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A B S T R A C T

Identifying attractive candidate reservoirs for producing geothermal energy requires predictive models. In this
work, inspectional analysis and statistical modeling are used to create simple predictive models for a line drive
design. Inspectional analysis on the partial differential equations governing this design yields a minimum
number of fifteen dimensionless groups required to describe the physics of the system. These dimensionless
groups are explained and confirmed using models with similar dimensionless groups but different dimensional
parameters. This study models dimensionless production temperature and thermal recovery factor as the
responses of a numerical model. These responses are obtained by a Box-Behnken experimental design. An
uncertainty plot is used to segment the dimensionless time and develop a model for each segment. The
important dimensionless numbers for each segment of the dimensionless time are identified using the Boosting
method. These selected numbers are used in the regression models. The developed models are reduced to have a
minimum number of predictors and interactions. The reduced final models are then presented and assessed
using testing runs. Finally, applications of these models are offered. The presented workflow is generic and can
be used to translate the output of a numerical simulator into simple predictive models in other research areas
involving numerical simulation.

1. Introduction

Developing geopressured-geothermal reservoirs reduces global
warming and secures energy needs. Louisiana's geopressured geother-
mal reservoirs have been examined previously (Bassiouni, 1980;
McMullan and Bassiouni, 1984). However, these resources have not
been developed, and uncertainty associated with their development
persists. Identifying attractive candidates in a database of reservoirs for
producing geothermal energy requires quick and simple models
because simulating each case before development is time consuming
and expensive. One approach for creating these screening models is to
translate the output of a simulator into simple models with general
applicability at all scales by combining inspectional analysis with
statistical modeling.

In Inspectional Analysis (IA), the differential equations of a system
are coupled with initial and boundary condition equations to describe
the physics of the system. The system of equations is then transformed
into dimensionless form to obtain a set of dimensionless groups (Shook
et al., 1992; Jin et al., 2010). The necessary groups are then selected
and used in statistical modeling.

In statistical or predictive modeling, a model is fit to the runs
obtained by experimental design (Wood et al., 2008; Anbar and Akin,

2011; Mishra et al., 2015). Numerical simulation is used as virtual
experimentation to create a database of observations. These observa-
tions are used to create the proxy models for prediction. This work uses
regression analysis for creating the models for a geopressured-geother-
mal reservoir developed under a regular line drive design (Ansari and
Hughes, 2016).

Wood et al. (2008) develop predictive models for CO2 flooding and
storage in Gulf Coast reservoirs using the dimensionless groups found
by Shook et al. (1992). They use a combination of Box-Behnken and
factorial experimental design and use linear regression for modeling.
Anbar and Akin (2011) present a proxy model which can predict CO2

storage capacity of deep saline carbonate aquifers. They use Latin
Hypercube experimental design and linear regression models. Jin
(2013) uses inspectional analysis, Box-Behnken design and linear
regression to create models for a downhole water loop to improve well
performance. He uses analysis of variance (ANOVA) for selecting the
important dimensionless numbers. Schuetter et al. (2014) compare the
use of Box-Behnken sampling and quadratic polynomial regression
with Latin Hypercube sampling and Kriging, Multivariate Adaptive
Regression Spline (MARS) and Additivity Variance Stabilization
(AVAS) techniques for geological CO2 sequestration. They conclude
that the model developed using Box-Behnken and quadratic polyno-
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mials performs the best. Ganesh and Mishra (2014) give a 2D
simplified dimensionless proxy model to characterize CO2 injectivity
in semi-confined layered saline aquifers. Kang et al. (2016) develop a
statistical kriging model for a CO2-capture-enabled power station and
use the model as an efficient proxy to optimize the power station
process. Ansari (2016) provides a statistical model for high angle wells
in three dimensional geothermal systems.

The line drive design has been used in studies such as waterflooding
and CO2 flooding (Shook et al., 1992; Wood et al., 2008) because the
simple injector producer pair can be a proxy for many different
alternative patterns. A regular design means injecting cooler water at
the up-dip side of the reservoir and producing hot geofluid from the
down-dip portion of the reservoir (Fig. 1) where the temperature is
higher due to the geothermal gradient (Plaksina et al., 2011; Ansari
and Hughes, 2016).

This study develops a set of statistical models that can be used to
quickly estimate production temperature and produced energy from
geopressured-geothermal reservoirs. These models can screen data-
bases of reservoirs to select the most attractive candidates for evaluat-
ing geothermal energy production.

This paper is divided into three sections: mathematical formulation,
numerical simulation and statistical modeling. Following these three
sections, applications of the models and conclusions are presented.

2. Mathematical formulation

The mathematical formulation section proceeds as follows: the
governing equations describing a line drive system are derived from the
fundamental partial differential equations for a geothermal system.
Inspectional analysis is used to obtain the dimensionless groups
(provided in Appendix A). These dimensionless groups are explained
and validated by considering models with different dimensional para-

meters but similar dimensionless numbers. Validation is performed
numerically to confirm the dimensionless groups.

