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A B S T R A C T

Geoscientific models manage myriad and increasingly complex data structures as trans-disciplinary models are
integrated. They often incur significant redundancy with cross-cutting tasks. Reflection, the ability of a program to
inspect and modify its structure and behavior at runtime, is known as a powerful tool to improve code reusability,
abstraction, and separation of concerns. Reflection is rarely adopted in high-performance Geoscientific models,
especially with Fortran, where it was previously deemed implausible. Practical constraints of language and legacy
often limit us to feather-weight, native-language solutions. We demonstrate the usefulness of a structural-
reflection-emulating, dynamically-linked metaObjects, gd. We show real-world examples including data struc-
ture self-assembly, effortless input/output (IO) and upgrade to parallel I/O, recursive actions and batch opera-
tions. We share gd and a derived module that reproduces MATLAB-like structure in Fortran and Cþþ. We suggest
that both a gd representation and a Fortran-native representation are maintained to access the data, each for
separate purposes. Embracing emulated reflection allows generically-written codes that are highly re-usable
across projects.
1. Current issues

Geoscientific models (GMs), especially process-rich system-dynamics
models (Kelly et al., 2013; Laniak et al., 2013), e.g., Community Land
Model (CLM) (Lawrence et al., 2011), Noah-MP (Niu et al., 2011), iESM
(Collins et al., 2015) and APSIM (Holzworth et al., 2014), manage a large
variety of data. A common practice is to organize data into a hierarchical
data structure. For example, the 4.0 version of the Community Land
Model (CLM) holds data in 5 spatial scales, each possessing multiple
sub-structures (e.g., carbon states, water states), and thousands of inde-
pendent variables, which result from the inclusion of many component
modules, e.g., hydrology, energy, photosynthesis, vegetation phenology,
carbon and nitrogen cycles, which interact and depend on each other.
Providing management support, e.g., input/output (I/O), model save and
restart, memory allocation, module interfacing, and data access for such
complex and a large count of variables can pose a practical challenge.

While environmental modeling frameworks (EMFs) have been pro-
moted for some time, e.g., see (Argent et al., 2009; Holzworth et al.,
2010; Janssen et al., 2011; Rahman et al., 2004; Rizzoli et al., 1998), we
realize their adoption is nonetheless slow and systemic coding issues are
still prevalent with many GMs: cross-cutting concerns, lack of metadata
use, and strong mutual dependency. These issues, which are easily
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observed from a spectrum of models, are described in the following.

i There are pandemic, behaviorally similar tasks across multiple com-
ponents of the model, sometimes referred to as “cross-cutting con-
cerns” (Elrad et al., 2001; Kiczales et al., 1997), resulting in different,
case-specific implementations of the same action scattered
throughout the model. For example, the allocation and initialization
of data, checking bounds violation and occurrence of NaN, input/
output, data copy between similar types, save/restart are uniform
operations that cross-cut all modules. However, in many present
models, they need to be hard-coded for each component, resulting in
low code reusability and heavy redundancy.

ii The program does not use metadata, or information that describes the
data objects, such as the object's position in the data hierarchy,
methods, subfields, and their data types, etc. Metadata allows the
program to answer the question “who am I?”: where it is; what it is;
what it has; and what it can do. Without using metadata, a program
cannot enumerate its subfields to traverse the data hierarchy; nor can
it refer to alternative methods.

iii There are strong inter-module dependencies. Module and libraries
updates necessitate program-wide refactoring. This dependence is
ber 2017
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Table 1
Comparison of reflective and non-reflective field access (pseudo code). aHere we demon-
strate retrieval by fieldname. Index-based retrieval is faster. Just an example e, all of the
illustrated subroutines can also be recursive to work on all subfields because there is a
function to check the type of the subfield, which can be sub-structure.

