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A B S T R A C T

Process-based modeling offers a way to represent realistic geological heterogeneity in subsurface models. The
main limitation lies in conditioning such models to data. Multiple-point geostatistics can use these process-
based models as training images and address the data conditioning problem. In this work, we further develop
image quilting as a method for 3D stochastic simulation capable of mimicking the realism of process-based
geological models with minimal modeling effort (i.e. parameter tuning) and at the same time condition them to
a variety of data. In particular, we develop a new probabilistic data aggregation method for image quilting that
bypasses traditional ad-hoc weighting of auxiliary variables. In addition, we propose a novel criterion for
template design in image quilting that generalizes the entropy plot for continuous training images. The criterion
is based on the new concept of voxel reuse—a stochastic and quilting-aware function of the training image. We
compare our proposed method with other established simulation methods on a set of process-based training
images of varying complexity, including a real-case example of stochastic simulation of the buried-valley
groundwater system in Denmark.

1. Introduction

Process-based geological models such as flume experiments (Paola
et al., 2009, 2011; Straub et al., 2009; Kim et al., 2010; Tal and Paola,
2010; Paola, 2000) and advanced computer simulations of flow and
sediment transport (Elias et al., 2001; Giri et al., 2008; Lesser et al.,
2004) are now widely used to study the effects of geological processes
in the sedimentary record. These models are known for providing more
insight into physical realism compared to rule-based models (Xu, 2014;
Lopez, 2003a), and are the de facto standard for addressing funda-
mental questions in sedimentary geology. One of the major drawbacks
with the application of process-based models in practice is that they
cannot be easily matched with the data acquired after deposition such
as drilled wells or geophysical data. This limitation is inherent to any
and all forward models, which are fully determined given well-posed
boundary conditions (e.g. sea level rise, sediment supply).
Furthermore, process-based geological models are complex as demon-
strated by Fig. 1, demand superb modeling expertise, great amount of
time (computational or laboratorial), and can be quite laborious to
design (Briere et al., 2004).

In geostatistics, the process of conditioning 3D models to data has

been actively investigated (Matheron, 1963; Mariethoz and Caers,
2014). Although the research community has developed various
modern algorithms in the past 15 years (Strebelle, 2002; Arpat and
Caers, 2007; Zhang et al., 2006, 2015; Honarkhah and Caers, 2010; El
Ouassini et al., 2008; Faucher et al., 2014; Tahmasebi et al., 2012;
Mahmud et al., 2014; Yang et al., 2016; Mariethoz et al., 2010), most
still have problems in handling the complexity of process-based
models, suffer from low computational performance, and/or depend
on non-intuitive input parameters that lack clear geological meaning.
The most recent algorithms developed for geostatistical (or stochastic)
simulation rely on training images from which multiple-point statistics
(MPS) are reproduced (Mariethoz and Caers, 2014). Compared to
alternative approaches such as object-based (Maharaja, 2008) and
surface-based or event-based (Xu, 2014) simulation, training-image-
based approaches have more flexible conditioning capabilities. In order
to exploit process-based models as training images and condition them
to data, we first need to efficiently manage their non-stationarity and
arbitrary landforms.

The term non-stationarity refers to the concept that statistics vary
with location and time. For example, the channel morphology in the
deltaic system of Fig. 1 is a function of the distance to the delta apex. It
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is expected that channels by the sea present different characteristics
compared to those evolving near the discharge point upstream in the
high lands. Previous successful attempts to model non-stationarity in
MPS simulation utilize auxiliary variables (Chugunova and Hu, 2008).
Although effective, these attempts incorporate the variables by ad-hoc
weighting; therefore, they do not scale to the complexity of 3D
geological models.

Among the most used MPS simulation algorithms that model non-
stationarity, we list Sequential Normal Equation Simulation (SNESIM)
(Strebelle, 2002), Direct Sampling (DS) (Mariethoz et al., 2010) and
Cross-correlation Simulation (CCSIM) (Tahmasebi et al., 2012). In
SNESIM, probability maps that indicate the occurrence of rock facies in
the subsurface are incorporated in the simulation via a probabilistic
model known as the Tau model (Journel, 2002; Allard et al., 2012).
Although more scientific than ad-hoc weighting, the SNESIM algorithm
does not support auxiliary variables that are not probability maps. Even
if adapted to handling arbitrary variables, SNESIM will still perform
poorly with process-based training images because of its underlying
tree structure originally developed for processing categorical values.

In DS and CCSIM, auxiliary variables are incorporated with ad-hoc
weighting. As previously mentioned, this technique does not scale with
complex 3D process-based models. Nevertheless, both algorithms
support continuous training images and present a remarkable compu-
tational speedup compared to previous alternatives in pixel-based and
patch-based stochastic simulation, respectively.

In DS, the speedup can be explained by the direct sampling of the
first pattern for which the distance to the data is below a pre-specified
threshold. If the threshold is large, the algorithm is fast but suboptimal.
If the threshold is small, the simulation of 3D models is unfeasible.
Given the resolution of process-based training images, an appropriate
threshold is hardly available.