The general continuity equation for single phase flow in porous
media states that the divergence of the mass transport determines the
change in the water mass in the medium (Eq. (1)).
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The continuity equation can be expanded to yield Eq. (2):
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Rock and fluid characteristics (Eqs. (3)–(6)) can be substituted into
the continuity equation by applying the chain rule in time (Eqs. (7) and
(8) and space (Eqs. (9) and (10) to get a physically useful form (Eq.
(11)).
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Nomenclature

Subscripts

1 or 2 Scale factor number
avg Average
D Dimensionless
f Fluid
i Initial
inj Injection
ins insulation
prod production
r Rock
ref Reference
t Total
ϕ Pore

Greek

ϕ Porosity (–)
α α α, ,X Y Dip angle (°)
β Thermal expansivity (K−1)
ρ Density (kg. m−3)
τ Geothermal gradient (K. m )−1 )
π Scale group (–)
λ Thermal conductivity tensor (W. m . K−1 −1)
λ Thermal conductivity (W. m . K−1 −1)
κ Thermal diffusivity (m . s2 −1)
μ Viscosity (Pa.s)

Other symbols

∀ For all
∇. Divergence
∇ Gradient

Superscripts

* Denotes a scale factor

Roman

c Compressibility (Pa−1)
M Matrix/fluid heat capacity ratio (–)
PV Pore volume ϕLWH( , m )3

p Pressure (Pa)
q Flow rate (m . s3 −1)
T Temperature (K)
t Time (s)
U Internal energy (J)
uT Injection/Production velocity (m. s−1)
u Interstitial fluid velocity (m. s )−1

W Reservoir width (m)
Cp Isobaric specific heat capacity (J. kg . K−1 −1)
Cv Volumetric specific heat capacity (J. kg . K−1 −1)
g Gravity vector (m. s−2)
H Reservoir thickness (m)

Enthalpy (J)
K Permeability tensor (m2)
k k k, ,x y z Directional permeabilities (m2)
L Reservoir length (m)

Fig. 1. Regular heat extraction design. Similar design is used in studies such as
waterflooding and CO2 flooding (Shook et al., 1992; Wood et al., 2008).
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Dividing Eq. (11) by ρf and substituting c c c= +t f ϕ and β β β= +t f ϕ
yields Eq. (12):
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For the two-dimensional system shown in Fig. 1, the general
continuity equation for single phase flow in porous media then reduces
to Eq. (13).
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The general form of the Darcy equation describes the velocity field
in the reservoir (Eq. (14)); in which Z is a unit vector normal to the
horizontal and k is the permeability tensor.

μ
P ρ gu k Z= − (∇ + )f (14)

For the given system, the gravity vector follows along the x and z
axes reducing the Darcy equation to
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The general form of the energy equation in porous media (Eq. (17))
describes convection and conduction in the reservoir (Grant, 2013).
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For liquids and solids, C C≈v p and we can assume U C T= = p
(Al-Khoury, 2011). Assuming constant matrix conductivity
(λ λ λ ϕ λ ϕ= = + (1 − )m f r ) and expanding the convection term yields
Eq. (18):
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Substituting Eqs. (7) and (8) (the chain rule in time) into Eq. (2),
multiplying by and rearranging, yields Eq. (19).
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Substituting Eq. (19) into Eq. (18), defining matrix heat capacity
ρ C ϕρ C ϕ ρ C= + (1 − )m pm f pf r pr , matrix/fluid heat capacity ratio
M ρ C ρ C= ( )/( )m pm f pf , thermal diffusivity κ λ ρ C= /( )m f pf , total compressi-
bility c c c= +t f ϕ and total thermal expansivity β β β= +t f ϕ, yields Eq.
(20):
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The energy equation for two-dimensions is then
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For boundary conditions in this development, we assume that all
produced mass is returned to the reservoir by reinjection of cooled
geofluid and overburden and underburden layers are impermeable.
Thus there is no flow across the overburden and underburden (Eqs.
(22) and (23)). The only heat that transfers across the overburden and
underburden is due to conduction (Eqs. (24) and (25), in which
κ λ ρ C′ = /( )ob ob ob p ob, and κ λ ρ C′ = /( )ub ub ub p ub, ). The length of the reservoir
is assumed to be much larger than the thickness and so it can further be
assumed that there is no heat conduction across the model laterals
(Eqs. (26) and (27)).

u at z x t= 0 = 0, ∀ ,z (22)

u at z H x t= 0 = , ∀ ,z (23)
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Tavg indicates the average temperature of the reservoir. The initial
condition of the reservoir contains both the average reservoir tempera-
ture and the linear geothermal gradient in the zone of interest.
Temperature gradient normal to the ground τ(i.e. = )T

Z
∂
∂ can be

calculated using well data. For applying IA to the boundary heat
gain/loss process, it is assumed that there is an estimate of the initial
reservoir temperature in the legacy data for the reservoirs (see
Bassiouni, 1980 and John et al., 1998 for the legacy data used here)
or this temperature can be estimated using the region's geothermal
gradient. A semi-analytical thermal boundary condition developed by
Vinsome and Westerveld (1980), which is available in CMG STARS
(STARS manual, 2011), is used for numerically modeling the heat gain/
loss by overburden and underburden boundary conditions.

