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a b s t r a c t

The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and
point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena ne-
cessitates the development of custom analytical and computational tools. In recent years, such analyses
have become the basis of, for example, automated texture characterisation and segmentation, roughness
and grain size calculation, and feature detection and classification, from a variety of data types. In this
work, much use has been made of statistical descriptors of localised spatial variations in amplitude
variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is
rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not
constant and can yield important information about physical scaling relationships. Spectral analysis is a
hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude
and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially
distributed data in the frequency domain lends itself to the development of stochastic models for probing
the underlying mechanisms which govern the spatial distribution of geological and geophysical phe-
nomena. The software package PySESA (Python program for Spatially Explicit Spectral Analysis) has
been developed for generic analyses of spatially distributed data in both the spatial and frequency do-
mains. Developed predominantly in Python, it accesses libraries written in Cython and Cþþ for effi-
ciency. It is open source and modular, therefore readily incorporated into, and combined with, other data
analysis tools and frameworks with particular utility for supporting research in the fields of geomor-
phology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computa-
tional structure of the toolbox is described, and its functionality illustrated with an example of a high-
resolution bathymetric point cloud data collected with multibeam echosounder.

Published by Elsevier Ltd.
1. Introduction

1.1. The growing use of high-resolution point clouds in the
geosciences

Across a broad range of geoscience disciplines, interrogating
the information in high-resolution spatially distributed data (point
clouds) for the purposes of, for example, facies description and
grain size calculation (e.g. Hodge et al., 2009; Nelson et al., 2014),
geomorphic feature detection and classification (e.g. Burrough
et al., 2000; Glenn et al., 2006; Pirotti and Tarolli, 2010), vegetation
structure description (e.g. Antonarakis et al., 2009; Dassot et al.,
2011), and physical habitat quantification (e.g. Vierling et al., 2008;
Wheaton et al., 2010; Lassueur et al., 2006; Pradervand et al., 2014)
has become increasingly widespread. The increasing accessibility
and use of high-resolution topographic point clouds obtained
using Light Detection and Ranging (LiDAR) (e.g. Buckley et al.,
2008; Hilldale and Raff, 2008), Structure from Motion (SfM) pho-
togrammetry (e.g. James and Robson, 2012; Westoby et al., 2012;
Fonstad et al., 2013; Woodget et al., 2015), and range imaging (e.g.
Nitsche et al., 2013) has found widespread application in geo-
morphology (Roering et al., 2013; Tarolli, 2014). The use of sin-
glebeam and multibeam echosounders for bathymetric point
cloud collection is on the ascendancy (Mayer, 2006) in geophysical
and geomorphological research, and is becoming viable in in-
creasingly shallow water (e.g. Parsons et al., 2005; Wright and
Kaplinski, 2011; Buscombe et al., 2014b).

1.2. Spatially explicit analysis of topographic point clouds

With these technological developments, the heights of natural
surfaces can now be measured with such spatial density that al-
most the entire spectrum of physical roughness scales can be
characterised, down to the form and even grain scales (Brasington
et al., 2012). Such ‘microtopography’ has created a demand for
analytical and computational tools for spatially explicit (also
known as spatially distributed) statistical characterisation of the
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data (e.g. Keller et al., 1987; Church, 1988; Shepard et al., 2001;
Manes et al., 2008; Pollyea and Fairley, 2011, 2012; Rychkov et al.,
2012; Brasington et al., 2012; Trevisani et al., 2012; Kukko et al.,
2013; Buscombe et al., 2014a). The basic premise is that the point
cloud captures a surface whose statistical properties vary in space.
Analysing data within small moving windows, calculating relevant
statistics and spatially referencing them so that they are re-
presented in a decimated point cloud form, captures the spatial
variability in the data and allows continuous mapping of statistical
quantities such as roughness. This approach has found numerous
applications in characterising rough surfaces (Smith, 2014). Of
particular interest in roughness characterisation is the extreme
values, the width of the height distribution, or the length of the
distribution tails. As such, the use of the root-mean-square (RMS)
or standard deviation of heights (e.g. Shepard et al., 2001; Sankey
et al., 2010; Nield et al., 2011) or amplitudes relative to a plane
(Shepard et al., 2001; Frankel and Dolan, 2007; Pollyea and Fairley,
2011; Brasington et al., 2012) has become popular means to
quantify surface roughness.

1.3. A case for appropriate scaling of terrestrial roughness statistics

The variance in amplitudes of a great many of geophysical
quantities, including terrestrial surface heights, as a function of
wavelength usually obeys a power law (Sayles and Thomas, 1978;
Turcotte, 1992). An important consequence of power-law beha-
viour is that RMS roughness, however defined, is scale-dependent
(Sayles and Thomas, 1978; Jackson and Richardson, 2007) and
insufficient to discriminate between surfaces with multiple
roughness length scales. Despite this, the horizontal scale and
spacing of roughness elements is rarely considered (Smith, 2014)
therefore the amplitude roughness is rarely scaled by the hor-
izontal spacing of amplitude deviations. The ratio of vertical (e.g.
standard deviation of heights) to horizontal (e.g. characteristic
wavelength) scales is rarely constant (Furbish, 1987). This suggests
that the shape, orientation, inclination, spacing and clustering of
roughness ‘elements’ are important, as well as their vertical am-
plitude (Nikora et al., 1998; Pollyea and Fairley, 2012). These (non-
amplitude) factors give vital context to a given surface such as a
streambed, seafloor, deflation surface, outcrop or till fabric. In the
terminology of fractals, rough surfaces are therefore called ‘self-
affine’ because a different scaling—called a Hurst number or
Hausdorff exponent—is required in the horizontal than in the
vertical for them both to scale with each other (Turcotte, 1992;
Wilson and Dominic, 1998). A small Hurst number, for example,
indicates that a surface smooths disproportionately with increas-
ing lengthscale (the surface is rough up close and appears smooth
at a distance). It is unlikely that terrestrial surfaces can be reliably
distinguished from each other based on these scaling relationships
alone (Shepard et al., 2001). Measures of roughness are more
physically meaningful if expressed as a parameter which scales
vertical roughness to horizontal length characteristic scales. In the
geomorphologic sense, if ‘roughness’ is a measure of the statistical
variation in the distribution of topographic relief of a surface, then
‘texture’ can be defined as the frequency of change and arrange-
ment of roughness.

