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ABSTRACT

Ordinary Kriging is widely used for geospatial interpolation and estimation. Due to the O(n3) time
complexity of solving the system of linear equations, ordinary Kriging for a large set of source points is
computationally intensive. Conducting real-time Kriging interpolation over continuously varying spa-
tiotemporal data streams can therefore be especially challenging. This paper develops and tests two new
strategies for improving the performance of an ordinary Kriging interpolator adapted to a stream-pro-
cessing environment. These strategies rely on the expectation that, over time, source data points will
frequently refer to the same spatial locations (for example, where static sensor nodes are generating
repeated observations of a dynamic field). First, an incremental strategy improves efficiency in cases
where a relatively small proportion of previously processed spatial locations are absent from the source
points at any given iteration. Second, a recursive strategy improves efficiency in cases where there is
substantial set overlap between the sets of spatial locations of source points at the current and previous
iterations. These two strategies are evaluated in terms of their computational efficiency in comparison to
ordinary Kriging algorithm. The results show that these two strategies can reduce the time taken to
perform the interpolation by up to 90%, and approach average-case time complexity of O(n?) when most
but not all source points refer to the same locations over time. By combining the approaches developed
in this paper with existing heuristic ordinary Kriging algorithms, the conclusions indicate how further
efficiency gains could potentially be accrued. The work ultimately contributes to the development of
online ordinary Kriging interpolation algorithms, capable of real-time spatial interpolation with large
streaming data sets.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

stochastic model can be determined from the variogram of the
source points, ordinary Kriging is the most accurate interpolation

Spatial interpolation is a common approach to estimating the
unknown value of a random field at a given location from known
values at a set of spatial source points. A wide variety of spatial
interpolation algorithms have been developed, such as inverse
distance weighting (IDW), nearest neighborhood, natural neigh-
borhood, thin plate spline, and ordinary Kriging. Ordinary Kriging
is recognized as the best linear unbiased estimator because it
minimizes the variance of estimation error based on the statistical
properties of the random field (Cressie, 1992). The accuracy of
ordinary Kriging is highly dependent on the effectiveness of the
stochastic model of the random field. When the spatial structure
of the random field cannot be modeled effectively, ordinary Kri-
ging may be less accurate than other interpolation algorithms
(Falivene et al., 2010; Lu and Wong, 2008). But when an effective
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algorithm. The accuracy gain is critical in some situations. For
example, in cases where the interpolated surface is required as an
input to another simulation model, best accuracy is highly desir-
able, due to the likely amplification of errors in the interpolated
surface as a result of error propagation in the simulation model.
The accuracy gain of ordinary Kriging comes at low scalability.
Ordinary Kriging consists of three steps: calculating variogram
from source points, fitting a model to the variogram, and linear
estimation. Efficient approaches have been proposed to conduct
the first two steps (De Baar et al, 2013; Pebesma, 2004). The
computational complexity of ordinary Kriging is dominated by the
linear estimation step which requires O(n®) time complexity to
solve a system of n+1 linear equations for n source points. Even in
a conventional “offline” computing environment, where the entire
data set is available to the algorithm, scaling ordinary Kriging to
large spatial data sets presents significant computational chal-
lenges. However, emerging data sources, such as wireless sensor
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networks, are much more suited to online processing (Ali et al.,
2005). Hence online spatial and temporal data stream processing
algorithms have been investigated extensively for real-time loca-
tion-based applications and continuous queries (Ali et al., 2006,
2007; Jin et al., 2006; Jung et al., 2014; Kamel et al., 2010; Nittel
and Leung, 2004). In online processing, an algorithm cannot know
in advance what data it will receive, and must instead deal with
new data sequentially as it arrives (Albers, 2003). Sensor networks,
consisting of networks of sensor nodes continuously sensing their
environment, are typical streaming spatiotemporal data sources
that require online processing. Today, such networks consist of
hundreds of nodes. In the future, these networks are expected to
scale to thousands or even millions of nodes. Even today's fastest
approximate ordinary Kriging algorithms are not well-adapted to
dealing with such volumes of dynamic data in real time. Thus,
scalable and online ordinary Kriging algorithms are increasingly
demanded.

Current efforts for improving the computational efficiency of
ordinary Kriging primarily focus on approximate solutions to the
system of linear equations. One widely-adopted approach involves
reducing the rank of the linear system (the source-to-source
covariance matrix and the target-to-source covariance vector). The
simplest method is local neighborhood Kriging, where target points
are estimated using only the closest source points (Hartman and
Hossjer, 2008; Rivoirard and Romary, 2011). Underlying this
method is the principle of the screen effect, where distant source
points have near-zero weights for a target (Stein, 2002). The ac-
curacy of the local neighborhood Kriging depends strongly on the
selection of neighborhoods. Searching for neighborhoods from
massive sets of target points can itself become computationally
intensive. Hessami et al. (2001) proposed an efficient neighbor-
hood selection scheme based on Delaunay triangulation. In addi-
tion, local neighborhood Kriging may result in discontinuous in-
terpolated and estimation error surfaces. Rivoirard and Romary
(2011) improved the continuity of the local neighborhood Kriging
estimation surface by penalizing the outermost source points of
the neighborhood with random noise. The variance of the noise
increases infinitely when a data point is on the boundary of the
neighborhood. Another more general and global lower rank Kri-
ging approach is projecting the linear system to a lower dimen-
sional space, where the linear system can be solved with lower
computational load. This can be achieved by modeling the spatial
covariance with g basis functions (Cressie and Johannesson, 2008)
or a predictive process model with q selected knots (Banerjee
et al., 2008). The problem of inverting the original covariance
matrix can be reduced to inverting a matrix of rank g. The accuracy
of these methods strongly depends on the choice of the covariance
projection matrix. Determining an optimal projection matrix is the
main challenge in these approaches, because it changes with the
covariance of the spatial model and the spatial characteristics of
the source points.