For the injection completion, the boundary conditions are:

u u At x L z t= − = , ∀ , ∀x T (28)

T T At x L z t= = , ∀ , ∀inj (29)

∫q u W dz q= = −inj

H

T prod0 (30)

in which W is the reservoir width. The sign of uT is the same for both
injection and production but the sign of q differs. A negative sign for uT
is chosen because the velocity vector is in the −x direction (see Fig. 1).
For the production completion, the boundary conditions are:

u u At x z t= − = 0, ∀ , ∀x T (31)

∫q u W dz= −prod

H

T
0 (32)
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The initial conditions for the system are:

p p At t x z= = 0, ∀ ,i (33)
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where Tavg is the average reservoir temperature at the mid point of the
reservoir.

2.1. Dimensionless groups

Appendix A provides the derivation of the dimensionless groups
using inspectional analysis which are:
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Because the focus of the study is to model thermal recovery factor
and production temperature, the energy equation is used for scaling the
time Appendix A. The dimensionless time for this system is then:

t
M
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D (35)

in which M ρ C ρ C= ( )/( )m pm f pf . Note that if the dimensionless time was

defined based on the momentum equation, it would be t =D
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C
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LWHhyd
f

t
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All of these dimensionless groups are needed for transforming the
dimensional model into dimensionless representation; however, their
form can be heuristically manipulated (multiplied or divided) to get
other desirable dimensionless groups.

Five dimensionless groups are identical to those published by
previous researchers. They are: π3 representing matrix to fluid heat
capacity ratio (Phillips, 2009), π6 representing an effective aspect ratio

(Shook et al., 1992; Wood et al., 2008), π7 representing a dip angle
group (Shook et al., 1992; Wood et al., 2008),

π π π
π

4 9 15
7

representing the

Buoyancy number (Shook et al., 1992; Wood et al., 2008) and π10

representing the thermal Peclet number (Phillips, 2009).
The meaning of other dimensionless groups can be discerned from

their derivation or their format: π1 is the ratio of total compressibility
to fluid compressibility, π2 is the ratio of total expansivity to fluid
expansivity and π5 is fluid expansion due to average reservoir
temperature. The π11 and π12 terms show the ratio of heat conduction
across the boundary to heat conduction within the reservoir. The π13

term describes fluid compression as a result of reservoir pressure. The
π14 term scales the injection temperature to the average reservoir
temperature and π15 scales the temperature difference across the
reservoir to the average reservoir temperature and represents the
temperature distribution in the reservoir.

Fig. 2 shows an example of the two-dimensional line drive model
for a base case simulation in CMG STARS (STARS manual, 2011). The
model has 25×1×10 grid blocks with each grid block being
120 m×100 m×10.5 m in the x and y and z directions, respectively.
This base model has a dip angle of 5° with an average reservoir
temperature of 115 °C assigned to the middle of the model. The
geothermal gradient is 24 °C/km. The injection temperature is 30 °C
and the injection and production rates are 1,250 m3/day. The number
of grid blocks used for the simulations in this work is fixed at 250 and
grid block sizes are calculated based on the distance between the
injector and the producer. This distance is one of the parameters varied
in the experimental design (Table B2). These values were chosen from
the legacy data (Bassiouni, 1980; John et al., 1998).

At the start of the simulation, the temperature drop in the
production well is due to the geothermal gradient in the model
(Fig. 2a). The reservoir rock cools down as the front slowly propagates
through the model and moves towards the production well. When
breakthrough happens, there is a sharp decrease in the production
temperature (Fig. 2b) and finally at late times, the model temperature
asymptotically approaches the injection temperature (Fig. 2c). These
observations are typical for the cases simulated and inform some of the
choices in the regression modeling to follow.

2.2. Validation

For any given similar flow problem (i.e. the same configuration and
boundary conditions), matching the dimensionless numbers yields
similar dimensionless results (e.g. thermal recovery factor or dimen-
sionless production temperature) between scales. For validating the
dimensionless numbers, the parameters in the groups are varied but
the groups are held constant. Matching the response for the cases
where the parameters are changed but the dimensionless group values

Fig. 2. (a) Reservoir temperature at initial condition (tD=0) with an average temperature of 115 °C assigned to the middle of the reservoir. Temperature gradient is 24 °C/m and dip
angle is 5°. (b) Thermal front at breakthrough tD=0.6 (ca. 25 years). (c) At late times (tD=3), the model temperature asymptotically approaches the injection temperature. Vertical axis is
exaggerated four times in both figures.
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remain constant, suggests that the dimensionless numbers adequately
scale the system.

Fifteen different reservoir models were considered such that their
geometrical dimensional properties are different but their dimension-
less groups are identical (for details see Appendix B). The dimension-
less production temperature was then plotted versus dimensionless
time. The dimensional result vs. time for these fifteen models does not
show any pattern (Fig. 3a). The dimensionless results are plotted
versus dimensionless time for the same set of models (Fig. 3b). The
models with identical dimensionless numbers (same color) show the
same dimensionless temperatures.

