ship matrix can be calculated according to formula (6). Then, the
cluster analysis and merging of clusters in the same group are
performed.

3.4.3. Parameters of cluster validity
The optimal feature number is automatically decided by an

introduced cluster validity function. The clustering validity evaluation
method provided the evaluation results of the clustering results in the
form of clustering parameters based on an evaluation of the density
and dispersion degree of the clustering results (Hammah and Curran,
1998). The corresponding clustering parameters of different group
numbers were calculated and compared with each other to determine
the optimal classification group number. The clustering validity func-
tion is mainly divided into two categories: one category considers the
basic geometric structure of the dataset in the classification, and the
other category introduces fuzzy factors (Tang and Yang, 2009). The
Xie-Beni validity index was discussed and adopted by Hammah and

Curran (2000) and Van Knapen and Slob (2009) and performed very
well in their experiments. Adopting more functions into the operation
would result in more objective results (Slob, 2010), so both types of
functions were used to ensure the reliability of the results. The
representative functions are the partition coefficient Vpc (Bedzek,
1973) and the Xie-Beni validity index Vxb (Xie and Beni, 1991). Large
Vpc values (i.e., close to 1) indicate good classification results with few
errors, whereas small Vxb values (i.e., close to 0) indicate a low
correlation between the different clusters and a large clustering effect.
The calculation formulas are as follows:

∑ ∑
N

uV = 1
pc

j

N

i

C

ij
=1 =1

2
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where N is the number of orientation data points, C is the number of
classes, uijis the membership degree between cluster Pj and centre Vi
(formula (6)), and r P V( , )j i

2 is the distance between cluster Pj and centre
Vi (formula (11)).

Based on this workflow, a prototype system was developed based on
the QT framework, and three experiments were performed on a
ThinkPad laptop (1.7_GHz(R) Intel Core i5-4210U, 8 GB of RAM
memory, and an Intel HD graphics card).

4. Results from case study 1: experimental analysis

This method involved the deletion of point outliers (vegetation
points, isolated points, and noise points) and an analysis of the
influence of the aforementioned process. Section 4.1 presents a
comparison of the proposed methods and DSE software.

4.1. Comparison experiments for case study 1

Fig. 7a shows the point cloud after pre-processing (removal of
outlier points). The segmenting of the point cloud and the cube size was
set to 0.400 m (Fig. 7b). Point sets that satisfied the conditions formed
clusters, and the coplanarity threshold value (σt) was set to 0.035 m.
Then, the orientations of each point cloud subset were calculated. The
stereographic projection of the orientation data with Dips is shown in
Fig. 7c. The classification range is 2–3. The cluster analysis results are
shown in Fig. 7d, and the optimal classification group number is 3
categories. A total of 17680 fewer points are present in Fig. 7d than in
Fig. 7a, which represents untreated points, including points along the
edge cubes and other non-coplanar point subsets.

Riquelme (Riquelme et al., 2014) proposed a method to automa-
tically identify discontinuity sets. In contrast, we used the proposed
methods and DSE in this work to operate on data from case study 1.
Method 1 used fixed cubes during segmentation and the LS during
vector calculation. The results are shown in Fig. 7. Method 2 used the
octree approach during segmentation and PCA during vector calcula-
tion. The results are shown in Fig. 8. According to a comparison of
Fig. 7d, Fig. 8b and Fig. 9, which were the results when using the DSE
software, the classification results were basically the same. Table 1
compares the detailed information on the results of these methods. Our
method requires improvement regarding some finer details.

5. Results from case study 2: sensitivity analysis

Sensitivity tests were conducted in this study, including the
determination of suitable parameters to obtain better results.

5.1. Influence of cube size

The data from case study 2 were used to perform a size sensitivity
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analysis experiment. Different cube sizes, which influenced the results
(Fig. 10), could be selected. Small cube sizes indicate smaller features.
However, an overly small cube can only contain a few points, which
means that the normal vector is then determined by only a few points
and is readily changed. Large cube size improves the cluster validity
parameters within a certain range (Fig. 11). The cluster validity
parameters tended to be stable when the cube size was larger than
0.04 m (Fig. 11).

5.2. Coplanarity threshold

Coplanar detection was performed to ensure that the points in the
subset belonged to one plane. Clusters that did not meet the coplanar
conditions may have contained boundary points and vertices. The σ
value of points in a cluster concerning the best fit plane was then
compared with σt. If σ σ< ,t a cluster formed. The chosen value of σtis
important because this value affects both the number of available
points and the number of available cubes (Fig. 12). Changes in the
cluster validity parameters were relatively smooth. The curves for the
unused points and unused cubes changed more slowly when the
threshold value was between 0.025 m and 0.045 m.

6. Analysis of results from case study 3

Case study 3 (more than two million points) was introduced to
further verify whether this method still had high efficiency for data with
a large number of points. The results showed that the processing of
case study 3 took a total of 1 min and 25 s. The point cloud is shown in
Fig. 13(a), and the partitioning of the point cloud based on the octree
approach is shown in Fig. 13(b). The maximum and minimum
numbers of points within a cube were set to 3000 and 10. Point
subsets that met the coplanarity conditions formed clusters. As shown
in Fig. 13(c), the classification range was 3–4. The final results of the
cluster analysis are shown in Fig. 13(d), and the best classification
group number was 3. In total, 2442 fewer points were left untreated,
including points in clusters at the boundary and other non-coplanar
clusters.

7. Discussion and conclusions

A new method for extracting joint points from 3D point clouds was
proposed in this study, and a prototype system was developed to
conduct the experiments. Data with different number of points were
processed with different methods. The results of case study 1, which
used three different methods (the proposed methods and DSE), were
compared in Section 4, and acceptable results were obtained in less
than two minutes. Furthermore, when the data contained more than
two million points, proposed method 2 could still process these data
within two minutes. The case studies in this work showed that the
proposed methods could extract points of different discontinuity sets
with high efficiency from a 3D point cloud, which is helpful to
understand surface discontinuities in large-scale geological bodies.

In this method, the FA with global optimality was used for the rock
mass discontinuity extraction process based on the 3D point cloud.
Meanwhile, not all points had to be calculated, which avoided
redundant computations. This method was only based on raw point
clouds without any complex triangulation and the establishment of a
3D model of the geological body. The quality of the results when using
different methods (the proposed methods and DSE) was also compared
in Section 4, and the proposed methods could efficiently obtain more
acceptable results for data with both ten thousand points and two
million points.

Considering the limits of point cloud segmentation, some deficien-
cies had to be handled: (1) points near the boundary could not be
accurately classified because the cube at the boundaries contained at
least two discontinuities,; and (2) accurate boundary lines could not be
obtained. Addressing these problems will be the focus of the authors'
future work.
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