Another approximate approach to reducing computational load
is to transform a dense covariance matrix to a sparse matrix. In
this way, Hartman and Hossjer (2008) approximated a Gaussian
field by a Gaussian Markov random field with sparse precision
matrix. This approximation is accurate, but it is limited to Gaussian
fields and not able to handle wide variants of covariance models. A
more general approach is to use a positive definite but compactly
supported function to taper the spatial covariance matrix to zero
beyond a certain range (Furrer et al., 2006). The tapered sparse
linear system can be solved more efficiently, using algorithms such
as SYMMLQ (Paige and Saunders, 1975), than solving the original
dense system, while preserving asymptotic optimality. Particularly
for Gaussian covariance models, the discrete Gauss transform and
nearest-neighbors search techniques can further improve the ef-
ficiency of SYMMLQ (Memarsadeghi et al., 2008). The tapered

sparse covariance matrix can be rearranged to reduce bandwidth
and solved with more efficient algorithms for narrow sparse sys-
tems (Sakata et al., 2004). Lower rank Kriging and covariance ta-
pering Kriging methods can be combined to take into account both
global and local spatial features (Sang and Huang, 2012). The
combined Kriging system can be solved efficiently using in-
complete Cholesky decomposition (Romary, 2013).

More efficient exact solutions to ordinary Kriging can be
achieved using parallelization (Cheng, 2013; de Ravé et al., 2014;
Guan et al., 2011; Hu and Shu, 2015; Pebesma, 2004; Pesquer et al.,
2011; Umer et al., 2008). A task decomposition scheme has been
developed for Kriging (Guan et al., 2011), where the Kriging sys-
tem is solved with parallel QR-decomposition. After solving the
weights, the linear estimations for all target points are calculated
in parallel. Umer et al. (2008) proposed a distributed iterative
Gaussian elimination algorithm for solving the Kriging system of
linear equations in a sensor network. The linear map of Gaussian
elimination is transmitted across the sensor network along a chain
of nodes. This distributes across the sensor network the compu-
tational load and the energy consumption for solving the Kriging
system. However, the overall computational load of these ap-
proaches remains the same as for a centralized algorithm.

All the approaches above do not consider the spatial and
temporal autocorrelation in the source data streams, which has
been used to aid spatial interpolation methods, such as IDW
(Appice et al., 2015), shape-function based methods (Li et al.,
2011), and Kriging based methods (Guccione et al., 2012; Kerwin
and Prince, 1999a; Vargas-Guzman and Yeh, 1999). Further, these
approaches do not consider the temporal evolution of source data
points, an inherent issue in streaming data. Two distinct aspects of
dynamism are important to consider: revision (the dynamic arrival
of new data about a field, i.e., “change in our knowledge”), and
update (dynamic change to the field itself, i.e., “change in the
world”). The sequential simple Kriging algorithm addresses the first
problem. It avoids using the entire set of source points at once by
processing subsets from a partition of the source points sequen-
tially (Vargas-Guzman and Yeh, 1999). In this algorithm, the in-
terpolation results are revised every time a new subset of source
points are incorporated into the Kriging system. Sequential simple
Kriging results an exact solution, producing an identical inter-
polation to that using the whole data set simultaneously, once all
subsets of the partition have been processed. Such an incremental
approach can increase efficiency in processing revisions, as new
data about a field arrives. However, incremental approaches are
not well adapted to dealing with updates, where the field itself has
changed.

By contrast, recursive update Kriging is well-adapted to process
new data about changes to the underlying interpolated field (i.e.,
updates). In recursive update Kriging, the time series of spatial
functions is treated as a space-time state model (Kerwin and
Prince, 1999a). The model assumes that the trends of the mean
and spatial covariance model of the time series of functions are
static. Recursive update Kriging is able to estimate the values of
the time series of functions at target spatial points from source
points with observation errors. The algorithm extends ordinary
Kriging to incorporate temporal correlation, which improves ac-
curacy when observation error exists. When the observations at
the source points are precise (no observation error), this approach
reduces to individually batch-Kriging at each iteration. Hence,
from the perspective of online Kriging, recursive Kriging offers no
improvements in computational efficiency. A further limitation of
this approach is that the total number and locations of source
points must remain fixed for all times. Even though time-varying
source points are considered in (Kerwin and Prince, 1999b), it is
still required that the displacement must be small. In practice, it is
expected that even in a sensor network with static sensor nodes,
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nodes may often fail or be removed, or new nodes may be de-
ployed. Thus, the locations of new source points may differ sub-
stantially from the preceding points.

Such incremental and recursive computation can dramatically
improve algorithm efficiency by alleviating the need to recompute
the entire solution at each iteration. Hence, it should be no sur-
prise that incremental and recursive strategies are widely used in
stream processing (Acharya and Lee, 2014; Mokbel et al., 2005;
Unal et al., 2006; Zhang et al., 2008, 2014). However, none of the
solutions currently in the literature can claim to offer efficient and
exact Kriging results in cases where both revisions (e.g., new
source data about a field from sensors at previously unknown
spatial locations) and updates (e.g., new source data from known
locations about changes to a dynamic field) may occur. Our key
contribution in this paper is to develop and compare an incre-
mental algorithm and a recursive algorithm for exact and efficient
ordinary Kriging over spatiotemporal data streams where both
revisions and updates may occur. Under the data model described
in Section 2.2.2, the algorithms provide exactly the same results
with the original ordinary Kriging algorithm. Hence the efficiency
gain comes at no loss in accuracy; and the performance of the
algorithms in presence of sudden data changes, anomalies, noise
data are the same with the original Kriging algorithm. Both algo-
rithms are based on the expectation that most values of the cov-
ariance matrix are invariant at two consecutive executions of the
ordinary Kriging interpolation. In short, the common feature of
spatiotemporal data streams that many (though not all) source
data points will tend to originate from the same spatial location is
used, even as the interpolated field is expected to change over
time. In this circumstance, our algorithms can calculate the inverse
of current covariance matrix more efficiently using the inverse of
historical covariance matrix. The effectiveness of the algorithms
developed in this paper is evaluated and compared through ex-
periments using a commercial, off-the-shelf stream processing
platform (IBM InfoSphere), which demonstrates the practical ef-
ficiency gains of using the algorithms.