3. Numerical simulation

Experimental design is used for sampling the parameter space.
Experimental design is an efficient method for sampling and calculat-
ing the response with minimum number of runs (Montgomery et al.,
2008). Instead of changing the parameters one-at-a-time, by which,
interactions cannot be obtained and a large number of simulation runs
is needed, experimental design changes the parameters systematically
to obtain a smaller set of designed simulation runs, enough to reveal
effects and interactions. We used Box-Behnken design (Box et al.,
2005). This design needs fewer runs compared with its three-level
counterparts (e.g. central composite designs). Central Composite
Designs are complete designs which are used to fit a full quadratic
model including all interaction terms. Having n factors, Central
Composite Design (CCD) includes all the corners of a n dimensional
cube when all the factors are scaled between −1 and +1. Similar to
CCD, Box-Behnken designs can also be used to fit a full quadratic
response surface but with fewer simulation runs. This design also has
three levels of factors and is rotatable but yields poorer predictions
especially in the corners of the cube because it does not consider the
corner points. Because Box-Behnken design requires fewer simulation
runs, it will be used to fit a full quadratic response surface including all
interaction terms to the detailed simulation results (Box et al., 2005).
Fig. 4 shows Circumscribed Central Composite and the Box-Behnken
designs.

The numerical simulation proceeds as follows: A Box-Behnken
design samples the parameter space and generates models to be
simulated using the CMG STARS software (STARS manual, 2011).

The response for each model is output at specific dimensionless times
associated with its parameters. The output response is used for
calculating the dimensionless response.

Twenty parameters were used in the Box-Behnken design to sample
the parameter space and model the dimensionless production tem-
perature and thermal recovery factor (see Appendix A Table B2). The
parameter space distributions were obtained from the data collected
during the US Department of Energy sponsored “Wells-of-
Opportunity” and “Design Wells” programs (Bassiouni, 1980; John
et al., 1998). These runs were divided into 20 parallel runs per batch
submission and required ca. 8 minutes to complete on a standard PC
workstation. For each run, the π-groups were noted and the dimen-
sionless response (i.e. dimensionless production temperature or energy
recovery factor) were obtained as a function of dimensionless time. The
set of experimental design runs then makes up the database of sample
responses (Fig. 5).

4. Statistical modeling

The statistical modeling section proceeds as follows: the entire
database is shown in a single violin plot and is divided into piecewise
linear segments. Before creating the regression models for each
segment, an algorithm known as Boosting (James et al., 2013; Kuhn
and Johnson, 2013; Hastie et al., 2009) is used to find the important

Fig. 3. (a) Models with the same dimensionless numbers (i.e. same color) show different production temperature in dimensional space. (b) Models with the same dimensionless
numbers show similar dimensionless production temperature.

Fig. 4. Two types of experimental design. The Box-Behnken design is used in this work
(from Kalla, 2005).
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dimensionless numbers for predicting the response. Then, a model
selection procedure known as Best Subset Selection (James et al., 2013;
Kuhn and Johnson, 2013; Hastie et al., 2009) is used to compare
possible sub-models and select the best one. The reduced final models
are then presented and assessed using testing runs. Finally, limitations
of these models are discussed.

4.1. Modeling production temperature

The entire database can be plotted in a single violin plot for each
response. A violin plot was created for the dimensionless number
ranges given in Table 1. Violin plots are useful for answering generic
uncertain questions with minimum data (White, 2013). In this work,
they were also used for segmenting the dimensionless time.

A violin plot (Fig. 6a) is a combination of a box plot and a rotated
kernel density plot (i.e. an estimation for the probability density
function). In the violin plot, the middle dot shows the median (which
is identical to the mode and maximum likelihood estimator of the mean
in a normal distribution), the white boxes indicate the lower to upper
quartile and the thin black lines are called whiskers and show the range
of values at each dimensionless time. Violin plots can also be updated
when additional certain data are obtained.

Violin plots are used to show the statistical spread of the response
variable as a function of time. For this work, the are also used to
determine how many piecewise regression models are needed and to
specify their dimensionless time ranges since it will be shown that
dimensionless time is the key parameter in the modeled system. As
Fig. 6b indicates three regression models can predict the median points
(i.e. red points): t0 < ≤ 0.5D , t0.5 < ≤ 1.5D and t1.5 < ≤ 4D . Each
segment can be considered as a line which goes through the median
points. Note that for the system under consideration, t > 4D is well past
the effective life of a geothermal power plant.

In order to determine the relative importance of the predictors, a
robust tree-based algorithm, known as Boosting is used. The Boosting
method creates an ensemble of independent regression trees and
updates them sequentially. Each tree is fit to the current step residual
and the final model is the average of all the trees weighted by a
shrinkage parameter which controls the rate at which Boosting learns
(James et al., 2013; Hastie et al., 2009; Kuhn and Johnson, 2013).
There were 10,000 trees with an interaction depth of 4 and shrinkage
parameter of 0.01 in the Boosting algorithm for this work. Finding the
important dimensionless numbers is also useful in the validation
process. Reservoirs with identical important dimensionless numbers
show similar behavior in the dimensionless space.

Table 1 shows the ranges of the dimensionless numbers used in the
sensitivity analysis of the dimensionless thermal recovery response.
Dimensionless numbers can be rank-ordered based on their relative
importance in predicting the response. Fig. 7 shows important

Fig. 5. Configuration of the database. n stands for the number of simulation runs
obtained from the Box-Behnken design (blue color), m stands for the number of
dimensionless time (red color), k stands for the number of dimensionless numbers
(green color), YD stands for the dimensionless response. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 1
Ranges of the dimensionless numbers used in the sensitivity analysis.