In CCSIM, the speedup can be explained by the pasting of many
voxels (or pixels in 2D) at once. In this case, the choice of a threshold is
less important and can be fixed to a very small value for process-based
models of order 10 × 10 × 102 2 2 voxels or larger. This quality of CCSIM
is inherited from the original, seminal paper “Image Quilting for
Texture Synthesis and Transfer” by Efros and Freeman (2001) who
came up with the idea of quilting images in computer vision.

Efros and Freeman introduce a novel, simple, and efficient algo-
rithm for sampling 2D images from arbitrary reference (a. k. a.
training) images. In its simplest form, image quilting simulation
(IQSIM) consists of 1) a raster path over which patterns (i.e. sub-
images of fixed size) are pasted together with some overlap; 2) a
similarity measure between patterns already pasted in the simulation

grid and patterns in the training image; and 3) a boundary cut
algorithm (Boykov and Jolly, 2001; Boykov and Kolmogorov, 2001;
Kwatra et al., 2003) applied in order to minimize the overlap error of
the paste operation.

The Efros-Freeman algorithm addresses the texture synthesis
problem. In the same paper, the authors apply image quilting for
texture transfer by iterating the procedure until a mismatch with a
background image is below a pre-specified threshold. The texture
transfer problem is closer to the problem that is addressed in this
paper, and is closer to geostatistics in general because it involves
(spatial) data that needs to be honored. Their proposed iteration
technique utilized by CCSIM and other variants, however; becomes
computationally burdensome with 3D geological models.

Based upon the advances made by the computer vision community,
Mahmud et al. (2014) extend 2D image quilting to 3D grids and
attempt to incorporate hard data (or simply point data) along the raster
path. The authors introduce a distance to the data and propose a
weighting scheme with the distance computed in the overlap with
previously pasted patterns. This scheme has two major limitations: 1)
Distances must be normalized before they can be weighted and
summed and 2) The weights are case-dependent and are obtained by
trial and error. Although flexible, the weighting scheme proposed by
Mahmud et al, and the template splitting procedure described therein,
are unfeasible in real 3D applications.

In a similar attempt, Faucher et al. (2014) formulate a patch-based
stochastic simulation as an unconstrained optimization where the
objective function has penalty terms for hard data and local-mean
histograms. In this formulation, the weights appear directly in the
objective function and are chosen under a set of simplifying assump-
tions. Despite the very good analysis, Faucher et al assumptions may be
considered too strong for arbitrary process-based training images and
field data. Furthermore, there is no theoretical result that proves the
existence of global weights for conditioning arbitrary random fields.

Conditioning image quilting to hard data is particularly challenging
as demonstrated by all previously published attempts. The raster path
is suboptimal for this task as it does not sense the data ahead in the
simulation domain. In the extreme case, the data is clustered near the
end of the path and is invisible to the algorithm until the very last
iteration. Tahmasebi et al. (2014) alleviate the raster path issue by
incorporating data ahead of the path. The proposed solution comes
with an extra unknown parameter, there called the “co-template”, that
is not trivial to set, and yet determines the data conditioning
performance. Co-templates add an unnecessary layer of complexity to
grids with arbitrary landforms, and as it will be discussed in the next
sections, there exists a much simpler and more effective solution.

Besides the unknown weights for combining different variables and
data defined over the domain, MPS simulation algorithms usually
depend on a non-trivial list of input parameters that do not convey
geological nor physical understanding. In particular, the Efros-
Freeman image quilting algorithm requires a window (or template)
size for scanning the training image. The choice of this window can
greatly affect the quality of the realizations and there is still no good
criterion for its design.

In this paper, we propose a systematic probabilistic procedure for
data aggregation in the original Efros-Freeman algorithm. Our pro-
posed algorithm is faster than any other MPS simulation algorithm
previously published, bypasses the ad-hoc weighting limitation, and
produces visually realistic images conditioned to data. The paper is
organized as follows. In Section 2, we introduce a new method for data
aggregation and other minor modifications to the original Efros-
Freeman algorithm to accommodate hard data (e.g. wells). In Section
3, we apply the proposed algorithm to 2D process-based and 3D
process-mimicking models with real-field complexity. In Section 4, we
discuss the choice of the template size in image quilting and introduce a
novel criterion for template design. In Section 5, we conclude the work
pointing to future research directions.

Fig. 1. Flume experiment of a delta with low Froude number performed by John Martin,
Ben Sheets, Chris Paola and Michael Kelberer. Image source: https://www.esci.umn.
edu/orgs/seds/Sedi_Research.htm.
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2. Data aggregation in image quilting

In this section, we introduce a new method for data aggregation in
image quilting as an alternative to ad-hoc weighting. This method is
introduced with auxiliary variables and is extended later to condition-
ing with hard data.