Following an introduction to the spatial interpolation problem
for spatiotemporal streams, Section 3 describes the novel incre-
mental and the recursive algorithms for calculating the inverse of
the covariance matrix. Section 4 demonstrates and compares the
efficiency of the algorithms experimentally. Section 5 discusses
possible extensions of the algorithms and future work. Finally,
Section 6 conclude this paper.

2. Problem description

The traditional ordinary Kriging estimator is briefly introduced
in this section. The application of ordinary Kriging estimation
within the context of spatiotemporal data streams is then sketched
in Section 2.2.

2.1. Ordinary Kriging

Given the values z = {z(p,), z(py), ..., Z(p,)} at a finite set of n
source points p = {p;, p,, ..., D}, a linear estimate of the values
2= (2@ 2Dy, - 2(py,)) AL M target points py = {Py, DPp,» - Py}
is:

7=WTz (1)

where W € R™™ is the linear weights. Ordinary Kriging is the best
linear unbiased estimator which ensures the zero mean and the
minimum variance of the estimation error. Solving the optimiza-
tion problem results in the following system of linear equations:

Cop 1y [W] | o

17 0fLAT 1, Q)
where Cy, € RXXY stands for the covariance matrix between two
given points sets x and y, I(-)| stands for the cardinality of (.),
1, € R" is a column vector of all ones, T stands for the matrix
transpose operation, g € R™ is the Lagrange multiplier.

Although the kernel matrix (left square matrix) of the linear
system given by Eq. (2) is not positive definite (a diagonal element
is 0), a legal spatial covariance model must ensure Cpp is a sym-
metric positive definite matrix (Myers, 1992), which can be in-
verted more efficiently using the Cholesky decomposition than
using any other methods. Hence the weights can be solved more
efficiently in the form:

_ 1. _ 1.
w- (cp;, + ey 1gc,,;,)c,,m - Lot 5
where c = — IZCI‘,},IH. 2 can then be obtained by substituting Eq.
(3) into Eq. (1),
A X ~
Z=CpW-2¢ @)

where W = (Cp} + 1Cp 1, 17 Cph)z and & = 11,17 Cplz. The com-

putational complexity of the steps for calculating C;ll,, W and ¢,

and Z is summarized in Table 1. Many methods such as the FFT-
based algorithm (Fritz et al., 2009) and parallel computation (Guan
et al,, 2011; Cheng, 2013) have been proposed to deal with the case
where msn?. This paper focuses on the case where m<n?. In this
case the computational complexity of ordinary Kriging is domi-
nated by the O(n®) computation of Cl;ll,. Hence, in improving the
efficiency of online Kriging, this paper focuses on calculating Cl‘,l]J
more efficiently in a stream environment.

2.2. Stream ordinary Kriging

In stream computing, data are structured as a sequence of
timestamped tuples (the “stream”). Operations on the stream of-
ten use the concept of a window to impose additional structure
upon the stream. Incoming data are accumulated in the window
until some trigger condition is met, such as the number of tuples
received (count-based), the time elapsed (time-based), or the
magnitude of change found in the received data (delta-based).
Upon triggering, pre-defined operations are performed on data in
the window, before some or all data in the window is “flushed”.
The cycle then continues anew.

Two common types of window are tumbling and sliding win-
dows. In a tumbling window, all data in the window are flushed at
a trigger. In a sliding window, only the oldest tuples are expunged
at a trigger, akin to a FIFO list. Fig. 1 depicts an ordinary Kriging
stream operator diagrammatically. The operator aggregates tuples
(source points) within a window. When the trigger policy of the
window is satisfied, ordinary Kriging interpolation is conducted at
all target points p,, and the results 7, are output to the result
stream, ready for the next cycle. The configuration of the window
depends on the specific stream query. For example, typical stream
queries can include:

Table 1
The computational complexity of the steps for calculating Cl;ll,, W and &, and 2.

Calculating Gl W and ¢ 2

Computational complexity omd) om?) O(mn)
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Ordinary Kriging operator

Source stream | o £
ky Zk

Y .
current window

Result stream
—

Fig. 1. The schematic of an ordinary Kriging operator that conducts ordinary Kri-
ging spatial interpolation over the tuples within a window and outputs the inter-
polation at the result stream.

® Tumbling window: Interpolate the values at p, whenever 1000
new tuples have been received (count-based).

e Sliding window: Every 30 s, interpolate the values at p, over
tuples received in the past 10 min (time-based).

Let p, denote the source points in the window at the kth
window trigger event. Executing the ordinary Kriging algorithm
(Eq. (4)) over the source points in the window as an entirely new
batch can become unfeasible as Ip,| becomes larger, as a con-
sequence of the O(Ip,*) time complexity required to invert Cpp,.