1.4. Spatial explicit spectral analysis of point clouds

Perhaps the most efficient and widespread means with which
to simultaneously quantify multi-scalar amplitudes and wave-
lengths in spatially distributed data, thereby simultaneously
quantifying roughness and texture at multiple scales, is through
application of spectral analyses (e.g. Fara and Scheidegger, 1961;
Gilman et al., 1963; Sayles and Thomas, 1978; Hough, 1989; Perron
et al., 2008; Hani et al., 2011; Trevisani et al., 2012). Results of
spectral analyses have the additional benefit of being amenable to
theoretical stochastic models of surface roughness, especially
those that relate surface characteristics to the scattering of light
(Miller and Parsons, 1990; Whitehouse, 1997), radar (van Zyl et al.,
1991; Shepard et al., 1995) and sound (Jackson and Richardson,
2007).

Spectral analyses of spatially distributed data have proved
beneficial for a number of geophysical fields, including character-
ising evolving topography (e.g. Catano-Lopera et al., 2009; Aberle
et al., 2010; Singh et al., 2012), topographic feature extraction (e.g.
Lashermes et al., 2007; Booth et al., 2009; Passalacqua et al., 2010;
Kalbermatten et al., 2012; Berti et al., 2013), grain size analysis
(Buscombe and Rubin, 2012; Buscombe, 2013) and scaling and
roughness of terrains (e.g. Rozema, 1968; Pike and Wesley, 1975;
Rothrock and Thorndike, 1980; Fox and Hayes, 1985; Family, 1986;
Balmino, 1993; Buscombe et al., 2015). Spatially explicit analysis of
lengthscales in data can also inform appropriate spatial density of
sampling (Pelgrum et al., 2000). Yet, in the catalogue of compu-
tational analytical tools now available to analyse the multiscale
structures of geophysical, geomorphological and remote sensing
point cloud data, conspicuous in its absence are accessible, open-
source and generalised computational tools to describe the spatial
continuity of the fields they represent and their internal correla-
tions and spectral structures (Wieland and Dalchow, 2009; Bus-
combe et al., 2014a; Buscombe et al., 2015). This paper addresses
this shortfall by (1) detailing the implementation of computa-
tionally efficient statistical analyses of spatially distributed data
such as point clouds and imagery, in the spatial and frequency
domains, in such a way that the resulting statistics are themselves
spatially referenced in a quasi-continuous sense (i.e. spatially ex-
plicit) as random fields of those statistical quantities; and (2) de-
scribing a new open-source toolbox for generic point cloud ana-
lysis which builds primarily on computational toolboxes for signal
inference (Selig et al., 2013) and terrestrial surface analysis
(Rychkov et al., 2012).
2. The PySESA program for spatially explicit analysis of point
clouds

2.1. Scope and purpose

PySESA stands for ‘Python program for Spatially Explicit
Spectral Analysis’. Its field of application is kept broad for a bur-
geoning interdisciplinary community and is therefore not bound
to a specific methodology or discipline. While PySESA might have
immediate application in the analysis of high-resolution topo-
graphic and bathymetric point clouds, it also applies to a broad
range of non-topographic, non-bathymetric, spatially referenced
data. The use of acoustic backscatter, for example, is on the as-
cendancy for substrate classification and bioacoustic detection
(e.g. Anderson et al., 2008; Buscombe et al., 2014b; Colbo et al.,
2014). Similarly, optical backscatter such as LiDAR intensities (i.e.
reflectance of the LiDAR signal) is being used to facilitate terres-
trial roughness and land cover classifications (e.g. Pelgrum et al.,
2000; Antonarakis et al., 2008; Franceschi et al., 2009; Mallet and
Bretar, 2009; Brodu and Lague, 2012; Trevisani et al., 2012), and
widespread use in volcanology (e.g. Mazzarini et al., 2007), and
glaciology (e.g. Arnold et al., 2006). Similar uses have been found
for synthetic aperture radar (e.g. Crawford et al., 1999), colours/



Table 1
PySESA sub-modules (to date) and their functions.