Task described in
normal language

Non-reflective Reflective (getPtr means “get
pointer”)

a Access a field
with the name ‘f1’

A%f1
! Hard-coded

call getPtr(A, ‘f1’,
localPointer)

b Invoke a method
mtd

Call mtd(…) call getPtr(A, ‘mtd’,
localPointer)

c Set all values of
all subfields and
their children to 0

Hard-code all subfields,
which can be hundreds of
lines

DO I ¼ 1,nSubField
Field ¼ A%FieldNames(I) !a

call getPtr (A, Field,
localPointer)
localPointer ¼ 0
ENDDO

d Copy between
same named
fields between
different object
types

A%f1 ¼ B%f1
! Hard-coded for many
fields
! for Cþþ, this can become
complex as there needs to
be access methods for each
member.

DO I ¼ 1,nSubField
Field ¼ A%FieldNames(I) !a

IF ((isReal(A,Field).AND.
isReal(B, Field).AND.
(dimsOf(A,Field).EQ.
dimsOf(B, Field)) THEN
call getPtr(A, Field,
localPointer1) !b

call getPtr(B, Field,
localPointer2)
localPointer1 ¼ localPointer2
ENDIF
ENDDO

a In the code, we achieve field retrieval by index, which is faster and easier.
b In the actual code, there are overloaded operators to allow simpler syntax.
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especially troublesome for a highly collaborative project like Com-
munity Earth System Model (CESM).

The purpose of this paper is to promote reflection to Geoscientific
domain scientists. We show that small investment in a simple, Fortran-
native reflection solution can generate a considerable return on code
reusability, efficiency, and clarity. Here our examples include four well-
published models: CLM (Lawrence et al., 2011; Oleson et al., 2013),
PAWS (Shen and Phanikumar, 2010), CHOMBO (Adams et al., 2015),
and CONCEPTS (Langendoen and Alonso, 2008; Langendoen and
Simon, 2008).

2. Native-language-emulated reflection as an efficient solution

Just as the ability to reflect on oneself immensely reshapes our
cognitive abilities, reflection allows the program to possess a level of
intelligence (Smith, 1982). Across various disciplines, reflection has
provided elegant solutions (Forman and Forman, 2004) to above-
mentioned issues, drastically reduced code size, and improved code
readability. The cost reduction in maintenance is also not to be
under-estimated. While long-adopted in computer science, reflection is
not widely adopted in GMs, evidenced by highly redundant hard-coding,
some examples for which are provided in later sections.

Philosophically, reflection is the ability of the program to examine its
own properties and modifying its structure and behavior at runtime
(Forman and Forman, 2004). Reflection can be implemented by inter-
rogating and modifying a first-class metaObject, any object that creates,
describes, or manipulates, objects including itself. For example, in Java,
the base class, Class, is able to be queried for its class, methods, and
metadata of its members. Similar approach powers reflection in Python
and MATLAB. This type of reflection is commonly termed structural
reflection. In contrast, behavioral reflection involves the inspection of
stack or assembly information and modification of a program's own code
(Jacques and Demers, 1996). As our objective is to assist Geoscientific
models with coding efficiency withminimum effort, we limit our scope to
structural reflection. A signature of reflection-oriented code is that string
input arguments replace hard-coded field access or method invocation. A
reflective program receives the request, resolves it during runtime, and
chooses the appropriate behavior. A key ingredient to reflection is met-
adata, with which the program can automatically list all the content and
properties of subfields andmethods, traverse hierarchical tree and reason
if the request can be met. Table 1 compares the behavior of reflective and
non-reflective codes regarding handling several different situations for
an object A.

Why is the adoption of reflection in GMs so slow, given that
reflection-embracing, Java-, C#-based EMFs (references provided pre-
viously), which have been available for 2 decades, are likely to improve
coding efficiency? The main reasons can be cost and habits. Any reflec-
tive solution for GMs must face practical constraints: GMs are predomi-
nantly developed in compiled languages focusing on performance, e.g.,
Fortran and C/Cþþ, which do not have the reflection-supporting meta-
Objects at the language level. As data management only provides auxil-
iary services, many scientists desire simple tools to provide the
functionality, with as little learning curve as possible, and language-
interoperability is often shunned due to various practical reasons.
While EMFs have powerful and flexible features, specialized EMFs may
not apply to many legacy GMs (David et al., 2013), especially
high-performance ones. However, to further promote reflection, there
should also be alternative, native-language solutions that deliver solid
return-on-investment in terms of code length, clarity, and more impor-
tantly reusability. A feather-weight package fully encompassed in a
module in Fortran or a class in Cþþmay much better promote reflection
among domain scientists. A successful solution also needs to support
message passing interface (MPI) and parallel I/O. Dependencies on
external libraries should also be minimized.
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3. The generic, dynamically-linked metaObject (gd)