2.2.1. Incomplete streams

Assuming that locations of the source points in p,_; and p, are
the same, but only the scalar values at the source points are
changed; and that b. the covariance model does not change from
the (k — 1)th trigger to the kth trigger, then the same linear
weights calculated at the (k — 1)th trigger can be used at the kth
trigger. This avoids the computation of Cl;;pk. In many cases,
however, it is to be expected that at any given kth trigger, data
from part but not all of the locations of the whole source points
(py) is received (p, c py). As a consequence, the locations of source
data points from p,_; and p, may be different, but substantially
overlap: p,_; # P, and Ip,_; n p;/>0. In the sequel, the notation
Pr_1 = Pr_1 N Py is used.

Wireless sensor networks typically generate such data steams.
The location of the sensor nodes p, across the whole network may
change only infrequently. However, intermittent and frequent
node and link failures are commonplace in sensor networks, and it
is usual that data from the network is incomplete (i.e., p, c p,). For
example, we deployed three RISERnet networks (Zhong et al.,
2015) to monitor weather conditions in wildfire-prone areas.
Wildfire spread simulation tools, such as PHOENIX RapidFire
(Tolhurst et al., 2008), require regular, gridded inputs. Hence in
order to apply the RISERnet data to such tools, the measurements
need to be interpolated spatially. The RISERnet networks only
consist of 70 nodes currently, but similar networks are expected to
scale to thousands or even millions of nodes in the future. Hence it
is challenging to interpolate the data efficiently to support online
applications. Although the location of the sensor nodes of our
RISERnet networks is static, link failures are inevitable due to

significant signal attenuation caused by trees and undergrowth.
This produces the incomplete streams described previously.

To illustrate, Fig. 2 depicts an example of 20 static nodes. In
each window k, the measurement from a node is received with a
probability of 80%. In Fig. 2, the filled dots indicate those nodes
whose measurements are received and stored in p, at the kth
trigger of the window.

2.2.2. Assumptions

This paper aims to improve the efficiency of ordinary Kriging
operations over aggregated spatiotemporal data streams when
compared with the traditional batch algorithm. To simplify the
description of the algorithms, the approaches explored in the
following section assume that covariance model is static (un-
changing). Kerwin and Prince (1999a, 1999b) and Vargas-Guzman
and Yeh (1999) assumed static covariance model to utilize the
autocorrelation of the covariance matrix Cp,, for accuracy gain. In
this paper, static covariance model is assumed for efficiency gain.
In practice, the covariance model of a random field may change
over time. The algorithms proposed in this paper can handle time-
varying covariance model if the changes in the model satisfy the
criteria described in Section 5.2. It is further assumed that either:

1. 1P, I<pyl, V k> 1, i.e, the source points at any given iteration k
refer to a majority of spatial locations processed from iteration
1 to iteration k; or

2. Ip,_4l<Ip,l and Ipyl<ip;l, V k > 1, ie, the source points at any
given iteration k refer to a majority of spatial locations pro-
cessed at iteration k — 1;

where:

Pk = (PIp € Py and p & Py}
Py =(pPpep,_and p & P,_4)
P’k = {plp € prandp & p,_;)

and where p, ., is the source points that have been received up to
the kth trigger event of the window. An efficient incremental al-
gorithm is firstly proposed for assumption 1, but it is not suitable
for assumption 2. Thus a recursive algorithm, which can also in
some situations improve efficiency in assumption 1, is proposed to
handle assumption 2.

3. Methods

This section presents the incremental approach and the re-
cursive approach to efficient stream Kriging when the source
points satisfy one of the key two assumptions made in Section
22.2.

o (o] [ ] ([ ] [ ] [ [ ] [
(] (] [ ] [ ]
([ ] .. (] .. o .O [ ] 0.
[ ] eeoe © [ ] eo © [ ] eeoe © [ ] oo ©
(] o [ ] [ ]
[ 4 (o] [ [ ] [ 4 [ ] [ 4 [ ]
(o] [ o [ ] [ [ [ ] [ d [ ] [ ] [ d [ ]
® O e e o o ® OO o o e
[ ] (e] [ ] ([ ]
| Il L Il >
1 2 3 4 k

Fig. 2. An example of 20 immobile nodes, where the measurement of each node is received by the stream processor with a probability of 80%. The filled dots indicate the
subset p, of nodes p, whose measurements are received by the stream processor at the kth trigger of the window.
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-1

3.1. Incremental computation of Cy,p,

Let p, = {plp € p, and p ¢ p,.,_;} denote the new source points

in the window at the kth trigger of the window. Cj;!

P1:kP1:k can be
-1

computed incrementally from C called the addition step.

P1:k-1P1:k-1"
1 . 1 .
Cp, €an then be obtained from Cy, ... called the extraction step.

As this algorithm needs to calculate C;}szl:k incrementally, it is

called the incremental algorithm. The details of this algorithm are
described below.

3.1.1. Incorporating p,, into the Kriging system: the addition step

For k > 1, when the window contains new source points at the
kth trigger of the window (p, # @), p;., needs to be updated as
Pi.k = P1.k_1 U Py The covariance matrix Cp, ,p,., Of Py, can then
be written in block form as:

C _ Cplzk—ll’lzk—l cl’l:k—lpk
P1:kP1:k — cr Ci 4 -
PkPk (5)

A legal covariance model must ensure that Cp ., p,..; and Cgp,
are symmetric positive definite matrices, thus Cl_)1]~kP1-k can be ob-

tained using the following block matrix inverse formula:

1 - el et ~ a1
c-! | Sorekemprikor * CorakoimiCormCorikipe ~ Cprok—1mCoeny
P1:kP1:k — C_l CT C_l ’
~ “PiPi-P1:k-1Pk PkPk (6)
_ i ] =
where  Cpy o, = Copy iprs Coreme aNd Cpp = Cppy
T 1 ) . . . .
Coii 10:Co1k 1.1 Cproip - After inverting the initial covariance
. 1 .
matrix  Cpp,,  Cp.p,,, €an be deduced incrementally from
—1
CP]:k—]Pl:k—l'