PySESA sub-module Function

read Read a 3-column space, comma or tab delimited text
file

partition Partition a N�3 point cloud (P X Y Z, ,= [ ]) into m
windows of n�3 points (m) with specified spacing
between centroids of adjacent windows and with
specified overlap between windows.

detrend .getdata() returns detrended amplitudes of a N�3
point cloud

sgolay .getdata() returns the Savitsky-Golay digital filter
of a 2D signal

spatial Calculate spatial statistics of a Nx3 point cloud .

getdata() returns:
x¼centroid in horizontal coordinate
y¼centroid in lateral coordinate
z_mean¼centroid in amplitude
z_max¼max amplitude
z_min¼min amplitude
z_range¼range in amplitude
Sigma (s or sd, unit amplitude)¼standard deviation of
amplitudes
Skewness (non-dim.)¼skewness of amplitudes
Kurtosis (non-dim.)¼skewness of amplitudes
n¼number of 3D coordinates

RunningStats Called by spatial to compute sigma, skewness and
kurtosis

lengthscale Calculates the integral lengthscale of a N�3 point
cloud

spectral Calculate spectral statistics of a N�3 point cloud
.getdata() returns:
Slope (γ1, non-dim.)¼slope of regression line through
log–log 1D power spectral density (PSD)
Intercept (ω1, unit length4)¼ intercept of regression
line through log–log 1D PSD
r_value (non-dim.)¼correlation of regression through
log–log 1D PSD
p_value (non-dim.)¼probability that slope of regres-
sion through log–log 1D PSD is not zero
std_err (unit amplitude)¼standard error of regression
through log–log 1D PSD
d (D, non-dim.)¼ fractal dimension
l (l0, unit length)¼ integral lengthscale
wmax (λmax, unit length)¼peak wavelength
wmean (λmean, unit length)¼mean wavelength
rms1 (s1, unit amplitude)¼root-mean-square (RMS)
amplitude from PSD
rms2 (s1, unit amplitude)¼RMS amplitude from bin
averaged PSD
Z (N0)¼zero-crossings per unit length
E (E0)¼extreme per unit length
Sigma(sm, unit amplitude)¼RMS amplitude from
spectral moments
T0_1 (λ, unit length)¼average spatial period m m/0 1( )
T0_2 (λ, unit length)¼average spatial period

m m/0 2
0.5( )

sw1 (ν, non-dim.)¼spectral width
sw2 (ν, non-dim.)¼spectral width (normalised radius
of gyration)
m0 (m0)¼zeroth moment of spectrum
m1 (m1)¼first moment of spectrum
m2 (m2)¼second moment of spectrum
m3 (m3)¼third moment of spectrum
m4 (m4)¼ fourth moment of spectrum
phi (ϕ, degrees)¼effective slope

process Allows control of inputs to all modules (full workflow)
write Write program outputs to a comma delimited text file
plot Various utilities for plotting raw and decimated point

D. Buscombe / Computers & Geosciences 86 (2016) 92–10894
intensities in the visible spectrum (e.g. Carbonneau et al., 2006;
Legleiter and Overstreet, 2012), or in fact any spatially referenced
signal intensity in 3D or 4D.

The input to the program is a (structured or unstructured)
‘point cloud’ of spatially referenced amplitudes (elevation, depth,
intensity, magnitude, etc.) representing any two-dimensional con-
tinuous function Z f X Y,= ( ) where X and Y are horizontal co-
ordinates in a Cartesian mapping plane. The use of the term am-
plitude implies any relevant geophysical quantity with a spatial re-
ference in 2 or 3 dimensions. Point cloud data are simultaneously
analysed and decimated onto a regular grid. The output of the
program is a set of structured, decimated point clouds of a variety of
output parameters. To do so, the data are sub-divided into small
windows of data with a specified degree of overlap and according to
a desired output grid spacing. Each window of data is analysed
statistically in either the spatial domain or frequency domain, or
both. In a given window, all computed quantities are spatially co-
referenced at the centroid of the (X,Y) position of that window.

2.2. Implementation

PySESA is a command-line program implemented in platform-
independent object-oriented Python1 code, with computationally
demanding procedural subroutines written in Cython2 (Behnel
et al., 2011) using C-style static type declarations which allows
compilation of static objects for efficiency. Python has become very
popular for scientific computing (Oliphant, 2007; Millman and Ai-
vazis, 2011) because it is an open-source, cross-platform, well-de-
signed language with a clean syntax, a comprehensive standard li-
brary, and an enormous worldwide user community with free access
to third-party package repositories (such as PyPI3). It has the im-
mediacy of a ‘scripting’ style language, but also advanced capabilities
such as easy interfacing with procedural languages (e.g. C or For-

tran) and other object-oriented languages (e.g. Cþþ and Java);
parallelisation; graphics acceleration and distributed/cloud com-
puting; web development; and static compiling.

Numerical computations in PySESA are built around the effi-
ciency of the NumPy4 array (van der Walt et al., 2011), utilising
Cython's support for fast access to NumPy arrays. Additional nu-
merical libraries are provided by SciPy5 (Jones et al., 2001). Like
recent geological and geophysical Python toolboxes (e.g. Rushing
et al., 2005; Wellmann et al., 2012; Castelao et al., 2013; Krieger
and Peacock, 2014) the design of PySESA is modular which allows
code readability, easy extension and adaptations in the future, and
the portability of its core functionality into other geospatial and
geophysical analysis tools.

Operations on discrete windows of distributed data is highly
amenable to so-called ‘embarrassingly’ parallel (Foster, 1995)
processing because different CPU threads can access and process
consecutive blocks of data stored in memory, without the need for
communication (and/or synchronisation) between the different
threads. In PySESA, parallelisation of computational tasks is sup-
ported using the joblib6 library which allows easy execution of
tasks concurrently on (an automatically detected number of) se-
parate CPUs. Joblib also provides special handling for efficient
processing of large Numpy arrays by memory mapping using
NumPy's in-built memmap7 libraries.
clouds and grids in 2D and 3D
test Program testing suite

1 https://www.python.org/
2 http://cython.org/
3 https://pypi.python.org/pypi
4 http://www.numpy.org/
5 http://www.scipy.org/
6 http://pythonhosted.org//joblib/
7 http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html
2.3. Modules and typical workflow

Implementation and installation of PySESA is described in
Appendix A and some example uses are shown in Appendix B.