2.1. Efros-Freeman algorithm

The original Efros-Freeman image quilting for unconditional
simulation is illustrated in Fig. 2. In iteration 1, a pattern “A” is
randomly selected from the training image and placed in the top left
corner of the simulation domain. In iteration 2, the sliding window
leaves an overlap region highlighted in red. This region is compared to
all regions of equal size in the training image using an Euclidean
distance as measure of similarity; the next pattern “B” is drawn at
random from a uniform distribution over a set of candidates colored in
red (e.g. the most similar patterns). The two patterns are stitched
together by means of a cut that maximizes continuity (Boykov and
Jolly, 2001; Boykov and Kolmogorov, 2001; Kwatra et al., 2003). After
the first row is filled, the second row is simulated similarly except that
there are two overlap regions instead of one. Tile by tile the puzzle is
solved. Resulting images and all the cuts performed along the path are
shown in Fig. 3.

2.2. Incorporation of auxiliary variables

Consider the setup of the problem in Fig. 4 with the introduction of
an auxiliary variable. A training image TI, an auxiliary variable AUXD
defined over the simulation domain, and a forward operator
G TI AUXTI*: → are given. The goal is to generate multiple realizations
that honor the relationship established by the auxiliary variables AUXD
and AUXTI. The operator G* approximates the mapping G used to
generate the auxiliary variable AUXD. G may be a simple mathematical
expression G G i j k= ( , , ) in terms of the spatial indices of the grid or
may consist of a series of elaborated engineering workflows that
produce a property cube over the domain of interest.

Our method for data aggregation is illustrated in 2D for clarity. We
start by placing a small window in the simulation domain along any
overlapping path (e.g. raster path). As illustrated in Fig. 5, this
placement defines a local variable AUXD i j( , )t t for every location i j( , )t t
in the path.

At a current location i j( , )t t , the local variable AUXD i j( , )t t is
compared to all local variables AUXTI i j( , )p p in the auxiliary training
image. The subscript t in i j( , )t t refers to the few tile locations in the
simulation domain whereas the subscript p in i j( , )p p refers to the many

pixel locations in the training image. Although there are as many
variables AUXTI i j( , )p p as there are pixels (or voxels in 3D), these local
comparisons are simple Euclidean distance calculations that can be
implemented very efficiently with Fast Fourier Transforms (FFTs) and
Graphics Processing Units (GPUs).

Therefore, the auxiliary distances

D p AUXD i j AUXTI i j( ) = ∥ ( , ) − ( , )∥aux t t p p
def

2
2

(1)

are computed with a convolution pass on the auxiliary training image,
similar to the procedure introduced in the original Efros-Freeman
algorithm for computing overlap distances

D p Domain i j TI i j( ) = ∥ ( , ) − ( , )∥ov t t p p
def

2
2

(2)

at the location i j( , )t t . While Daux(p) is a distance between □-shaped (i.e.
rectangular-shaped) auxiliary variables, Dov(p) is a distance between L-
shaped overlap regions.

In order to address unit and scaling issues, the distances Dov(p) and
Daux(p) are converted into ranks. For a training image with Npat

patterns, ranks are permutations of the integers N(1, 2,…, )pat . A
permutation p p p( , ,…, )N1 2 pat is a valid rank for the distance D(p) if
D p D p( ) ≤ ( )i j for all i j N1 ≤ ≤ ≤ pat. Two such permutations exist, one
for Dov(p) and another for Daux(p). In order to guarantee a smooth
transition from the previous pattern simulated in the domain and the
pattern being pasted, we introduce a tolerance for the overlap distance
and use it to define an initial subset of Nbest best candidate patterns
according to the overlap information. Such tolerance is not a sensitive
parameter of the algorithm and can be made arbitrarily small. In Fig. 6
we illustrate the two ranks on the training image and the reduced set of
N N⪡best pat best candidate patterns based on the overlap information.

Next, we introduce a relaxation technique whereby a subset of the
Nbest best candidate patterns is selected. This subset S contains
patterns that are in agreement with both the overlap information and
the auxiliary variable defined at the location i j( , )t t . We define a chain of
sets A A A⊆ ⊆ ⋯ ⊆ k1 2 with Ai for i k= 1, 2,…, containing the first Ni

best candidate patterns according to the auxiliary variable, N ≠ 01 and
N N=k pat . By denoting O the set of Nbest best candidate patterns
according to the overlap, the relaxation technique consists of iterating
i from 1 to k until the intersection S O A= ∩i i is non-empty. Let S be
the first non-empty intersection.

The patterns in S have two ranks, one associated to Dov(p) and
another associated to Daux(p). In order to draw a pattern at random we
convert the ranks into probabilities with a simple linear transforma-
tion. The conditional probability of a pattern in S given its overlap rank
rov is given by

Prob r S r k(pattern| ) = (| | − + 1)/ov ov ov (3)

Fig. 2. Efros-Freeman algorithm. Patches are extracted from the training image and pasted in the simulation domain in raster path order. A cut is performed in the overlap with the
previously pasted patch to maximize continuity. Black pixels are copied from pattern A whereas white pixels are copied from pattern B.
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with S| | the cardinality of S and kov a normalization constant. kov is the
sum of S r| | − + 1ov over all patterns in S. Similarly, the conditional
probability of the same pattern given the auxiliary rank raux is given by

Prob r S r k(pattern| ) = (| | − + 1)/aux aux aux (4)

These two probabilities are combined into Prob r r(pattern| , )ov aux with
the Tau model assuming no information redundancy (i.e. τ = 1). In
Fig. 7, all the patterns in S are assigned a color representing their

probability (e.g. S| | = 985). After a pattern is drawn, the entire
procedure is repeated for the next location in the overlapping path.