Group π1 π2 π3 π4 π5 π6 π7 π8 π9

Low 0.204 0.142 0.463 0.00163 0.0602 5.46 0.000 11.51 0
High 0.967 0.305 0.738 0.0598 0.1738 90.63 15.98 120.85 0.724

Group π10 π11 π12 π13 π14 π15

Low 96.16 0.264 0.264 0.028 0.173 0
High 615.48 0.482 0.482 0.044 0.897 0.1325

Fig. 6. (a) Violin plot for fining dimensionless temperature of uncertain reservoirs. This violin plot can be used as a rule of thumb for answering uncertain questions with minimum data.
(b) Three ranges for segmenting the model are considered: t0 < ≤ 0.5D , t0.5 < ≤ 1.5D and t1.5 < ≤ 4D . The blue lines are sketched manually.
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dimensionless numbers for each range of the dimensionless time.
These dimensionless numbers change smoothly and continuously
during dimensionless time. Dimensionless time is the most important
factor in determining dimensionless temperature for the first two
segments, t0 < ≤ 1.5D , while temperature ratio (π14) is more important
for the late-time response ( t1.5 < ≤ 4D ). Peclet number (π10) and
aspect ratio (π8) are other important dimensionless numbers in
predicting the response at late times. The dimensionless numbers
which do not affect the response can be safely disregarded for
prediction. Dimensionless numbers with less than 1% relative impor-
tance were ignored which is indicated by terms to the right of the
dashed lines in Fig. 7.

Once the important dimensionless numbers were found, regression
was used to create response surfaces. In this work, dimensionless
production temperature and thermal recovery factor are defined as the
response variables. The dimensionless production temperature is the
ratio of the producing fluid temperature to the initial average reservoir
temperature. A model for dimensionless production temperature can
be used to calculate the rate of energy production versus time. The
energy recovery factor is defined as the ratio of the produced energy to
the total energy in place before exploiting the reservoir (Muffler and
Cataldi, 1978; Nathenson, 1975; Williams et al., 2008). Cumulative
produced energy can be directly calculated using energy recovery
factor.

The model for dimensionless production temperature was fit at
eighty values for dimensionless time with a step size of tD=0.05 (i.e. 0,
0.05, 0.1,…, 4). Segmented (piecewise) regression was used to model
dimensionless production temperature using 761 numerical simulation
models. Since dimensionless time is the dominant parameter affecting
the response, the violin plot (Fig. 6b) was used for segmenting the
model. The segments can then be tested using trial and error to
determine whether they are the best ranges for segmenting. The violin
plot shows that three lines can go through the maximum likelihood
points (i.e. red points) and can sufficiently model the entire violin. The
first segment ( t0 ≤ ≤ 0.5D ) has 11 values for dimensionless time
(761×11 samples points), the second segment ( t0.5 < ≤ 1.5D ) has
twenty values (761×20 points) and the third segment ( t1.5 < ≤ 4D )
has fifty values for dimensionless time (761×50 points). In Fig. 8, the
black area shows the presence of a predictor and the white area shows
its absence. The model with the largest R2 value was found by an ”Best
Subset Selection” algorithm (James et al., 2013) and was selected as
the best model (Fig. 8). Thus, the best model for the first segment (a)

has an R2 value of 0.8853, the best model for the second segment (b)
has an R2 value of 0.9651 and the best model for the third segment (c)
has an R2 value of 0.9558. These selected models for dimensionless
production temperature are presented in Box 1.

The purpose of the model selection for this work is to obtain a
simple model with a minimum number of predictors and interactions.
Choosing a simpler model trades off a small increase in the model bias.
Introducing more predictors improves the R2. The optimum model is
both simple (i.e. has fewer terms) and representative (i.e. close to the
best model). The choice of the final model is based on the modeler's
selection and how the person trades off increasing terms with increas-
ing R2 value. These reduced final models are then assessed using
testing runs.
Box 1.Proposed model for dimensionless production temperature.

Fig. 9 shows the assessment of the reduced final model (Box 1). In
each sub-figure, 711 runs were used for training and 50 runs for
testing. This means that 7,821 (i.e. 711×11) training samples (blue
points) and 550 (i.e. 50×11) testing samples (red points) were used for
the first segment, 14,220 training samples and 1,000 testing samples
were used for the second segment and 35,550 training samples and
2,500 testing samples were used for the third segment.

Fig. 7. Important dimensionless numbers for each range of the dimensionless time. These dimensionless numbers change smoothly and continuously during dimensionless time.
Because modeling every dimensionless time is redundant, the sensitivity analysis is performed over a range of dimensionless time. The cyan line shows the cut off for the dimensionless
numbers with less than 1% importance. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

tFor 0 ≤ ≤ 0.5, we have:D

T t π π

t π t π π π

= 0.9936 − 0.0267 − 0.0516 + 0.0002

− 0.8434 + 0.0029 + 0.0045
D D

D D

15 7

15 7 15 7 (36)

for 0.5 t< ≤ 1.5D , we have:

T t π π t π

t π t π π π π π

= 1.3429 − 0.6041 − 0.4467 − 0.001 + 0.6101

+ 0.0022 − 0.0003 + 0.0003 − 0.0001
D D D

D D

14 8 14

8 10 10 14 8 10 (37)

and for 1.5 t< ≤ 4D , we have:

T t π π π

t π π π t π π π

= 0.4528 − 0.0587 + 0.4880 − 0.0004 + 0.0037

+ 0.0729 − 0.003 − 0.0003 + 0.0004
D D

D D

14 10 8

14 14 8 8 14 10 (38)
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4.2. Modeling thermal recovery factor

The same procedure that was used to model dimensionless
production temperature was used to develop a thermal recovery factor
model. First, violin plots are presented and the segmentation ranges for
the dimensionless time are heuristically found. The important dimen-
sionless numbers in each range of the dimensionless time are found
and then the optimum models consisting of these important dimen-
sionless numbers are selected. Finally, the simplified models are
presented and assessed.