3.1.2. Computing Cl;,}pk from C;,]]:kp]:k: the extraction step

As Py, € Py Cpy.ipy, CaN be permuted so that:

PTCP]:kPl:kP = [Cpl<Pk Y:|‘

YT 2z @)

where Y € R«xB1:¢ and Z € RP1:+” are the blocks resulted from the
permutation; and P € RP1:” is the permutation matrix. The first
Ip! columns of P are determined by which elements of p,., are in
py as:

Pli, j1= 1Pyl = Bl forj=1, 2,..,1p
' 0 otherwise, Po e @)

where (-)[i, j] is the entry of (-) at row i and column j. The Ip,| + 1
to Ip;./ columns of P can be filled with the rest columns of a
IP;.! X Ip;. | permutation matrix in any order. For example:

1 if py.glil = Py ] forj=1, 2, ... by

P[i, Ip | +j1 =
h1pd +1 {0 otherwise, )

As the inverse of a permutation matrix is its transpose, Eq. (7) and
the block matrix inverse formula yield

_ o1 | Gl + UX-UT Udem
PTCPllzkplzkpz(PTCP1:kP1:kP) =[ PiPk ], (10)

ur X

where U= - C,l, YX, and X = (Z - Y'C;}, Y)-'. Thus in order to

PicPk
calculate Cyly . Cpl ., is firstly permuted as Cy,, ,p, . = P'Cyl o P
Then according to Eq. (10):
U=Cpyyiprol 10100 1D+ 121Dy 1] an

X =Cp o LB + 11Dyl P+ 121Dy, 12)

where (\)[ri: 1, q: &] denotes the sub-matrix of () from row r; to

row r, and column ¢; to row c,. Cl‘,,}pk can be deduced from Eq. (10)
as,

-1 _ ¢ . . — T
Cowp = Coripr [ 15104 1211 ] - UXTIUT. 13)
Eq. (13) solves the inverse of the Ip| x Ip;| covariance matrix Cp,p,
by inverting the Ip;.,| X Ip;.,| matrix X with the overhead of matrix
permutation and two matrix multiplications. Further, some extra

time is needed to update the matrix Cl_’ll:kP1:k when the addition
-1

step is required. If Ip;,l<Ipyl, V k > 1, calculating Cg, using this
incremental algorithm is faster than inverting Cy,p, directly. For
example, assume the set of all source points p, does not change
over time, and the window stores the data from a random subset
of p, at every trigger of the temporal window. Then, the addition
step is needed only at the first k; triggers of the window, where k¢
is the index of the window trigger when p,,, = p,. For k > kr, only
the extraction step is needed. If a large enough part of p, is re-
ceived and stored in the window at every trigger, the assumption
IPy.l<Ipl, V k > 1 can be satisfied. An experimental evaluation of
this expectation is explored in Section 4.2.

In the incremental algorithm, p,,, and Cp/ ,p, , are maintained
to accelerate the ordinary Kriging interpolation at the next trigger
event of the window. If the assumption Ip,.;.I<Ip;l, vV k > 1 is sa-
tisfied, the memory cost of the incremental algorithm is similar to
that of the original ordinary Kriging algorithm. However, the in-
cremental algorithm is problematic when p, changes over time. In
practice this might occur if sensor nodes are occasionally re-
deployed or removed, or if a sliding temporal window is used in
combination with moving sensors. These circumstances can result
in unbounded sizes of p,, and Cp! , .. which invalidates the
assumption Ip,.,l<Ip;! as k increases. The recursive algorithm below
is proposed to address this issue for high computational efficiency
even if p, slowly changes.

3.2. Recursive computation of C,‘,,}pk

To address the problem of changing p,, a recursive algorithm is

-1 ; -1
developed to calculate Cpkpk recursively from CPk—lPk—l' As
Pr_1 € Pr_1v Ci‘,,}_lpk_l can be calculated from CBI:—ll’k—I using the

extraction step described in Section 3.1.2. In this step, the firstIp,_

columns of the permutation matrix P, € RPx-1
which elements of p,_; are in p;,_; as

.. 1 if pp_4[i] = By_1 1 . N
Pi, jl= ¢ forj=1, 2, ..., Ip,_4l.
il {O otherwise, ! Pt 14)

are determined by

The Ip,_,I + 1 to Ip,_,| columns of P can be filled as

1 if il =pj,_,lil , _
TPyl = Py ] forj=1, 2, ..., Ipj_4.

Pili, IPg_ql +Jjl =
Pt +J {0 otherwise, (15)

Cl-;;_]pk_l can be calculated in a similar fashion to Eq. (13) by
Cl';ll—lﬁk—l = C;’k—ll’k—l[1: lpk—ll' 1: |pk—1|] - UrXF]U'T‘

where:

Cor it = PTTCI_’;-1P1<-1R (16)
U = Cp, o o[ 1 D1l 1Byql + 12 1P ] a7

X = Cpy_ipri[ Bl + 12 1Dl D4l + 12 1P _q1]- (18)
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—1 —1 . . =~
Then Cgp, can be calculated from C5,_1b,_, DY incorporating pj

using the addition step described in Section 3.1.1 as

~ ~—1

-1 s Ca
c-! Cpk—lpk—l - CPIHP;’(CPLP;’(
PPk — ¢ ¢ C,] ’
= “ppy b P;by; 19)
C. ..—0Cz! . L, C.-v = Covar — CT -,
where Cpk—lpk - cl’k—ll’kflcl’k—lpk and cPkPk - cPkPk Cl’k—lpk
—1 = &
Cf’k—lﬁk—lcl’k—ll’k .