The relaxation technique can be applied to multiple auxiliary
variables. In this case, multiple chains A A A⊆ ⊆ ⋯ ⊆c c

k
c

1
( )

2
( ) ( ) for

c N= 1, 2,…, c are run in parallel instead of one. The intersection
S O A A A= ∩ ∩ ∩ ⋯ ∩i i i i

N(1) (2) ( )c is guaranteed to be non-empty for
some index i and the subset S is defined as before. Taking intersections
of large sets is a CPU demanding operation in general, however; we
exploit the fact that the maximum rank possible for a pattern is Npat

and implement a fast intersection algorithm for bounded sets with

Fig. 3. Image quilting realizations of two training images and their corresponding cut masks. Texture is reproduced in both examples. Template size for binary training image is
62 × 62 × 1 and template size for continuous training image is 48 × 48 × 1 in the example.

Fig. 4. Problem setup. Training image in the upper left is used to simulate the domain in
the bottom left. An auxiliary variable AUXD is provided over the domain as well as a
proxy G* of the forward operator G used to create AUXD.

Fig. 5. Proposed method (part I). Euclidean distance with “FFT trick” between current
tile location i j( , )t t in the domain and all pixel locations i j( , )p p in the training image.

Pattern AUXD i j( , )t t is compared to all patterns AUXTI i j( , )p p in a single pass.
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O N( )pat time complexity. In fact, the algorithm is a simple element-wise
logical & (AND) comparison between two vectors of size Npat. In
Fig. 8, we compare the traditional weighting scheme with the proposed
relaxation technique. Our method produces realizations that honor the
auxiliary variable without the specification of weights.

2.3. Incorporation of hard data

We apply the same relaxation technique to conditioning with hard
data HD i j( , )t t . Besides the distance to the overlap and to the auxiliary
variables, we define a distance

D p HD i j W TI i j( ) = ∥ ( , ) − ⊙ ( , )∥hard t t p p
def

2
2

(5)

to the point data that may exist at the current location i j( , )t t in the
simulation domain. In Eq. (5), the matrix (or tensor in 3D)W is a mask
that is only active at the pixels with datum in HD i j( , )t t , and ⊙ is the
element-wise multiplication. The ranking induced by the hard data is

combined with the other rankings through the same Tau model used
for incorporating auxiliary variables.

We introduce two additional modifications to the Efros-Freeman
algorithm to increase the quality of the hard data match. The first
modification is the replacement of the raster path by a data-first path
illustrated in Fig. 9. In this path, locations that have data are visited
first and the rest of the simulation domain is filled outwards from the
data using successive morphological dilations, a well known operation
in image processing. We stress that this path is not related to the data-
driven path described by Abdollahifard (2016), that was originally
introduced by Criminisi et al. (2003).

The data-first path when applied together with the relaxation
technique leads to perfect match in most data configurations. There
are still two scenarios in which data is not honored: 1) the data
configuration is not present in the training image and 2) the config-
uration is present in the training image but not in S due to conflicting
ranks. We propose a simple restoration of the data (i.e. we enforce
values at hard data locations) at the end of the simulation in a post-

Fig. 6. Proposed method (part II). Ranking of patterns based on overlap and auxiliary distances followed by successive relaxation of auxiliary information. Given a tolerance, the best
patterns are selected according to the overlap (e.g. 2, 3, 7, 1) and the set is intersected with a growing set of patterns (e.g. 8, 1, 3, …) until the intersection is non-empty.

Fig. 7. Proposed method (part III). Conditional probability of pasting a pattern given both overlap and auxiliary information computed from the Tau model over all patterns in the non-
empty set obtained from relaxation.
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processing step. Although this construction may introduce local
discontinuities under very complex settings, it is effective with many
realistic process-based training images.

3. Image quilting of deterministic process-based geological
models

In this section, we apply the proposed method with 2D process-
based and 3D process-mimicking models. Four applications of varying
complexity are presented: 1) stochastic simulation of meandering
rivers constrained to thickness maps, 2) spatial variability analysis
with flume experiments as proposed by Scheidt et al. (2016, 2015), 3)
subsurface modeling with moderately dense well configurations, and 4)
completion of buried valley models with SkyTEM and partial inter-
pretation.

Applications 1) and 2) serve to illustrate the efficiency of the
relaxation technique on large 3D grids and with complex process-
based training images, respectively. Application 3) highlights a known
limitation of the method in the case where hard data is moderately
dense. Finally, application 4) illustrates a real project in Denmark
where both hard data and auxiliary variables are available.