https://www.python.org/
http://cython.org/
https://pypi.python.org/pypi
http://www.numpy.org/
http://www.scipy.org/
http://pythonhosted.org//joblib/
http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html


Fig. 1. A schematic of a basic PySESA workflow (read left to right) and the sub-modules responsible for carrying out tasks.
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Currently, PySESA consists of 7 main sub-modules (read for
reading data into the program; partition for windowing the
data into discrete portions of the input point cloud; detrend for
detrending in the spatial domain and filtering in the frequency
domain; spatial for calculation of statistics in the spatial do-
main; spectral for calculation of statistics in the frequency do-
main; write for writing results to file; and plot for visualisation
of outputs in a variety of ways and formats). A list of all PySESA
sub-modules (to date) and their functions is provided in Table 1. A
typical minimal workflow (Fig. 1) and associated PySESA module
is as follows:

� Read 3D point cloud data into program (PySESA::read) and
specify user-inputs.

� Partition the point cloud into discrete windows of data (Py-
SESA::partition) according to user-specified inputs of out-
put resolution, and degree of overlap between windows.

� (Optional) Detrend or spatially filter each window of data
(PySESA::detrend).

� Analyse each (detrended) point cloud window for a suite of
user-prescribed spatial (PySESA::spatial) and/or spectral
(PySESA::spectral) parameters.

� Output results (PySESA::write).
� (Optional) Plot (PySESA::plot) results in a variety of ways,

using Matplotlib8 (Hunter, 2007) and Mayavi9 (Ramachan-
dran and Varoquaux, 2011) Python modules for two- and
three-dimensional graphical visualisations.
8 http://matplotlib.org/
9 http://docs.enthought.com/mayavi/mayavi/
3. Computational implementation

3.1. PySESA::read

The read module is highly optimised for reading ASCII files
(comma, tab, or space delimited) composed of three columns of
numbers (with floating point precision) representing X, Y and Z,
respectively. A file composed of 1 million 3D coordinates can be
read into memory in less than a second with an ordinary
E2.5 GHz processor, and 10 million in less than 10 s (Fig. 2).

3.2. PySESA::partition

Analyses are made spatially explicit by partitioning the 3D
point cloud into small windows of data, each of which are statis-
tically analysed and the values of user-defined parameters are
assigned to the centroid location of each 3D data window. In a
three-dimensional region Ω consisting of points P m m

M
0{ } = which is

a subset of the entire point cloud P X Y Z, ,= [ ] (i.e. P Pm m
M

0{ } ∈= ), m

is defined as the set in Ω consisting of those points in P which are
within distance d of Pm

 P dX X, , 1m mΩ= ∈ | − | < | | ( )

where two-dimensional vector X YX ,= ( ) and m m M, ,0= … . Gi-
ven P with point density ϵ, the centroids of m are defined by
Buscombe and Rubin (2012)


P dX X X

1
.

2m
m

∫=
| |

ϵ( )
( )

⁎

Here, the set of regions m m m
M

0{ } = is called ‘windows' of P, and d

and P m
M

1{ } = can be specified in such a way that the regions overlap

http://matplotlib.org/
http://docs.enthought.com/mayavi/mayavi/


Fig. 2. Illustration of the data windowing procedure controlled by the PySESA::partition parameter ‘percent overlap’. A dense point cloud is analysed such that is
decimated to a regular 1 m�1 m grid (red dots) by using increasing amounts of data: (a) �50% overlap; (b) 0% overlap (program default); (c) 50% overlap; and (d) 100%
overlap. The yellow and black dots are data in adjacent windows. (For interpretation of the references to color in this figure caption, the reader is referred to the web version
of this paper.)
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to a specified degree. A computationally highly efficient means to
partition space as described above, with optional overlap, is a
nearest-neighbour search using the k�d (k-dimensional) tree
(Bentley, 1975). In PySESA, the efficient algorithm of Manee-
wongvatana and Mount (1999) is implemented through SciPy's
cKDTree10 function. This approach to space partitioning, as op-
posed to an alternative such as Voronoi tessellation (Buscombe
and Rubin, 2012) or a two-pass sorting procedure (Rychkov et al.,
2012), enjoys the advantages associated with easy specification of
the degree of spatial smoothing (through the grid spacing and
degree of overlap) in the final decimated grid. A useful feature of
windowing like this is that limits can be imposed onM andm0, the
maximum and the minimum number of points considered, re-
spectively, for each window.

3.3. PySESA::detrend

Detrending is high-pass filtering in the spatial domain through
the subtraction of a (1) mean, (2) least-squares plane, or
(3) modelled surface (see next section), from the amplitude data
10 http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.
html
so the small-scale variations are emphasised and the large-scale
trends are removed (Brasington et al., 2012). All three approaches
described above are implemented in PySESA (Fig. 3). A detrending
operation is a necessary pre-processing step prior to spectral
analysis. Another motivation to detrend each window of data is
that, as argued by Brasington et al. (2012) and Pollyea and Fairley
(2011), the standard deviation of amplitudes relative to a local
plane fit through the data is a more powerful statistical descriptor
of amplitude roughness compared with standard deviation of m,
because it emphasises the smallest scale amplitude variance re-
lative to the local mean amplitude (Fig. 4).