3.1. Implementation of gd

The primary task of data management of GMs is to store, manipulate
and access numerical variables of large sizes and various dimensions.
With compiled languages, reflection must be emulated using a base
metaObjects to store these elemental data types and to provide metadata.
The basic structure of the base metaObject (Fortran version), gd, is pro-
vided in Fig. 1 with explanations (In the attached code: Library). This
module was developed independently as a by-product of hydrologic
modeling in PAWS þ CLM (Shen et al., 2016, 2014, 2013), with appli-
cations in water storage and fluxes (Fang et al., 2016; Niu et al., 2014),
channel-land interactions, biogeochemistry, carbon/nitrogen states,
transport (Niu and Phanikumar, 2015) and scaling (Ji et al., 2015; Pau
et al., 2016; Riley and Shen, 2014), and therefore manages a large
amount of data. gd allows dynamic access, polymorphic (meaning uni-
form interface for different data types) addition and deletion of fields,
procedures (subroutine or function) and sub-structures, permitting
recursive (depth-first) access with a dictionary. It can provide counting of
the total number of fields and number of fields with repetitive names,
check if a field exists (isempty), list fieldnames, and return the type,
dimension, and sizes of the data. While accessing fields, it will check for
the validity (type and dimension) of the output argument and reports
error with helpful diagnostic messages.

3.2. Metadata generation

Because gd is a generic tool, itself does not create metadata, which
needs to be originated through some means. First, realizing it or not, for
most Geoscientific models, the input files already contain metadata
which is generated during pre-processing by more flexible tools. For
example, for the Community Land Model, the input files are the .nc
(NetCDF) files. For PAWS þ CLM, the input file is a .mat or .nc file (Shen
et al., 2014). For CHOMBO, the inputs are text files written in a certain
protocol. For off-the-shelf models like MODFLOW (Markstrom et al.,
2008), or SWAT (Neitsch et al., 2009), input files also describe all



Fig. 1. A portion of the gd module to show members of the type gd. A member p (type p_t) supports REAL*8, INTEGER and LOGICAL variables up to 6 dimensions. Storing and retrieving
data to and from p_t is supported by a uniform interface and polymorphism. gd can link to sub-structures (member g) and procedure pointers (member proc). The fieldnames are stored as a
character array in f. Access to a field in gd is done by finding the index, k, of the corresponding field in f (multiple same-named fields is supported, requiring an additional index) for the
requested field.
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information needed by the model to carry out a simulation. The input
files likely are already in self-descriptive format, e.g., HDF5,.mat,
NetCDF, XML or raster files, which are almost free-of-charge sources of
metadata. In the supplementary materials, we present subroutines
interfacing MATLAB and NetCDF files to assemble the gd representation
from input files (Code: buildMatTable). In the absence of self-descriptive
input files, a text file containing the metadata can be provided by
pre-processing utilities and then interpreted by gd. We also have tem-
plates for interfacing ASCII data. Because of the uniform way gd is rep-
resented, writing an interface for gd is much easier than conventional
data format. Moreover, for models without strict enforcement of pro-
tocols in their input files, the best approach is to utilize the data types
defined in their Fortran source code. Metadata can be generated from
parsing the Fortran source code. We have attached a Matlab script to
achieve this goal (Code: GeneralTypeScanner, which generates the
linkage source code in ioUpdate).