3.1. Stochastic simulation of meandering rivers

In this application, models of a meandering river generated with the
FLUMY software (Lopez et al., 2008; Lopez, 2003b) are used as
training images. Our goal is to assess the performance of the relaxation
technique with the Tau model on large 3D grids. We focus on a single
training image with 200 × 300 × 45 cells and utilize the thickness of the
basin as an auxiliary variable. This variable is introduced to minimize
the appearance of channels in areas of low sediment transport.

In our method, the quality of the realizations is still a function of the
template size, and because the choice of this parameter is complex, we
discuss it in details in Section 4 where we propose a novel criterion for
template design. By using this criterion, we select a template size of
49 × 49 × 14 and run IQSIM to obtain 50 realizations. In Fig. 10, we
observe that the thickness map constrains the placement of channels to
the center of the basin as intended. However, we also observe
illegitimate patterns near the boundary of the realizations caused by
the arbitrary landform of the model. Artifacts like these can be easily
pruned with a post-processing step for a specific geometry, but the
problem is still unsolved for arbitrarily shaped training images and
simulation domains.

A conditional simulation of the model is generated in 6 min on an

Fig. 8. Comparison of ad-hoc weighting and proposed method. Different weight configurations A, B and C leading to different conditioning results. Our method shown at the bottom left
does not require specification of weights and produces the most likely outcomes given the data. Training image size: 400 × 400 × 1, Domain size: 300 × 260 × 1, Template size:
27 × 27 × 1.

Fig. 9. Data-first path. Tiles are first pasted where hard data exists and outwards until the entire domain is filled.
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integrated Intel® HD Graphics Skylake ULT GT2 GPU of a Dell XPS 13
laptop. Our algorithm and implementation are orders of magnitude
faster than most (and probably all) other MPS simulation software in
the literature. Besides the FFT on the GPU, we exploit the shape of the
basin to save computation. For reference, alternative methods like
SNESIM require many hours to handle grids of this size.

3.2. Spatial variability analysis with flume experiments

In the flume experiment provided by the St. Anthony Falls
Laboratory (http://www.safl.umn.edu), we are given 136 overhead
shots of a delta. Our goal is to compare the spatial variability of the
given snapshots with that of image quilting realizations. We rely on the
definition of a distance between these 2D models in order to quantify
variability. In this work, the modified Hausdorff distance (Dubuisson,
1994; Huttenlocher et al., 1993) is investigated that only takes into
account the shape of geobodies deposited in the delta.

We select a template size of 26 × 26 × 1 via the criterion discussed
in Section 4 and run IQSIM with overhead shots constrained to two
auxiliary variables as illustrated in Fig. 11.

The simulation is performed with 13 such snapshots (or training
images) previously selected by clustering points in a multidimensional
scaling projection (Scheidt et al., 2015, 2016; Borg and Groenen,
2005). For performance reasons, the modified Hausdorff distance is
computed between point sets that represent the edges of the corre-

sponding geobodies as illustrated in Fig. 12. Because distances are
ultimately computed between black & white images, we further run DS
with the 13 intermediate binary images of the delta in order to compare
the proposed algorithm with an existing software that requires fine
parameter tuning.

In Fig. 13, we show the Q-Q plot between the distribution of
distances originated from the experiment and the distribution of
distances artificially created with geostatistics. Although the compar-
ison of spatial variability with the modified Hausdorff distance is
limited, we observe that both image quilting and direct sampling
approximate the natural variability in the delta reasonably well. Outlier
images exist particularly in the upper tail, and most importantly, we
observe that spatial variability is usually underestimated by geostatis-
tical simulation. This underestimation is caused by the many auxiliary
variables and constraints imposed during simulation, and is depicted
by the reduced interquartile range in the kernel density estimation plot
in Fig. 13.

3.3. Stochastic simulation with dense well configurations

In this example, we assess the performance of the proposed method
with moderately dense well configurations. The training image consists
of channels generated with the Fluvsim software (Deutsch and Tran,
2002), and 9 vertical wells are placed with equal spacing in a domain of
the same size as illustrated in Fig. 14.

Fig. 10. Image quilting realizations of a meandering river. Realizations conditioned to thickness map have channels in the center. Artifacts observed near the boundary of the basin.
Training image size: 200 × 300 × 45, Domain size: 200 × 300 × 45, Template size: 49 × 49 × 14.
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After selecting a template size of 25 × 25 × 20 via the criterion
discussed in Section 4, we run image quilting and obtain 50 realiza-
tions. Three of these realizations are illustrated in Fig. 14. We observe
that channels are correctly placed at the wells, but we also notice
discontinuity in the generated patterns. This discontinuity is caused by
the combination of the data-first path and the chosen template size,
and can be quantified with various metrics as discussed in Renard and
Allard (2013). We use the number and size of geobodies as metrics in
Fig. 15 to illustrate the difference in connectivity between the training
image and the IQSIM realizations for this well configuration.

Reducing the template size to accommodate the wells is a valid
strategy, but it increases the computational time and can diminish the
performance of the simulation to that of alternative methods.

In Fig. 16, we illustrate the ensemble average and variance of the 50
realizations. High average and low variance at the well locations are
guaranteed by design.