In this recursive algorithm, the extraction and the addition
steps need to invert a Ipj,_,! x Ip;_,| matrix and a Ip;| x Ip;| matrix,
respectively. Hence when Ip;_,I<Ip,! and Ip;l<Ip,|, computing Cl;,}pk
with this recursive algorithm can be faster than inverting Cp,p,
directly. Compared to the incremental algorithm, the recursive
algorithm only saves Cl;;pk and p,. Thus the memory load does not
increase as p, changes over time and maintains the same with that
of the original ordinary Kriging algorithm. Moreover, the compu-
tational load depends on Ip;_,I and Ip;| rather than Ip, ... Hence, in
practice the computational efficiency is expected to depend on the
number of source locations that change between successive win-
dow triggers, but not to decrease as p, changes over time. An
experimental investigation of these expectations is presented in
Section 4.3.

4. Results

In this section, the efficiency of the incremental and recursive
algorithms developed in this paper is evaluated and compared
experimentally. The algorithms were implemented within a
commercial stream-processing platform: IBM InfoSphere Streams.
The ability to use an existing, off-the-shelf stream processing
platform was a key objective for our work, ensuring our approach
is practically usable. Two sets of experiments were conducted, to
evaluate and compare the efficiency of the incremental and re-
cursive algorithms under first static and then dynamic p,.

4.1. Experimental setup

Dynamic scalar fields were simulated in the experiment. Each
of the fields was simulated using a mixture of 200 Gaussian
functions. The signs of these functions obey a first-order binomial
distribution B(1, 0.5). The centers of the Gaussian functions were
drawn from a uniform distribution across the test area. The ranges
of the Gaussian functions are also random numbers that follow a
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(a) Incremental algorithm

uniform distribution. This surface generation scheme provides a
close-form function of the experimental surfaces, which allows the
source points to distribute anywhere in the study area. The
semivariogram of the surfaces was generated, and was found to be
fitted best by the Stable model (Wackernagel, 1995) with exponent
of 1.5. The covariance model was then deduced from this fitted
variogram model. This covariance model is assumed to be static
over all the sampling cycles.

In the experiments, the fields are sampled by sensor nodes (p,)
randomly located with a uniform distribution. The input port of
the spatial interpolation operator for receiving source points was
configured with a tumbling window (i.e., all tuples are flushed
after each sample cycle). In the first experiment, a random subset
of nodes was drawn from p, with a uniform probability P, to si-
mulate node and link failures. In the second experiment, p, was
allowed to change over time, to simulate node movement and
redeployment. In either case, p, denotes the set of the sensor
nodes drawn in the kth sampling cycle. In both experiments, a
50 x 50 grid of target points was used to generate the interpolated
surface.

It is important to note that no temporal interpolation is per-
formed by either of the incremental algorithm or the recursive
algorithm. As a result, changes to the actual scalar values across
the field over time have no effect upon the computational char-
acteristics of the algorithms. The algorithms take advantage of
static spatial covariance and slow evolution in the spatial locations
of source data points to accelerate Kriging, but make no assump-
tions about changes to the scalar values of the field.

4.2. Efficiency of incremental and recursive algorithms under static
Pa

The first experiment examined the efficiency of the incre-
mental algorithm and the recursive algorithm, under the as-
sumption of static (unchanging) p,. Five different sizes of Ipl (200,
400, 600, 800, 1000) were tested in order to investigate the scal-
ability of the algorithms. For each of these, six different values of
P, (60%, 70%, 80%, 90%, 98%, and 100%) were tested, effectively
varying the rate of change in the spatial locations of source points
in each window. For each different combination of Ipl and P,, 30
repetitions of the simulation were performed. The execution time
for interpolation (RT) for each cycle was measured for a total of 10
sampling cycles.

Fig. 3 illustrates the raw results for a typical set of simulations,
with P,=80%. The figures show the changing execution time over
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Fig. 3. Comparison of the normalized execution time (ratio between mean RT, and mean RT;) of the incremental algorithm (a) and the recursive algorithm (b) over
k=1,2, ..., 10 windows for P, = 80% and Ipl € {200, 400, 600, 800, 1000}. (a) Incremental algorithm. (b) Recursive algorithm.
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the first k=1,2,...,10 windows for the five sizes of source point data
set. The ratio of mean RT; (RT;) to mean RT; (RT;) of the 30 re-
plications is used as the metric to evaluate the improvement in
efficiency of our algorithms (when k > 1) compared to direct batch
interpolation (when k=1). Thus, an RT; /RT, ratio of 0.5 means that
our algorithm executed in 50% of the time required by naive batch
Kriging recomputation at every iteration. In the case of Fig. 3, the
recursive algorithm rapidly stabilizes to below 80% of the RT; ex-
ecution time. The incremental algorithm slightly outperforms the
recursive algorithm, reaching below 50% of the RT; execution time
for larger sets of source points.

As is clear from Fig. 3, the execution time rapidly stabilizes after
2-5 windows, a common feature across all scenarios tested. For
the incremental algorithm, the addition step is needed at the in-
itial k triggers of the window when P, < 100%. As p;., approaches
p, for k <k, fewer and fewer nodes need to be incorporated into
Cl_’llzkl’]:k’ Hence, as anticipated, the execution time reduces gradu-
ally and reaches the asymptotic level when p;.; = p,. The recursive
algorithm does not need to calculate Cl;ll:kpl:k incrementally, hence
it delivers the same extent of improvement in efficiency from k=2.