Below, the detrended windowed point cloud is denoted m .
PySESA supports three types of plane fitting (Fig. 3), those based
on (1) ordinary least squares (OLR) (e.g. Rychkov et al., 2012);
(2) robust linear model (RLM); and (3) orthogonal distance re-
gression (ODR) (e.g. Pollyea and Fairley, 2011). Given the plane
through the unstructured point cloud m, given by

aX bY c 0, 3+ + = ( )

the normal vector to the plane is

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥f

a
b
c

v .
4

= ∇ =
( )

http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html


Fig. 3. Each of the 4 subplots shows the same point cloud (red dots) in a small area typical of a window of data, and the 2D function fit through that point cloud (blue
surface) for the purposes of detrending. The chosen point cloud shows a high degree of clustering in space, which means that the 4 detrending methods currently im-
plemented in PySESA give very different trends through the data. These method choices are (a) Ordinary Least Squares (OLR); (b) Robust Linear Regression (RLR);
(c) Orthogonal Distance Regression (ODR); and (d) Savitsky-Golay digital filter of any order (shown is order 0). The detrending effects on the point cloud are shown by the
standard deviation of detrended amplitudes, denoted s in each subplot, and which range from 6.1 cm (ODR) to 29.1 cm (RLR). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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Ordinary and robust linear regression are implemented using
routines provided by the statsmodels11 package. In ordinary
linear regression, the sum of the squared vertical distances be-
tween the m data values and the corresponding m values on the
fitted plane are minimised to find v. Robust linear models do the
same via iteratively reweighted least squares and given the robust
criterion estimator detailed in Huber (1981). In orthogonal dis-
tance regression (Boggs et al., 1992), v is found by minimising the
orthogonal (perpendicular) point-to-plane distances, di, given by
projecting the vector from the plane to an arbitrary point
( x y, , m0 0 ) onto v, a line normal to the plane:


d

aX bY c

a b 1
.

5
i

m0 0 0

2 2
= | + + + |

+ + ( )

In PySESA, this is computed using SciPy wrappers to the
ORDPACK12 library (Boggs et al., 1992) and a custom numerical
procedure by which coefficients v from an ordinary least squares
11 http://statsmodels.sourceforge.net/
12 https://docs.scipy.org/doc/scipy-0.15.1/reference/odr.html
model are used as initial estimates for v for a more accurate fit. For
very large point cloud windows, the implicit minimisation of Eq.
(3) can be speeded up considerably by pre-computing its deriva-
tives using Jacobian functions during the fitting.

3.4. PySESA::spectral

3.4.1. Gridding
Gridding is the process that converts an unstructured de-

trended window of point cloud, m , to a structured random field,
 Xm m( ), defined over the regular grid Xm composed of square grid
cells, and specified by the joint probability density function

 p X YX X X X, , : , , ,m m m m m m m m1 2 1 2( ( ) ( ) … … ∈ [ ]).  Xm m( ) consists of
N NX Ym m× observations at regular intervals X Ym mΔ = Δ and is
achieved using the SciPy routine griddata.13 Nearest-neighbour
interpolation (which returns the value at the data point closest to
the point of interpolation) is used by default, but linear and cubic
interpolation is also possible (with an associated loss in
13 http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.grid
data.html

http://statsmodels.sourceforge.net/
https://docs.scipy.org/doc/scipy-0.15.1/reference/odr.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html


Fig. 4. The distribution of residuals created by detrending the point clouds in the corresponding 4 subplots of Fig. 3.

14 http://www.mpa-garching.mpg.de/ift/nifty/index.html
15 http://www.mpa-garching.mpg.de/ift/nifty/base_space.html
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computational speed, and at the risk of introducing artificial au-
tocorrelation into the data). Note that this process is required for
spectral analyses only: descriptive statistics (Section 3.8) are cal-
culated on unstructured point clouds.

3.4.2. Spatial domain filtering (with PySESA::sgolay)
PySESA implements the Savitsky–Golay low-pass filter (Sa-

vitzky and Golay, 1964) in 2D (Fig. 3d) to provide the option of
spatial domain filtering of  Xm m( ) prior to spectral analysis. This
can be used to low-pass filter the data or, through subtraction of
the filter from the data, high-pass filter. As the latter, the Savitsky–
Golay filter can also be used as a higher-dimensional detrending
surface model which can be subtracted from the data instead of a
2D plane. As such, it is optionally called by the detrend module.

The idea behind Savitzky–Golay filtering is to find filter coef-
ficients that preserve higher moments in the data. Filters such as a
moving average preserve the zeroth moment of a spectrum but
violate the 2nd moment. The underlying function in a Savitsky–
Golay approach is approximated within a moving window by a
polynomial of higher order, typically quadratic or quartic, rather
than a constant. For each point p x y,m m( ) of  Xm m( ), a window
centred at that point is extracted, a least-square fit of a polynomial
surface is computed, and the initial central point is replaced with
the value computed by the fit. In PySESA, the coefficients are pre-
computed for efficiency (using convolution routines) because they
are linear with respect to the data spacing (Press et al., 2007).
Evaluation of the fit at the borders of the data is achieved by
padding the convolved data with a mirror image of the data.
3.4.3. Power spectrum
The power spectrum K2Ψ ( ) (with dimensions length4), or

equivalently its Fourier transform, the autocorrelation function
L2ξ ( ) (over L lags) is a measure of the variance of amplitudes in

 Xm m( ) associated with different narrow bands of unit k kK ,X Y= ( ),
which is a two-dimensional wave vector (whose magnitude

K k k 2 /X Y
2 2 π λ= + = is the wavenumber, λ being the wavelength)

related to the frequency components by FX
k

N X
X

X
= Δ

and FY
k

N Y
Y

Y
= Δ

.

Therefore, the wavenumber describes the number of times the
function  Xm m( ) has the same phase per unit space.

To prevent spectral leakage during the estimation of K2Ψ ( ),
 Xm m( ) is first tapered by multiplying with a 2D taper T i j,( ). Then

K2Ψ ( ) is normalised to account for the change in variance asso-
ciated with the application of the taper (Buscombe et al., 2014a).
Generic 2D tapering in PySESA is achieved using the vectorised
method detailed in Appendix C.