3.4. Completion of buried valleys with SkyTEM and partial
interpretation

A collection of buried valleys interpreted from SkyTEM measure-
ments (Sørense and Auken, 2004) in Denmark is used to illustrate the
application of our method in a case with real field complexity. In
Fig. 17, we show a single 3D model with 229 × 133 × 39 voxels
interpreted by hydrologists that are working on mapping groundwater
in the country (Thomsen et al., 2004; Høyer et al., 2015).

To test our method in this real field case, we propose an experiment
in which we assume that half of the interpretation is unavailable. In the
first case, we use the patterns in the left half of the model to simulate
the right half “L R→ ”. In the second case, we revert the setup “R L→ ”
as illustrated in Fig. 18.

In this experiment, we have hard data conditioning—the known half
of the interpretation—and the SkyTEM measurements as an auxiliary
variable. For each case, we generate 50 realizations with a template size
of 49 × 49 × 18. Realizations of the valleys are shown in Fig. 19 for the
setup “L R→ ”.

In Fig. 20, we show the average of indicator variables (a probability)
defined for the first two categories of the training image—sand &
gravel and coarse clay. The third category corresponding to the
background red color—hemipelagic clay—is omitted. We observe that
many geobodies are correctly recovered from the SkyTEM data, but
that a limited number of patterns in the training image can only
approximate the other half of the most likely interpretation.

For the case “L R→ ”, we run SNESIM with a set of tuned
parameters. Similar to the comparison of IQSIM and DS in the 2D
flume experiment, we want to emphasize that our method does not
require fine parameter tuning for producing decent results. In Fig. 21,
we illustrate the distribution of modified Hausdorff distances per
category computed between each of the 50 realizations and the most
likely interpretation from SkyTEM. The distribution obtained with the
two methods is compared on a per-category basis.

Image quilting realizations present lower distances in distribution
and better reproduce the texture of the training image. For this specific
setup, a single realization is generated in 3 min with IQSIM on an
Intel® HD Graphics Skylake ULT GT2 GPU versus 30 min with
SNESIM on an Intel® Core™ i7-6500U CPU. For completeness,
another realization is generated in 5 min with IQSIM on the same CPU.

4. Criterion for template design

In this section, we introduce a novel criterion for choosing template
configurations in image quilting. We start by motivating the criterion

Fig. 11. Image quilting realizations of an overhead shot from the flume experiment with
two auxiliary variables incorporated by proposed method. Training image size:
300 × 260 × 1, Domain size: 300 × 260 × 1, Template size: 26 × 26 × 1.

Fig. 12. Distance calculation between images. First, images are threshold to wet/dry binary images. Second, an edge filter is applied to produce a reduced set of points. Finally, the
Modified Hausdorff distance is computed between the resulting point clouds.
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with a simple example in 2D where we compare image quilting
realizations of two different training images. Next, we state the
proposed criterion as an optimization problem and derive an efficient
approximation that is solved in low CPU time. Finally, we compare the
criterion with the traditional entropy plot and assess its robustness
with basic checks and well-known training images.

In Figs. 22 and 23, we illustrate a few image quilting realizations of
2D training images with different template configurations. In this
example, template configurations are squares of the form T T( , , 1) with
T the template size in pixels. We observe that different template sizes
lead to different texture in the realizations. For the channelized training
image, increasing the template size from T = 12 to T = 63 improves the
results, whereas for the Gaussian training image, the improvement is
obtained by decreasing from T = 82 to T = 32.

The interesting observation is that a measure for template selection
based on a monotonically increasing measure (e.g. entropy (Tahmasebi
and Sahimi, 2012; Journel and Deutsch, 1993; Honarkhah and Caers,
2010)) is suboptimal. We propose a function inspired by the principle
of minimum energy from thermodynamics. This principle can be
rephrased in the context of image quilting as follows:

A good image quilting simulation pastes patterns sequentially

without overwriting what was already pasted in previous iterations.

Fig. 13. Comparison of natural variability present in the flume experiment with variability created by means of geostatistical simulation. Presence of outliers in the upper tail of the
distribution. Underestimation of spatial variability depicted by reduced interquartile range.

Fig. 14. Image quilting realizations of fluvial river channels conditioned to 9 vertical wells. Placement of channels illustrated on horizontal slices. Training image size: 250 × 250 × 100,
Domain size: 250 × 250 × 100, Template size: 25 × 25 × 20.

Fig. 15. Cumulative distribution of geobody size for a moderately dense well config-
uration. Positive skewed distributions for image quilting realizations indicate pattern
discontinuity compared to the training image.
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The motivation for this principle is better understood by consider-
ing the boundary cuts in Fig. 24. According to the principle of
minimum energy (or overwrite), the quilting algorithm should be
designed to maximize the number of black pixels in the overlap region,
which is only invaded by white pixels when there is misalignment of the
pattern coming from the training image and the patterns already
pasted along the overlapping path.

Definition (voxel reuse). The voxel (or pixel in 2D) reuse ∈ [0, 1]⥀
of an image quilting realization is the number of black voxels in the
boundary cut divided by the total number of voxels in the overlap
region.