By using the average execution time for k € {7, ..., 10}, Fig. 4
enables us to show the change in execution time across all P,
values and Ipl tested. The figure shows that for both incremental
and recursive algorithms, proportional improvements in execution
time increase with larger data sets. The graphs show that the re-
cursive algorithm is more efficient than the incremental algorithm
in the 60-70% range because Ip, ..l is large in the extraction step of
the incremental algorithm when P, is low. However, when P, is
60-70%, the recursive algorithm provides only limited improve-
ment in efficiency compared to naive batch Kriging.

When 80% < P, < 100%, both algorithms are more efficient than
direct batch computation. In this range, the asymptotic execution
time of the incremental algorithm is less than that of the recursive
algorithm. This is because only the extraction step is needed in the
incremental algorithm for k > k;, and Ip; .| is small enough. On the
other hand, the recursive algorithm needs both the addition and
extraction steps for all k > 1. When B, = 100%, neither the addition
nor the extraction step is needed in either algorithm. Thus, they
both have the same performance.

As P, becomes closer to 100% the efficiency gains for both al-
gorithms increase, with the incremental algorithm broadly su-
perior to the recursive algorithm, when p, does not change over
time and P, > 80%. This fits the objective of more efficient pro-
cessing in cases where some but not all of p, is received in each
window, p, C p,.
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4.2.1. Scalability

Although neither the incremental algorithm nor the recursive
algorithm alters the overall O(n3) worst-case scalability in cases
where B, < 100%, the algorithms reduce the size of the matrix
computations, and so increase the average-case scalability. Table 2
compares and summarizes the average-case scalability of the in-
cremental algorithm and the recursive algorithm across the ex-
periments. For each algorithm and value of P,, a polynomial re-
gression of the form y = ax? was fitted to the average-case scal-
ability curves (i.e., measured execution time in seconds as a
function of Ip,l). In all cases, the coefficient of determination (R?)
indicated a good fit (R? > 0.99 in all cases). The exponent of the
curve b provides an estimate of the average case scalability. Table 2
shows that as expected, average-case scalability is always better
than worst case scalability. The difference is more pronounced for
the incremental algorithm, although both algorithms achieve
average-case scalability approaching O(n?) for cases where P, is
high (e.g., P, = 98% yields average-case scalability of O(n?162) for
incremental and O (n2992) for recursive algorithms).

4.3. Efficiency of incremental and recursive algorithms under chan-
ging p,

As discussed previously, the incremental algorithm is not sui-
table for changing p,. This can be illustrated through a simple
experiment, the results of which are summarized in Fig. 5. In the
second experiment, the set up of the scalar surfaces, sampling
cycles, and target points are the same as those in the previous
experiment. But p, is manipulated to be time-varying. At the first
trigger of the window, the window contains 600 non-coincident
sample points (Ip;| = 600). From the (k — 1)th to the kth trigger of
the window for all k > 1, 20 nodes were removed and 20 new
nodes were added, i.e., Ip,_;l = Ip;| = 20. Ordinary Kriging inter-
polation is conducted over p, for k=1,2,...,41 using the incre-
mental algorithm and the recursive algorithm. In Fig. 5, the ex-
ecution time of these two algorithms is compared. Because 20 new
nodes are incorporated at every trigger of the window for k > 1,
Ip, ., increases by 20 at every trigger in the incremental algorithm.
As a result, the execution time of the addition and the extraction
steps of the incremental algorithm keeps increasing. For k > 12,
the execution time becomes even longer than RT;. In contrast, the
execution time RT} of the recursive algorithm V k > 1 is shorter
than RT;, and it is stable because Ip,| does not change over time.
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Fig. 4. Comparison of the normalized execution time (ratio between mean RT, and mean RT;) of the incremental algorithm (a) and the recursive algorithm (b) for average of
k € {7, .., 10} windows for P, € {60, 70, 80, 90, 98, 100%} and Ipl € {200, 400, 600, 800, 1000}. (a) Incremental algorithm. (b) Recursive algorithm.
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Table 2
Coefficients for regressions of the form y = ax? upon scalability (growth in ex-
ecution time in seconds as a function of Ipl).

P, (%) Incremental Recursive
a b R? a b R?
60 22 % 10-7 2932 0.99996 1.5 x 10-7 2896  0.99995
70 1.7 x 107 2.872 0.99995 1.5 x 10-7 2.868  0.99998
80 1.2 x 10-7 2.819 0.99990 1.0 x 10-7 2.886  0.99996
90 2.5 % 10-7 2.667  0.99979 84 % 10-7 2839  0.99991
98 1.5 x 10-7 2.162 0.99926 9.5 x 10-7 2.029  0.99828
100 3.8 x 10-7 1.080 0.99955 4.0 x 107 1.078 0.99985
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Fig. 5. Comparison of execution time of the incremental algorithm and the re-
cursive algorithm when p, continually changes. At the first trigger of the window,
the window contains 600 non-coincident source points ( Ip;/=600). From the
(k — Dth to the kth trigger of the window for all k > 1, 20 nodes are removed and
20 new nodes are added, i.e., Ipj_;l = Ipyl = 20.

5. Discussion and future work

This section discusses the applicability of the incremental al-
gorithm and the recursive algorithm when the assumptions de-
scribed in Section 2.2.2 are not satisfied, and potential further
improvement of the efficiency of ordinary Kriging.

5.1. Extending to sliding temporal windows

The discussions above frame the problem, common in
streaming data, where incomplete data are received on the stream,
requiring computation with different but overlapping subsets of
locations in consecutive windows. In order to satisfy the as-
sumption Ip;.I<Ip;l, V k > 1 for the incremental algorithm and the
assumptions Ip,_,l<Ip,/ and Ip;l<Ip,l, ¥ k > 1 for the recursive al-
gorithm, the data sources that generate the spatiotemporal
streams are assumed to be immobile in these discussions. Al-
though today's sensor technology most frequently involves im-
mobile sensor nodes, mobility is increasingly common. In fact, the
assumptions for the recursive algorithm in certain cases may hold
even for such mobile data sources.