Power spectral density estimation in PySESA is carried out
using NIFTy14 libraries (Selig et al., 2013), capitalising on the
NIFTy rg_space15 class, which allows computationally efficient
transformation between regular grid and wavenumber spaces.
Power spectral density smoothing in the frequency domain is also
carried out using NIFTy which implements the algorithms of
Ensslin and Frommert (2011) and Oppermann et al. (2013). This
process is detailed in Appendix D.

The 1D marginal spectrum, K1Ψ ( ), is the 2D spectrum collapsed

http://www.mpa-garching.mpg.de/ift/nifty/index.html
http://www.mpa-garching.mpg.de/ift/nifty/base_space.html


D. Buscombe / Computers & Geosciences 86 (2016) 92–108 99
as a function of the radial wavenumber K KK X Y
2 2= + . The sub-

script 1 here, and elsewhere below, denotes calculations based on
the 1D form of the spectrum. No radial integration occurs, there-
fore this spectral form incorporates any anisotropy (directional
dependence) in  Xm m( ) (in other words, if anisotropy exists, it is
not averaged out). If this is a concern for any reason, the user must
choose a window size that ensures the spectrum is isotropic.

3.4.4. Background estimation
Given the power-law form of K1Ψ ( ), the background spectrum,
K1Ψ ( ), is a version of the spectrum in which there is no con-

centration of variance in any wavenumber band. Comparison be-
tween K1Ψ ( ) and K1Ψ ( ) allows identification of deviations in F1Ψ ( )
and therefore any statistically significant periodicities in the data.
A bin-averaging approach to estimating K1Ψ ( ) is biased by the
peaks and troughs in the spectrum, therefore a preferable ap-
proach is to construct a simulated surface with identical global,
but different local, statistics (Perron et al., 2008). In PySESA, this is
achieved by simulating Gaussian 2D random field drawn from

K2Ψ ( ) using the methods detailed in Oppermann et al. (2013) and
summarised briefly in Appendix E, then collapsed as a function of
K to give K1Ψ ( ).

This simulated field is statistically homogeneous and isotropic,
which means the correlation between two field values at two
positions depends only on their physical distance
( X X K1/m m1 2| − | ∝= = ). K1Ψ ( ) is therefore a smooth spectral ap-
proximation to an isotropic form of K2Ψ ( ) and has the same cov-
ariance as  Xm m( ). This covariance captures the essential features
of low-frequency variation over relatively large separation dis-
tances, but the spectra K1Ψ ( ) and K1Ψ ( ) diverge at higher fre-
quencies because K1Ψ ( ) does not contain the information on either
large changes in amplitude over short distances (Sayles and Tho-
mas, 1978) or asymmetry about a vertical or horizontal axis, be-
cause it is unaffected by a change in sign of k 1Ψ = � k 2Ψ = or
Xm 1= � Xm 2= (Goff and Jordan, 1988).

3.5. Integral lengthscale (with PySESA::lengthscale)

The autocorrelation function is the normalised covariance be-
tween the signal and itself when offset by some lag, and exhibits
periodicity—where present—at the same period as the original
signal. In PySESA, the autocovariance function L2ξ ( ), over L lags, is
calculated as the 2D continuous Fourier transform of K2Ψ ( )
(Priestley, 1981) then integrated radially over segments to collapse
it to 1D, or:

⎡⎣ ⎤⎦ dL K K K Kcos , sin , 61
0

2

2∫ξ Ψ θ θ θ( ) = ( ) ( ) ( )
π

where θ is a vector of equal-area sectors subtended by a given
angle centred in the DC component in frequency space, over which
the radial integration occurs. It is assumed that the radial in-
tegration incorporates any significant anisotropy in  Xm m( ).

The definition of the integral length-scale, l0, comes originally
from turbulence research (Taylor, 1938) as a measure of some re-
latively large lag over which the autocorrelation converges to zero,
indicative of the largest turbulent eddy scale. The same principle
applies to spatially distributed data if fluctuating velocity in time is
replaced by fluctuating amplitude in space (cf. Nikora, 2005).
Strictly speaking, l0 is the product of 2π and the spectral amplitude
at K¼0 (Taylor, 1938) however evaluation of this amplitude would
require an infinitely long spatial series. A pragmatic approach is to
pick the lag to which, when integrated to, the correlation equals
zero (beyond which only harmonics remain, whose correlations by
definition are harmonics at the same wavenumber), or
l dL L,
7L

0 1
0

∫ ξ= ( )
( )

with L0 defined as either the lag to which ξ1 falls to zero (Taylor,
1938), the product of 2π and the lag at which ξ1 falls to half its
value at zero lag (Buscombe et al., 2010), or the lag required to
reduce ξ1 to 1/e (Shepard et al., 2001). All three methods for cal-
culating the integral lengthscale are common and provided in
PySESA and it is left as an exercise to the interested reader to
examine how these measures relate for different point clouds.

In general, smoother surfaces have larger integral lengthscales.
However, the concepts behind this statistical measure have been
used to describe how variance in various geophysical phenomena
cascades (dissipates, or ‘smears’ Jerolmack and Paola, 2010) across
spatial scales (Guadagnini and Neuman, 2011), in which case large
integral lengthscales could also indicate slow ‘dissipation’ rates
from variance associated with small wavelengths to variances as-
sociated with larger wavelengths in the data.