For a fixed template size to overlap ratio (e.g. 6 ÷ 1), the voxel reuse

is a function of the template size T( )⥀ . We seek its maximum, or
alternatively, the minimum overwrite defined as the complement

T1 − ( )⥀ . Because the function is stochastic we formally state the
optimization in terms of mean voxel reuse:

T T* = argmax [ ( )]
T

⥀
(6)

We argue that, given a set of image quilting realizations generated
with template size T and their corresponding boundary cuts, the
number  T[ ( )] ∈ [0, 1]⥀ is a measure of texture reproduction.
Consequently, the multiple optima T* are also the solution to the
template design problem. In Fig. 25, we illustrate the mean voxel reuse
as a function of the template size for a few training images in our

Fig. 16. Ensemble average and variance over 50 realizations. Channels placed where indicated in the wells and corresponding low variance.

Fig. 17. Single interpretation of buried valleys from SkyTEMmeasurements. Resulting model has three categories: 0) sand & gravel—quaternary meltwater sand and sand till, Miocene
sand, and quaternary buried valleys infilled with sand, 1) coarse clay—quaternary clay till, meltwater clay and buried valleys infilled with clay and clay till, and 2) hemipelagic clay—
hemipelagic, fine grained Paleogene and Oligocene clays.

Fig. 18. Experiment setup. Half of the interpretation is discarded and then simulated with image quilting. The known half is used as hard data and the SkyTEM measurements are
incorporated as an auxiliary variable.
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library. We observe that the mean voxel reuse generalizes the Shannon
entropy to continuous training images.

The plots in Fig. 25 were generated by brute force: for each
template size T we generated 10 unconditional image quilting realiza-
tions with the same size of the training image and averaged the voxel
reuse. However, an estimate of mean voxel reuse does not require full
simulation, only a few boundary cuts performed with the training
image. We derive a fast approximation with the notion of elementary
overlapping paths as follows.

Given any 3D template configuration T T T( , , )x y z , the most simple
path that exhibits all overlap combinations has 2 × 2 × 2 tiles (or
blocks), it is shown in Fig. 26. For the vast majority of the lookups in
the training image that consider the overlaps x, y and z separately,
there exists a perfect pattern match. We can assume no overwrite

  [ ] = [ ] = [ ] = 1x y z
⥀ ⥀ ⥀ and conclude that these boundary cuts

are irrelevant to the estimate of the mean voxel reuse. On the other
hand, the combinations xy, xz, yz and xyz, at which misalignment is
likely to happen, contain valuable information (e.g. [ ]xy

⥀ is a function
of the texture).

We consider the average over a few N elementary overlapping paths
(i.e. 2 × 2 × 2 tiles) in Eq. (7) and discuss the implications of using this
average instead of averaging full image quilting realizations.

 ∑
N

[ ] ≈ 1

k

N

k⥀
=1

⥀,
(7)

The voxel reuse of an elementary overlapping path can be decom-
posed into its different overlap combinations:

Fig. 19. Image quilting realizations of buried valleys conditioned to SkyTEM measurements and known half of the basin. Training image size: 229 × 133 × 39, domain size:
229 × 133 × 39, Template size: 49 × 49 × 18.

Fig. 20. Ensemble average of indicator variables for categories 1 and 2. Single 3D model interpreted from SkyTEM illustrated in the first column for reference.
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f f f f f= + + + +⋯+x
x

y
y

z
z

xy
xy

xyz
xyz

⥀ ⥀ ⥀ ⥀ ⥀ ⥀ (8)

where fc is the fraction of the overlap volume associated to the
combination c C x y z xy xz yz xyz∈ = { , , , , , , }. Denote T T T( , , )x y z the tem-
plate size and o o o( , , )x y z the overlap. There are

T o T o T o(2 − ) × (2 − ) × (2 − )x x y y z z voxels in the path or n n n× ×x y z

for short. We can write fractions of the overlap volume Vov in terms of

these geometrical parameters, for example:

f V
V

o T T
n n n n o n o n o

= =
− ( − )( − )( − )x

x

ov

x y z

x y z x x y y z z (9)

Thus, the terms in the expansion f= ∑c C c
c

⥀ ∈ ⥀ introduced in
Eq. (8) are a product of geometric factors fc times texture terms c

⥀.
The mean voxel reuse is given by:

Fig. 21. Distance-per-category between geostatistical realizations and single 3D model interpreted from SkyTEM. Image quilting (IQSIM) presents lower distances in distribution than
single normal equation simulation (SNESIM).

Fig. 22. Image quilting realizations of Strebelle training image. Texture reproduction improves by increasing template size.