3.3. Supporting legacy code with efficiency: a dual-management system
(DMS)

Since most legacy codes use Fortran-native (or C-native) structures,
enforcing a whole-model conversion into using gd is impractical. How-
ever, this is neither necessary nor recommended. We can adopt a DMS
approach by creating a gd hierarchy for the data, and then establish links
(pointer assignment) between gd and user-defined Fortran-native data
structure (Fig. 2). Developers can call gd or native data representation for
different purposes. Here, DMS does not refer to a specific library or
subroutine, but instead a style of data management in which the gd
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representation and the user-defined Fortran native representation coexist
and both provide access to the same data in memory. The linking codes
(Code: autoLink) are automatically generated by a script (Code: Gen-
eralTypeScanner), which scans the Fortran type declarations for the hi-
erarchical information from user-defined derived types. During
execution, the data is managed by both the gd representation and
Fortran-native representation. We can use gd for cross-cutting, pandemic
tasks (data I/O, data validity check, inter-module variable passing, batch
operations, etc.) while using Fortran/C natives in computational tasks.
Requiring few changes to the legacy code, this strategy helps to solve
most imminent software issues while maintaining model design. The
mapping step also has an additional significant advantage: it insulates the
model codes from changes to external I/O libraries. We note that gd can
also be used to manage memory efficiently. In the example (e) in Table 1,
gd can recursively deallocate memory with just one single call.

We also make a distinction between gd and the method that uses
macros to automatically write certain parts of the code according to a
fixed format (here referred to as the templated-macros method).
Although we use this technique in autoLink (Fig. 2), autoLink provides a
generic, cross-project handling of creating DMS, which serves as a handle
to accomplish both computational and cross-cutting tasks. The
templated-macros must be modified from case to case depending on the
specific tasks, and in various parts of the code where code-writing is
needed, the procedure needs to be separately invoked. It interrupts the
normal code-writing process. In our approach, the linking between
Fortran-native structure and gd representation is a one-time, uniform
operation that does not need to be repeated for different invocations.
Also, the use of the autoLink feature is almost identical from application



Fig. 2. Workflow of setting up Dual data Management System (DMS) in Geoscientific
models. DMS is a style of data management rather than any specific code. Dashed lines
indicate optional steps. There are four steps: (1) (optional) use one Matlab command, read
Fortran type declarations into a dictionary of metadata; (2) (optional) use several Matlab
commands, produce Fortran linking codes that bridges gd and Fortran-native representa-
tion; (3) use one Fortran statement, read input files and build gd representation of data;
and (4) use one Fortran call to the auto-generated linking codes to build the linkage.
Optionally, if metadata is not available in the input files used by a certain GM, it can be
generated using the dictionary of metadata previously created. The memory storage is
shared, and the gd representation merely stores pointers to data. The gd representation can
then used for input/output and cross-cutting tasks, while the computational core of the
code using Fortran-native language can remain unchanged. Updating I/O library requires
only slight modification to the generic reader/writer. Altogether, steps (1–4) requires 4
function/subroutine calls. A real example is provided in the attached code, Example:
FortranBridge. Autolink relies on same variable names in input files and Fortran variables.
In practice, some programmers habitually use different variable names in the files from
those used in the model. We have developed an interface to accommodate patterned
variable name transformations.

Table 2
Summary of examples in this paper illustrating the use of gd. In the examples below, using
fortranBridge, batchOper, checkNan codes in another project requires no change of the
code. To set up ioUpdate for another project, simply replace one subroutine with a newer
one.

Examples Task in plain language

1. fortranBridge “automatically read the data hierarchy stored in a self-descriptive
file, without knowledge of its content a priori, establish a
corresponding data hierarchy in memory, and be ready to modify
the same hierarchy at runtime and write the hierarchy to a different
file as needed.”

2. ioUpdate “following the buildMatTable example, finish a migration of I/O to
(a). NetCDF file format; and (b). Parallel NetCDF format by only
making changes to one subroutine (~150 lines of code in the
subroutine; < 20 lines of changes)

3. batchOper
(gdCopy/
gdSetVal)

a “(optional: recursively) copy between two derived data types,
regardless of their declared data types, while the copy is limited
to the same-named, same-dimensioned REAL fields.”

b “(optional: recursively) set all REAL (or INTEGER/LOGICAL)
fields to a certain value, without knowledge of data structure a
priori.”

4. checkNaN “without using hardcoding, for every member of a derived data type,
the members of members and so forth, if it is a REAL field, check
whether NaN exists, and, if so, print out the full name of variables
where NaN occurs and their locations in the hierarchy.”