3.5.1. Slope and intercept
Spectral power of distributed spatial data decreases rapidly

with increasing frequency (Shepard et al., 2001). This power-law
behaviour cannot persist at very high frequencies, which leads to
spectral ‘roll over’ where the spectral slope steepens (Priestley,
1981). The length scale associated with this rollover frequency is
the outer scale L0, which is assumed in PySESA to be the point of
divergence between Xm1Ψ ( ) and the background power spectrum

K1Ψ ( ). A simple functional form of K1Ψ ( ) is a power-law (von Kar-
man and Howarth, 1938):

h
LK

K K
,

2
1/ ,

81
1

0

1

0
1

Ψ ω π( ) =
( | |)

>
( )γ

−

The inclusion of a dimensional constant, h0, in Eq. (8) allows ω1

to have dimensions length4, independent of the value of non-di-
mensional γ1 (Jackson and Richardson, 2007). Spectral strength
and exponent are estimated from bin averages of the marginal
power spectrum K1Ψ ( ), as the parameters that minimise the error

LK K
K

,
2

1/ , 9b b b1 1 1
2

1

0( )γ ω Ψ π∥ + + ∥ = > ( )
−

where ∥ represents the 2-norm and subscript b denotes bin aver-
age. Appendix F details the parameter estimation. As well as γ1 and
ω1, the correlation coefficient of the regression, the two-sided p-
value for a hypothesis test whose null hypothesis is that the slope
is zero, and the standard error of the slope coefficient estimate
( MSE/ Kbσ= where MSE is a mean square error—the sum of
squared residuals divided by number of model parameters—and

Kbσ is the variance in the independent variable) are also calculated.
Since γ1 is always negative, an estimate of fractal dimension is
then D 8 /21γ= ( + ) (Huang and Turcotte, 1990; Perron et al., 2008).

The spectral strength, ω1, is a measure of power at low fre-
quencies, or the magnitude of signal fluctuations over relatively
large spatial distances. The spectral exponent, γ1, is a measure of
the rate of decay in signal power as a function of increasing fre-
quency. The more complex the spatial patterns in the data, the
greater range of frequencies must be used to describe it. Therefore,
γ1 is a useful measure of how complex the data is by quantifying
the range of frequencies necessary to describe the data.

3.6. Amplitude and length scales

The area under the power spectral density curve is equal to the
variance of the amplitude distribution (Sayles and Thomas, 1978).
For normally distributed amplitudes, s1 is equivalent to the root-
mean-square amplitude, which in PySESA is calculated as



Fig. 5. (a) The raw point cloud used to demonstrate the functionality of the PySESA toolbox. This is a bathymetric point cloud, obtained using multibeam echosounder, of a
60�80 m patch of the Colorado River bed in Western Grand Canyon, around river mile 224. The point cloud, composed of almost 1 million 3D points, clearly shows areas of
varying textures, including sand dunes, flat sand areas, and rocky areas. (b) A different perspective on the same scene, to better show the variation in heights across the data.

16 www.swig.org/exec.html
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in which the definite integral is estimated using the composite
trapezoidal method (SciPy's trapz function). s1 is a measure of
the magnitude of signal fluctuations over all space (both large and
small separation distances) and is therefore only pertinent to
roughness, not texture, which is better quantified by measures of
dominant wavelengths in the data. PySESA calculates peak wa-
velength as
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which can only take on discrete values. A more continuously dis-
tributed measure of central tendency in wavelength is also cal-
culated:
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The ratio of the RMS roughness (Eq. (10)) to the integral
lengthscale gives the ‘effective slope’ (Campbell and Garvin, 1993;
Shepard et al., 2001), expressed in degrees

⎛
⎝⎜

⎞
⎠⎟l

tan .
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1 1

0
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−

3.7. Moments and spectral width

PySESA provides the means to calculate a number of useful
quantities from the moments of the power spectrum K1Ψ ( ), defined
as

m dK K K, 14k
k

0
1

2∫ Ψ= | ( )| ( )
∞

which says that the content at every frequency in the spectrum is
weighted by the kth power of the frequency and the result is
summed up across the entire spectrum. The power in the signal is
m0. The moment of inertia around the axis K¼0 is m2. Since the
bandwidth of the signal is m m/m 2 0σ = , the number of zero
crossings per unit space is given by N m m2 /0 2 0= . The derivative
of  Xm m( ) has the marginal power spectrum K K2 1

2π Ψ| ( ) | and the
bandwidth m m/4 2 , therefore the number of extrema per unit

space is E m m2 /0 4 2= . Two measures of the average wavenumber

are m m/0 1λ = and m m/0 2λ = . The spectral width is a di-
mensionless parameter which describes the way in which spectral
area is distributed around the mean wavenumber. Two measures
of spectral width are implemented in PySESA: (1)

m m m1 /2
2

0 4ν = − (Cartwright and Longuet-Higgins, 1956) which
approaches zero as the spectrum becomes more narrow banded;

and (2) the ‘normalised radius of gyration', or m m m/ 10 2 1
2ν = ( ) −

(Longuet-Higgins, 1975) which does not rely on the fourth spectral
moment, so is numerically more stable.