Again, violin plots were used to determine the number of segments
and their ranges (Fig. 10(a)). Fig. 10(b) indicates two piecewise
regression models can predict the maximum likelihood points (i.e.
red points). The ranges of the first and second model are t0 < ≤ 1D and

t1 < ≤ 4D . Each of these segments can be considered as a line which
goes through the maximum likelihood points.

A sensitivity analysis is performed to find the important dimension-
less numbers in predicting the response (Fig. 11). For t0 ≤ ≤ 1D ,
dimensionless time is the only predictor that is needed and for

t1 < ≤ 4D , dimensionless time, temperature ratio (π14) and Peclet
number (π10) are needed for predicting the recovery factor. Note that
thermal recovery factor may have values greater than one because the
reservoir may recharge heat from its cap/base rock.

These important dimensionless numbers were used for developing
a model for the thermal recovery factor. Fig. 12 compares the R2 values
of all subset regression models. An R2 value of 0.9876 was chosen for

the best model. The simplified models for energy recovery factor are
highlighted in Box 2.
Box 2.Proposed model for thermal recovery factor.

Finally, the reduced models (Box 2) are assessed using testing runs
(Fig. 13). Similar to dimensionless temperature, in each sub-Fig. 711
runs are used for training and 50 runs for testing. The assessment plots
show a good match between the model prediction and observation
values (i.e. simulation results) and indicate that the fitted models are
adequate for predicting thermal recovery factor.

4.3. Limitations

The presented workflow is not a replacement for full numerical
simulation and history matching of a reservoir. Full numerical simula-

Fig. 8. Reducing the models for production temperature at each range of dimensionless time.

Fig. 9. Assessing the models for the dimensionless production temperature. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)

tFor 0 ≤ ≤ 1, we have:D

RF t= 1.083 D (39)

and for t1 < ≤ 4D , we have:

RF t π π t π

t π π π

= 1.01 + 0.0405 − 0.829 − 0.002 + 1.01

+ 0.0022 − 0.0071
D D

D

14 8 14

8 14 8 (40)
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tion and history matching of a developed reservoir is necessary for
forecasting the future and to design the initial field implementation. It
is logical that for a flow scenario with different boundary conditions
(e.g. horizontal wells instead of vertical), the workflow should be
repeated since the boundary and initial conditions drive many of the
parameter choices in the scaling. For example the behavior of the line
drive system is dependent on the time to thermal breakthrough and the
spread in the violin plots show the impact of this dependency.
Nevertheless, the presented workflow can be applied to large models
because the simulation of models are completely independent from
each other. The line drive pattern is a reasonable proxy for other
pattern types and reinjection of produced fluid is a necessary require-
ment for the low enthalpy systems for which these models were
developed. Rapid growth in cloud computing makes this workflow
useful. The entire set of runs can be effectively distributed on a cluster

of nodes and the simulation results can be retrieved to create the
described database for statistical analysis. If grid and boundary
conditions are chosen wisely, simulating the entire set of necessary
runs should take approximately the same amount of time of a single
detailed reservoir simulation run (plus a little time for retrieving and
assembling the database). In the following, regression model applica-
tions are presented. These applications were developed to fall within
the statistics of the data from Bassiouni (1980) and John et al. (1998).
Ansari (2016) presents the successful application of the models to
additional examples that fall outside these parameter ranges.

5. Applications

In the following some applications of the developed models are
discussed. A reservoir with some unknown data is described in

Fig. 10. (a) Violin plot for thermal recovery factor. (b) Segmented violin plot for thermal recovery factor. Two ranges for segmenting the model are considered: t0 < ≤ 1D and

t1 < ≤ 4D . The blue lines are sketched manually. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Finding the important dimensionless numbers for predicting thermal recovery factor for each range of the dimensionless time. The cyan line shows the cut off for the
dimensionless numbers with less than 1% importance.
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Question A and the uncertainty in its temperature and produced energy
is evaluated. Questions 2 and 3 use the developed models to calculate
these values for the same reservoir.

Example 1. Ten wells (five injectors and five producers) are
completed uniformly using line drive patterns in a geopressured-
geothermal zone. The producers can provide a rate of 1,000 m3/day,
all of which is injected back into the reservoir. Only the area, thickness
and porosity are known to be ca. 25 km2 (12,500 m×2,000 m), 30 m
and 0.2 respectively. Other information about the reservoir (e.g average
temperature, dip angle, temperature gradient, etc.) are unknown but
they are within the statistics of the data in the area (Table 1). The goal
is to obtain the dimensionless temperature and thermal recovery factor
after 30 years of production.