5. massBalance
(Envisioned)

“A set of generic mass balance checker based on a dictionary of
mass balance terms.”

6.Fortran_C
generic coupler

(Envisioned)

“A uniform, generic data (pointer) passing interface between
FORTRAN and C to remove the need for case-specific
interoperability codes.”
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to application, reducing modelers’ effort in adapting to different appli-
cations. The experiences are entirely different.
3.4. Using reflection: applications of gd

Below we show examples of using the feather-weight gd library to
improve coding efficiency greatly. Table 2 summarizes the examples in
plain text. All applications below are real-world examples taken from
well-known models.

In a typical application, certain programs read data from a file into
memory. The hierarchy in gd is simultaneously established, and the
pointers in gd are assigned to the memory that holds the data (example
code: buildMatTable). In this case, gd only provides access to the data but
many compilers will not allow gd to deallocate the pointer in use. In some
other uses, e.g., use gd to store globally accessible temporary storage,
memory can be allocated. In this case, gd can also deallocate the memory
space that itself created.

3.4.1. MATLAB-like data self-assembly and storage
MATLAB (or Octave) is widely used in engineering and science due to

its flexibility, code development efficiency and moreover, programmatic
access to various data types (e.g., Geographic Information System, GIS,
files). It also contains API interfaces to Fortran/C, which are, however,
rather challenging to use correctly due to many subtleties. We developed
a library, matTable, based on gd and the MATLAB external interfaces API
to load MATLAB/Octave data into Fortran and Cþþ. In upgrading the
PAWS model, the reflective solution is astonishingly easy compared to
the original API (Fig. 3, Example: fortranBridge). Using gd, matTable
dynamically creates a tree structure corresponding to the data in MAT-
LAB and fills in the metadata, with just one command. As data hierarchy
evolves, the reflection-based solution needs no change in the code, while
the hard-coded version will cost much more debugging time.
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3.4.2. Batch operations
Without reflection, batch operations such as uniformly setting values

to 0 and copying between objects, need to be hard-coded, leading to
significant redundancy and waste of modeler's effort. Two examples with
two different models (Fig. 5) show that this is a prevalent and hazardous
issue. Again, similar examples can be found with many other models
written in Fortran or C. Reflection and DMS permit recursive traversal of
data hierarchy and batch-apply of operations. (Code Example:
gdCopy, gdSetVal.

3.4.3. Separation of concerns
Separation of concerns (Elrad et al., 2001) using reflection can

encapsulate scientists from software infrastructure. In current CLM (and
many other codes), I/O are “entangled” with computational routines,
meaning they are implemented everywhere in code, and an update of the
I/O library resulted in system-wide refactoring (Fig. 4). Using a
reflection-based solution shortened the code dramatically. Moreover, by
just upgrading the generic I/O subroutine, we can effortlessly transition
from one file type to another (.mat to NetCDF), or from serial I/O to a
parallel I/O program (Parallel NetCDF) without model-wide refactoring,
as the model code is insulated from I/O library updates (Code Examples:
ioUpdate, which contains buildMatTable, buildNcTable and
buildPncTable).

Because gd is generically written, parallel programs can utilize gd in
the same way as serial programs. Regarding the process of upgrading
serial programs to parallel programs, we have only demonstrated
upgrading serial I/O to parallel I/O using gd. However, there are many
other ways gd can be used to support the upgrading of serial programs to
parallel programs. For example, as a serial program is upgraded to par-
allel, it may require the exchange of data between different cores. With
gd, the user can prescribe a list of fields that need to exchanged; then a
uniform “exchange” command can be issued for the gd representation.
The user will then avoid the need to write separate exchange commands
for different fields, just like other examples describe above. The main
advantage of this approach is that, again, the “exchange” command is
highly reused and written for gd representation. We only need to main-
tain the performance and integrity of a single program during upgrades.