Fig. 23. Image quilting realizations of Gaussian training image. Texture reproduction improves by decreasing template size.
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⥀
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We first consider the 2D case where we have
 f f f[ ] = + + [ ]x y xy

xy
⥀ ⥀ . If instead of 2×2 tiles we had m m×x y

tiles in the path, the derived expression would be

 ∑m f m f f[ ] = ( − 1) + ( − 1) + [ ]x x y y xy
i

m m
xy i

⥀
=1

( −1)( −1)

⥀
,

x y

(11)

with the variable i looping over all tiles for which both cuts in x and y
are performed. Eq. (11) can be further simplified to

 m f m f m m f[ ] = ( − 1) + ( − 1) + ( − 1)( − 1) [ ]x x y y x y xy
xy

⥀ ⥀ (12)

if we assume that the texture is the same everywhere in the training
image (i.e. 1st-order stationary random process assumption). Notice
that the fractions fc are a function of the number of tiles m m×x y in the
realization, but are not a function of the template size T T( , )x y . Eq. (12)
can be rewritten in a simpler form  a a[ ] = + [ ]xy

⥀ 0 1 ⥀ with a0 and
a1 functions of the overlapping path size.

The effects of a0 and a1 in the mean voxel reuse plot are vertical
shift and scaling, respectively. These operations do not affect the
locations of the maxima T T* = argmax [ ( )]T ⥀ and this proves that
the use of elementary overlapping paths for template design of 2D

Fig. 24. Zoom in 2D boundary cut mask. Voxel reuse defined as the number of black pixels divided by overlap area.

Fig. 25. Mean voxel reuse (solid line) and standard deviation (colored area) for a few training images in our library. Generalization of Shannon entropy (dashed line) to continuous
training images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 26. Elementary overlapping path. 2 × 2 × 2 tiles stitched together.

Fig. 27. Mean voxel reuse for different overhead shots of the flume experiment. All
curves match except for small fluctuations.
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stationary random processes is error-free. Although we do not prove
the result for non-stationary random processes where boundary cuts
are also a function of space, we expect the error to be very low in
practice.

This approximation with elementary overlapping paths cannot be
extended to 3D random processes without errors in general. By
following a similar derivation we can write

   a a a a[ ] = + [ ] + [ ] +⋯+ [ ]xy xz xyz
⥀ 0 1 ⥀ 2 ⥀ 4 ⥀ (13)

which is the equation of a hyperplane defined by the normal vector
a a a a( , , , ) ∈1 2 3 4 +

4 . This vector is a function of m m m( , , )x y z and there
are counter-examples where the maxima T* is altered by the over-
lapping path size. If besides stationarity we assume that the training
image is isotropic (i.e. statistics do not vary with direction), we have
    [ ] = [ ] = [ ] = [ ] = [ ]xy xz yz xyz

⥀ ⥀ ⥀ ⥀ ⥀
= and the approximation

 a a a a a[ ] = + ( + + + ) [ ]⥀ 0 1 2 3 4 ⥀
= is error-free again.

We emphasize that the mean voxel reuse criterion is a function of
both the training image and the quilting algorithm itself. To our
knowledge, there is no other criterion with such property in the
literature. In order to assess the robustness of the criterion, we perform
a few basic checks with overhead shots of the flume experiment.

The first check consists of plotting the mean voxel reuse for
different times of the experiment. In Fig. 27, we observe that the
function is preserved across time with very small fluctuations. This
result matches our expectation given that this is an autogenic deltaic
system without external forcing that could alter the texture.

The second and last check consists of choosing a few template sizes
Th and Tl for which the mean voxel reuse is high and low, respectively.
The criterion states that Th leads to good texture reproduction in image
quilting, whereas Tl does not. In Fig. 28, we illustrate the mean voxel
reuse and optimum template ranges for the Strebelle and Gaussian
training images. Fig. 22 was generated with Th = 63 and Tl = 12, and
Fig. 23 was generated with Th = 32 and Tl = 82.

5. Conclusions

In this work, we proposed a systematic probabilistic procedure for
data aggregation in MPS simulation. We implemented the procedure
within image quilting and tested it on 2D process-based and 3D
process-mimicking geological models. Our results show that the
procedure is fast, dispenses fine parameter tuning, and produces
realistically-looking realizations conditioned to auxiliary variables
and hard data.

We introduced a novel criterion for template design that generalizes
the Shannon entropy to continuous training images. The criterion is
based on the concept of voxel reuse and is the first in the literature that

is quilting-aware. We proposed an efficient approximation of the mean
voxel reuse and proved that it is error-free under stationary assump-
tions. We recognized artifacts in the image quilting realizations caused
by complex landforms in 3D. These artifacts call for a better repre-
sentation of incomplete patterns in the training image and should be
seen as a current defect of the algorithm. Another limitation that
deserves attention is that of suboptimal texture reproduction with
dense hard data configurations. Our method can work with dense
configurations, but may lead to suboptimal texture reproduction if
speed is to be maintained. Future developments should be concen-
trated on these two fronts.

Another important issue that is not addressed in this work is that of
data uncertainty. We assumed that both hard and soft data are free of
errors. For applications where measurement errors are large, the
proposed algorithm, like most other stochastic simulation algorithms
mentioned in the paper, is not appropriate.

The accompanying software was made available as a Julia package.
Documentation can be found online including examples of use and
instructions for fast simulation with GPUs: https://github.com/
juliohm/ImageQuilting.jl.
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