Answer. Typical values for rock and water volumetric heat capacities
are 2×106 and 4×106 J/m3C and the drainage area available for a single
line drive pattern is 60 acres (242,811 m2):

ρ C ϕ ρ C ϕ ρ C= + (1 − ) = 0.2 × 4 × 10 + 0.8 × 2 × 10

= 2.4 × 10 J/m °C
m pm w pw r pr

6 6

6 3

M
ρ C
ρ C

= = 2.4 × 10
4 × 10

= 0.6m pm

f pf

6

6
(41)

t
M

qt
LWH

= 1 = 1
0.6

1000 m
day

× 30 × 365 days

60 × 4046.86 × 30 m
= 2.5D

3

3 (42)

Using Fig. 6, maximum, median and minimum dimensionless
temperature values for this reservoir after 30 years of production are
ca. 0.39, 0.61 and 0.9 respectively.

Using Fig. 10(a), the maximum, median and minimum thermal
recovery factor values for this reservoir after 30 years of production are
ca. 2.6, 2.1 and 1.6 respectively. The recovery factor can be multiplied
by the initial energy in the system to obtain the energy that can be
generated over the life of a plant. If this value is within the bounds of an
economic project, detailed modeling and simulation could be used to
assess the reservoir; if not, the area could be eliminated from
consideration.

Example 2. For the reservoir in the Question 1, if the average
temperature, injection temperature and the rock's thermal capacity
are 120 °C, 40 °C and 2×106 J/m3 °C respectively; find the rate of
energy production and net cumulative energy that could be produced
from this system in 30 years.

Answer. The maximum, median and minimum production
temperature after 30 years of production are: 108, 73.2 and 46.8 C
and water heat capacity at these temperatures is ca. 4.1×106 J/m3 °C.
Thus using Eq. (43), the rate of energy production would be 2.79×1011

(3.2 MW), 1.36×1011 (1.57 MW) and 2.79×1010 J/day (0.32 MW)
respectively.

H qρ C T Ṫ = ( − )f pf prod inj (43)

Now that we have temperature, we can find accurate water thermal
capacity values at 120 °C and 40 °C are 3.99×106 J/m3 °C and
4.12×106 J/m3 °C. The energy in place is:

Fig. 12. Comparing the R2 values of the models for thermal recovery factor for the range
t1 < ≤ 4D .

Fig. 13. Assessing the models for the thermal recovery factor.
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ρ C ϕ ρ C ϕ ρ C= + (1 − ) = 0.2 × 3.99 × 10 + 0.8 × 2 × 10

= 2.398 × 10 J/m °C
m pm w pw r pr

6 6

6 3

H ρ C V T T= ( − ) = 2.398 × 10 × 60 × 4047 × 30

× (120 − 25) = 1.66 × 10 J
in place m pm p ref

6

15

The produced enthalpy is:

H RF H= ×pord in place

Thus the maximum, median and minimum produced energy values
are 4.3×1015, 3.49×1015, 2.66×1015 J:

The enthalpy that is reinjected back into the reservoir during 30
years is:

H qtρ C T T= ( − ) = 1000 × 4.12 × 10 × 30 × 365.24 × (40 − 25)

= 6.77 × 10 J
inj i m pm i ref

6

14

The net produced energy is then:

H H H= −net prod inj

The maximum, median and minimum net produced energy values
from a single line drive pattern would be 3.62×1015, 2.81×1015 and
1.98×1015 J.

Example 3. For the reservoir in the Question 1, assume a length and
width of 1215 m and 200 m and a thermal conductivity of 2.5×105 for
the reservoir rock. Calculate the dimensionless production temperature
and energy recovery factor using the developed models.

Answer.

κ
λ

ρ C
= = 2.5 × 10

4 × 10
= 0.0625m

f pf

5

6
(44)

π Pe
u H

κ
q

κW
= = = = 1000

0.0625 × 200
= 80T

10 (45)

π = 40
120

= 0.33314 (46)

π L
H

= = 1215
30

= 40.58 (47)

T t π π π t π

π π t π π π

= 0.4528 − 0.0587 + 0.4880 − 0.0004 + 0.0037 + 0.0729

− 0.003 − 0.0003 + 0.0004 = 0.587
D D D

D

14 10 8 14

14 8 8 14 10

RF t π π t π t π

π π

= 1.01 + 0.0405 − 0.829 − 0.002 + 1.01 + 0.0022

− 0.0071 = 1.72
D D D14 8 14 8

14 8

Thus, the estimated production temperature after 30 years is
70.4 °C and the total produced energy and net produced energy after
30 years are 2.86×1015 and 2.18×1015, respectively.