Fig. 3. (a) A counter example, from an earlier version of PAWS, using MATLAB-Fortran API to read a. mat file in a non-reflective manner (see fortranBridge\counterExample). The data is
hierarchical. ‘g’ and ‘r’ are root-level variables and ‘g%DM’, ‘g%GW(i)’, are 2nd level structures. Both a “bridge-” and a “link-” step are needed. Fields and data structures were hard-coded.
These redundant codes amounted to 3000 lines; (b) The reflective solution: with a simple statement (buildMatTable), the data is read into a central gd metaObject, gd_base, which can be
accessed with a simple syntax. We also used a script to automatically generate the linking codes. Inline comments are provided for paper clarifications; (c) Parts of the data structure from
PAWS þ CLM that is demonstrated in this figure. GW() it is a structures array. EB and ES are both 2D numerical matrices.
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3.4.4. Interfacing modules using reflection
Reflection can greatly facilitate language-interoperation. For

example, CHOMBO (Adams et al., 2015; Trebotich et al., 2014) is a high-
performance, scalable Cþþ numerical package supporting block-
structured Adaptive Mesh Refinement (AMR). Although many users
desire AMR, adapting CHOMBO for earth systemmodeling is challenging
due to the barrier between Cþþ and Fortran. Although an interface exists
(Cornford et al., 2013), hard-coding will be needed to handle the thou-
sands of variables passing through the interface. We envision if a gd
structure is created on each side of the interface, then data passing and
methods invocation can be managed with ease by controlling only the
generic interface between the gd structures in Cþþ and Fortran (Fig. 6).
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3.4.5. Generic computational tasks
There are also other computational tasks that can be generically

tackled by gd. For example, instead of writing case-specific codes, we can
write a generic subroutine, recursively using gd, to check for the exis-
tence of NaN's and report their locations in the hierarchy (Example:
checkNaN). These functions should improve the efficiency of model
development. For another example, GMs often need to code up mass
balance checkers. Since there is a uniform format for this task (change in
state variables ¼ integration of fluxes over time), it should be possible to
code a generic mass balance checker, with a dictionary of state variables
and corresponding fluxes, to define a mass balance check.



Fig. 4. (a) reading NetCDF files for urban inputs in CLM4.0, using the serial version of NetCDF. This kind of I/O statements occupy many thousand lines throughout the model; (b) when
upgrading to CLM4.5, the procedure was changed to parallel I/O, necessitating changes to all calling statements; (c) a reflection-based solution: similar to the matTable, we automatically
read NetCDF files for access, and establishing the DMS using automatically-generated subroutines; (d) migrating to parallel I/O using gd does not incur any changes to model codes,
enabling separation of concerns. We only need to update the generic procedures in buildNcTable to invoke parallel NetCDF methods.
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3.5. Limitations and setup time

The storage overhead per gd item is estimated to be 3kBytes (10 Mb
for 3500 items). Thus, it is important not to use gd to store data on dis-
cretized element level. For example, for a solution vector dat(ny,nx) in
2D, we should not store each element dat(i,j) using a separate gd object.
Instead, we should use gd only to store a 2D pointer to dat, which can then
be used in language-native ways. The number of items in the data
structure, no matter how complex it is, is small for modern computers. In
our buildMatTable test case, linking 6267 fields in the .mat file using gd
takes only 0.008s. Therefore, as long as we do not operate on the
element-by-element level, i.e., call the linking code on each of ny*nx
elements, but works on the numeric-array level, the overhead of fields
linking is almost negligible.

Although reflection is a very powerful tool, it has its limitations and
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potential pitfalls. We pay a small performance penalty when looking up
items, although this is trivial in most cases as indicated above. In the
context of GMs, the biggest potential danger is the modification of values
without using specific model data members. Thus, it is recommended to
use reflection only through a small number of well-understood, carefully-
controlled functions, whose use is clearly summarized for other users to
inspect. Also, as error checking is deferred to runtime, if there is insuf-
ficient error handling and reporting with the reflective code, it can cause
confusion for end users (gd does provide error messages reporting type/
dimension mismatches, which turns out to be great help during our
debugging). Therefore, we advised against widespread use of reflection
for entry-level modelers, and also programs with stable and simple data
structures. On the flip side, gd can be used to implement validity checks,
e.g., check for NaNs, out-of-bounds errors, etc, so the overall advantage
should outweigh the disadvantage.