Specifically, for moving source points, a sliding temporal win-
dow also may result in p,_; # p; and Ip,_,1>0. Fig. 6 shows a count-
based sliding window with window size w and trigger size s. The
window maintains its size to be w by evicting a tuple when a new
tuple is inserted. p, can be maintained as a set of pointers to the
tuples in the window k. Spatial interpolation is conducted over p;
when the trigger policy of the window (i.e., s tuples inserted) is
satisfied. The tuples that are not evicted between windows k — 1
and k represent the overlapping set of source points that make up

1

w tuples in window k& — 1

s tuples expired w tuples in window &

k-1 k

trigger index

Fig. 6. An example of a count-based sliding window over moving objects with
extent size w and step size s.

Py_; and py.

For the sliding window shown in Fig. 6, at the window trigger
event, the extraction step is firstly run to obtain the inverse of the
covariance matrix (C; ) of the non-coincident tuples that are
still in the window (j,_,) at t.. Then the addition step is executed
to incorporate p;, in the s inserted tuples into the interpolation

system, which provides Cl;;pk for generating the interpolation re-
sults. The effectiveness of this scheme depends on the relationship
between s and w and the occurrence of coincident tuples. If the
tuples in the stream are rarely coincident and s<w, this scheme
can be more efficient than processing the source points in the
window at every trigger as an entirely new batch. For example, as
shown in Fig. 5, this scheme can be as about 5.5 times as efficient
as batch interpolation when there are no coincident tuples in the
stream, s=20, and w=600. The same procedure can be applied to
other variants of sliding temporal windows as well, such as time-
based and delta-based sliding windows. For other variants of
sliding windows, the effectiveness of this scheme can also be af-
fected by changes in the data rate.

5.2. Extending to dynamic covariance models

In the previous sections, the spatial covariance model is as-
sumed not to change over time to deduce Cl;;pk from C;}MPHH or
Cpr_p, Vk>1 In fact, the incremental algorithm and the re-
cursive algorithm can handle dynamic covariance models if the
temporal evolution of the covariance model satisfy the following
two criteria:

1. the function of the model does not change but only the para-
meters ¢ change, and

2. the ratio of the preceding covariance to the current covariance
between any two points is independent on the locations of the
points, i.e., Cov(p;, by Ok-1) = d@k-1, Ok)Cov(p;, by k), Y p; and
pj, where d is a scalar function independent on p; or p;.

These two assumptions are often satisfied in practice. For ex-
ample, when dynamic stationary Gaussian random fields are in-
terpolated, it is common to use the same form of kernel function
to model the spatial variation of the fields (Kerwin and Prince,
1999a, 1999b). This satisfies the first criterion. The variation of the
spatial model is captured by fitting the kernel function to the
variograms of the fields, which leads to different parameteriza-
tions of the kernel function. Many well-established kernel func-
tions such as the exponential, Gaussian, and power kernel func-
tions satisfy the second criterion when parameterization is chan-
ged. In this situation, the changes in the covariance matrix be-
tween two points sets p and q can be written as:
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Cpq(Bk-1) = dBk—1, 0:)Cpq(0%). 20

Hence when the parameters of the covariance model changes, the
inverse of the preceding covariance matrix can be easily updated

by:
Cl;llzk—lpl:kfl(ak) =dOr-1, 0’<)C1;11;k711!1:k71(0’<—1)v
for the incremental algorithm, @2n

Cl;llcflplm(ek) = d @1, "k)cﬁﬂqpkq(”k—l)'
for the recursive algorithm. (22)

Then Cl‘,’}pk(ek) can be calculated using the previous two algorithms

with the inverse of the updated preceding covariance matrix.

5.3. Combining our algorithms with modified ordinary Kriging
algorithms

In both the addition and extraction steps of our algorithms, one
matrix inverse needs to be calculated. In addition, Cf)}p] needs to be
computed in the batch fashion. These are the major computational
and space bottlenecks of our algorithms towards online ordinary
Kriging spatial interpolation. There are several modified ordinary
Kriging algorithms available which can compute the approximated
inverse of the covariance matrix efficiently and accurately (see
Section 1). These approximated algorithms can be combined with
our algorithms to further reduce execution time. They can be
adopted to calculate Cl_)1]l71 and the matrix inverse in the addition
step. In the future works, a scalable online ordinary Kriging spatial
interpolation operator will be investigated by combining the in-
cremental and recursive algorithms developed in this paper with

currently available modified ordinary Kriging algorithms.

6. Conclusion

An incremental algorithm and a recursive algorithm to conduct
ordinary Kriging interpolation over spatiotemporal data streams
were proposed and evaluated in this paper. Computing
Cl‘,,}pk, v k > 1, with the incremental algorithm is more efficient
than inverting the entire Cp,, when Ip;,l<lp,l. When the size of
P:.x keeps increasing over time, the assumption Ip,..I<Ip,l can
become invalid as k increases. In this case, if the assumptions
Ip,_,I<Ip,| and Ipjl<ipl, V k > 1 can be satisfied, the recursive al-
gorithm can deliver lower computational load than batch Kriging
computation.

The results demonstrate the significant average-case efficiency
gains that can be accrued in cases where data from part but not all
of p, is expected to be received in any given window. This situation
is endemic to stream processing data sources such as wireless
sensor networks, where node movements or replacements are
typically infrequent, but intermittent node and communication
failures are commonplace. In addition, the applicability of our al-
gorithms under sliding temporal windows or dynamic covariance
models is discussed. Based on our algorithms, further investigation
for developing a scalable online ordinary Kriging spatial inter-
polation operator is also described.
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