Example 4. The Gueydan Dome geothermal reservoir has a volume of
8.58×108 m3 and porosity of 0.2. If four production and four injection
wells were used to develop this reservoir and the rate for each well is
2,000 m3/day. Average reservoir temperature is 140 °C, injection
temperature is assumed to be 70 °C and reservoir rock thermal
capacity is 1.97×106 J/m3 °C. What would be the estimated recovery
factor from this reservoir in 30 years? (assume reservoir dip angle is
zero)

Answer. Water thermal capacity at 140 °C is ca. 3.956×106 J/m3 °C.
The energy in place is:

ρ C ϕ ρ C ϕ ρ C= + (1 − ) = 0.2 × 3.956 × 10

+ 0.8 × 1.97 × 10 = 2.37 × 10 J/m °C
m pm w pw r pr

6

6 6 3 (48)

M
ρ C
ρ C

= = 2.37 × 10
3.956 × 10

= 0.6m pm

f pf

6

6
(49)

t qt
LWH

= 1
0.6

= 1
0.6

8000 m
day

× 30 years

8.58 × 10 m
= 0.17D

3

8 3 (50)

π L
H

α= tan( ) = 07 (51)

π τ α H
T

= sin( ) = 0
avg

15
(52)

T t π π t π

t π π π

= 0.9936 − 0.0267 − 0.0516 + 0.0002 − 0.8434

+ 0.0029 + 0.0045 = 0.989
D D D

D

15 7 15

7 15 7 (53)

RF t= 1.083 = 0.18D (54)

H ρ C V T T= ( − ) = 2.37 × 10 × 8.58 × 10 × (140 − 25)

= 2.34 × 10 J
in place m pm p ref

6 8

17 (55)

The produced enthalpy is:

H RF H= × = 4.22 × 10pord in place
16

(56)

Water thermal capacity at 70 C is C4.09 × 10 J/m °6 3 . The enthalpy
that is injected back into the reservoir during 30 years is:

H qρ C T T= ( − ) = 8000 × 4.09 × 10 × 30 × 365.24 × (70 − 25)

= 1.61 × 10 J
inj i m pm i ref

6

16 (57)

Thus the net produced energy is:

H H H= − = 2.61 × 10 Jnet prod inj
16

(58)

Ansari et al. (2014) simulated an energy recovery value for this
reservoir at 2.72×1016 J.

6. Conclusion

Analytical solutions are not always available and interpreting
simulator results is difficult. Statistics can be used to interpret
numerical simulation results and create simple predictive models. In
this work, dimensionless production temperature and thermal recovery
factor for a regular line drive design were modeled using inspectional
analysis and statistical modeling. Inspectional analysis produced a
minimum number of fifteen dimensionless groups necessary to de-
scribe a line drive design. Then, experimental design, Boosting and
regression were used to create the models for different segments of the
dimensionless time. The final models were reduced, tested and their
applications were presented. The workflow presented here is generic
and can be used to interpret and translate the output of a simulator
into predictive models in other research areas involving numerical
simulation.
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Appendix A. Inspectional analysis

After the physical process is formulated, we use scale factors and follow the work of previous researchers to non-dimensionalize the equations
(Shook et al., 1992; Novakovic, 2002; Wood et al., 2008; Jin et al., 2010). The equations listed in the main text involve twenty three parameters (ϕ,
ct, cf, βt, βf, M, kx, kz, L H, , κ, κ′ob, κ′ub, ρf, pi, Tavg, Tinj, τ, α, q, μ) and seven variables (x z u u p T t, , , , , ,x z ) to be scaled using Eq. (A.1). In these
linear combinations, the quantities with an asterisk “*” are called scale factors and subscripts “1” and “2” and “D” indicate the multiplicative and
additive scale factors and dimensionless variables, respectively.

x x x x z z z z u u u u u u u u p p p p T T T T t t t t= * + * = * + * = * + * = * + * = * + * = * + * = * + *D D x x xD x z z zD z D D D1 2 1 2 1 2 1 2 1 2 1 2 1 2 (A.1)

Substituting scaled variables into the equations transforms all the equations into the dimensionless space.

A.1. Continuity equation
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A.2. Darcy equation
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A.3. Energy equation
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A.4. Reservoir boundary condition
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A.5. Injection
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q u WH q= = −inj T prod (A.14)

A.6. Production
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At x
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D D D
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1 (A.15)

A.7. Initial conditions

p
p
p

At t
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1 (A.16)
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(A.17)

A.8. Dimensionless groups

The form of the equations should not change by transforming to dimensionless space. Many of these scaling groups can be set to zero or one (Eq. (A.18)).
The remaining scaling groups that cannot be assigned any number defines the dimensionless groups required to describe the system. These remaining
groups should also be analyzed for dependency to eliminate redundant dimensionless numbers and further be heuristically manipulated to achieve the most
succinct form of the minimum dimensionless numbers. We further note that the dimensionless time is defined based on the energy equation.

u u z x t T p* = * = * = * = * = * = * = 0x z2 2 2 2 2 2 2 (A.18)

x L z H

u
u

u u
u
x

u
z

u H
L

u

T T t M
x
u

M L
u

M PV
ϕq

p
u Lμ

k

* = * =

* = 1 ⇒ * =
*
* =

*
* ⇒ * =

* = * =
*
* = =

* =

T

x
x T

x z
z T

avg
x t

T

x

1 1

1
1

1

1

1

1
1

1 1
1

1

1

Note that if the dimensionless time was defined based on the momentum equation, it was t =D
ϕC

C
qt

LWHhyd
f

t
.

The use of scaling factors defines many of the dimensionless groups in Eqs. (A.2)–(A.17). The sixteen remaining dimensionless numbers are no
longer arbitrary and are specific to the described problem. They are:
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x f

ob ub

f i
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7 8
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Appendix B. Tables

Tables B1 and B2
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Appendix C. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.cageo.2017.02.015.
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