Fig. 5. Comparison of non-reflective and reflective programming for batch operations. (a) Batch copy in the bank erosion and sediment transport model CONCEPTS. There are many places
such copy occurs in this model; (b) Batch set value in CLM4.5. This operation occupies 170 lines for the methane (ch4) module alone, and thousands of lines throughout the model. (c)
Achieve the batch-copy using a generic copy subroutine, which examines common fields between two gd structure and copy between them; (d) Achieve the batch-set-value by a single call
to a subroutine that sets Real*8 values (as specified by ‘R’) to a uniform value, regardless of dimension. This code can recursively traverse the hierarchical tree if the last argument is set to
. true..

Fig. 6. Envisioned reflective inter-language coupling mechanisms: a generic way to
couple CHOMBO (Cþþ) and PAWS þ CLM (Fortran) using gd. Only a generic interface
between gd (Cþþ) and gd (Fortran) needs to be implemented. Once coded, this generic
interface can be used in other Fortran-C coupled applications.
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The steps involved in setting up the DMS (Fig. 2) are also much
cheaper to learn, implement and maintain because they are generically
written and thus are plug-and-play. In our experience, we were able to set
up DMS for PAWS in one day (this step previously took ~10 days to
accomplish, and requiredmuchmaintenance), and set up three cases of I/
O update (Example: ioUpdate) all within one day.We also employed gd to
build new input data format for CONCEPTS (Langendoen and Simon,
2008) in a week. Writing a code to read the content of a Matlab file
takes 2 min.

4. On the definition of reflection

Some readers may argue that reflection must be achieved at the
fundamental programming language level: the exploration of data
structure must be supported without explicit data population by the
programmer, via certain Application Programming Interface (API). If we
restrict the definition of reflection so narrowly, it is then not possible to
be accomplished with either Fortran or C. Since even many Fortran 2008
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standards are not fully implemented in many compilers, it is difficult to
envision compiler-level support for reflection will be usable in a matter of
years. Our approach, on the other hand, is fully covered under Fortran 90
standards, so it is portable across a wide range of systems.

Moreover, detailed investigation of literature suggests that practice of
reflection was never restricted to a language-default feature. As described
above (Section 2), in Java-based work (Chiba, 2006, 2000), a language-
supported first-class metaObject serves as the fundamental basis for
reflection in Java. Our approach is philosophically similar to this one,
only that this base-level object (gd) needs to be implemented by us. With
companion software to extract metadata from source code (Section 3.2),
this suite of functionality is suited to carry out many tasks in the scope of
structural reflection with sufficient generality.

The concepts of dynamic control of program structure and data are
indeed alien to many Fortran/C programmers and especially Geo-
scientific modelers due to education reasons. Many modelers were
educated to think of predefined procedures and perhaps object-oriented
programming. Many educational resources will list Fortran as a proce-
dural language, while gd demonstrates that the power offered by
currently supported language standards is still under-utilized, and sub-
stantial potential can be realized by unconventional thinking.

5. Conclusions

Reflection can significantly reduce the amount of error-prone hard-
coding. With a layer of generic data structure, the reflective code can be
generically-written, detached from the case-specific environment. Such a
design leads to a higher level of code reusability. Incorporating a
reflective data structure in Geoscientific models may also separate con-
cerns and improve flexibility. Contrary to previous thought, reflection
can be implemented without additional dependencies in native-Fortran
language. The example library gd is a standard Fortran module (and a
Cþþ class) that are easily incorporated on any platform. The DMS pro-
posed in the system can create a separate layer of data control that en-
ables efficient tackling of cross-cutting concerns as well as insulating
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computational codes from I/O operations. It also enables generic
handling of inter-model coupling. There are potential issues on data
encapsulation, which needs to be managed carefully.

6. Software availability

The Fortran version of the module gd, the matTable library, the
Fortran type scanner (GeneralTypeScanner) and autoLink can be freely
downloaded from the corresponding author's website (http://water.engr.
psu.edu/shen/software_page.html) under the title “Integrated generic
data package”.
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