3.8. PySESA::spatial

PySESA is predominantly a library for spectral analyses but also
implements operations for calculation of descriptive statistics
(standard deviation, skewness, and kurtosis) on point clouds in the
spatial domain. Root-mean-square (RMS) height, or the standard
deviation of amplitudes about the mean, is the square root of the
variance of amplitudes,

 Z Z , 15m m
2 2( )σ = ( ) − ( ) ( )

or detrended amplitudes,

 Z Z .
16d m m

2 2( )σ = ( ) − ( ) ( )

Sample variance, skewness and kurtosis are calculated using
the numerically stable method of Welford (1962) as implemented
by Knuth (1998) and discussed by Chan et al. (1983). This method
is less prone to loss of precision in floating point arithmetic due to
subtracting two nearly equal numbers, which is especially im-
portant when calculating the variance of small residuals of points
relative to a plane. Large errors in compiled statistics can result
otherwise. The Welford–Knuth algorithm is written in Cþþ and
compiled into a Python module using the SWIG16 interface

http://www.swig.org/exec.html


Fig. 6. The point cloud shown in Fig. 5a, decimated to a 0.25�0.25 m regular grid by the PySESA program, and colour-coded by (a) spectral root-mean-square variation in
amplitude, s (m); and (b) spectral strength ω2 (m4). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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compiler (Beazley, 2003). The ‘effective slope’ (ratio of the RMS
roughness to the integral lengthscale) can be calculated in the
spatial domain using Eq. (13).
4. Demonstration

In order to demonstrate the functionality of the PySESA tool-
box, a bathymetric point cloud of a 60�80 m patch of the Color-
ado River bed in Western Grand Canyon (Fig. 5), around river mile
224 (approximately 360 km downstream of Lees Ferry, AZ, USA)
was analysed. The point cloud was obtained using multibeam
echosounder, which is composed of almost 1 million 3D points (at
a density of around 200 points per square metre). Details on the
methods for acquisition and analysis of such data in this en-
vironment are found in Kaplinski et al. (2009, 2014), Grams et al.
(2013) and Buscombe et al. (2014a). Most important for the pre-
sent purposes is that the point cloud clearly shows areas of varying
textures and roughnesses, including sand dunes with a quasi-
regular crest spacing, relatively flat sand areas, and relatively high
elevation rocky areas. The point cloud was analysed for all spatial
and spectral parameters using a 0.25�0.25 m regular output grid
spacing with 0% overlap. Each window contained a minimum of 64
data points. A ODR plane was used to detrend data in each win-
dow. Prior to spectral analysis, the data were Hann tapered.

The decimated output point cloud shown in Fig. 6a has been
colour-coded by spectral root-mean-square variation in amplitude,
s1 (m) (Eq. (10)). As expected, roughness is high (light colours) in
the rocky areas, intermediate in the dune field, and low in the
flatter areas in between. The same cloud of points in Fig. 6b has
been colour-coded by spectral strength ω2 (m4) (Eq. (9)). To recap
from Section 3.5.1, the spectral strength, ω1, is a measure of power
at low frequencies. Rocky areas therefore have relatively low va-
lues of spectral strength because the magnitude of topographic
fluctuations over relatively large spatial distances is small com-
pared to those over short distances. The potential for automated
physically based segmentation of different geomorphic units
(dunes, flat sand and rocks) is apparent in this case and would
have enormous potential application in, for example, channel bed
physical habitat characterisation and sediment transport studies.
To further illustrate this point, contour maps of various gridded
parameters, which are a selection of those resulting from spatial
and spectral analyses of the point cloud shown in Fig. 5 are shown
in Fig. 7. In each subplot, just a small 70�45 m portion of the data
is shown. Spectral strength (Fig. 7b), spectral width (Fig. 7e), ODR
detrended standard deviation (Fig. 7f) and ratio of integral
lengthscale and RMS roughness (Fig. 7i) would be particularly ef-
fective parameters by which to delineated rocky, flat and rough
sand areas. Other parameters such as the non-detrended standard
deviation (Fig. 7f) and integral lengthscale (Fig. 7d) seem likely to
be able to delineate dune crests from troughs.

Similar analyses could find particular utility in, for example,
automated landscape, soil or vegetation classification or segmen-
tation of natural textures in remote sensing imagery; seafloor
substrate mapping and benthic habitat characterisation using
multibeam data; or spatially explicit mapping of grain size and
roughness variations in streambeds, surficial geology, lava flows or
vertical sedimentary sequences using LiDaR or high-resolution
imagery, among many other uses.
5. Discussion and future developments

According to Trevisani et al. (2012) and Berti et al. (2013), an
ideal algorithm for a spatially explicit analysis of surfaces should:

(1) provide a pixel-by-pixel characterisation of the surface;
(2) run on large datasets with a computational and memory

efficiency;
(3) measure an intrinsic property of the surface, invariant with

respect to rotation or translation;
(4) take into account scale dependency; and
(5) have an intuitive or physical meaning.

It is instructive to evaluate the PySESA toolbox against these
criteria: (1) does not strictly apply because geospatial data are
analysed as point clouds rather than gridded surfaces, however
information from each measured location in the point cloud is
utilised. There is no interpolation across space: if there is no data
in a particular grid location, or not enough data (defined by the
min_pts parameter to the partition module), there are no
outputs at that location. The spatial density of results (degree of
decimation) depends on the (user-defined) scale at which the
outputs are meaningful, and the processing time (related to the
size of the cloud) deemed acceptable.

Regarding (2), special attention has been paid to making the



Fig. 7. Contour maps of gridded (0.25�0.25 m) parameters from spatial and spectral analyses of the point cloud shown in Fig. 5. In each subplot, just a small 70�45 m
portion of the data is shown. The parameters shown are (a) elevation; (b) spectral strength; (c) spectral slope; (d) integral lengthscale; (e) spectral width; (f) standard
deviation; (g) detrended standard deviation; (h) spectral standard deviation; (i) ratio of integral lengthscale and standard deviation; and (j) skewness.
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program computationally efficient (within the constraints of using
an interpreted language) using statically compiled subroutines
which run in parallel. So far, the program has been used on up to
and including 107( ) point clouds. More work is required to make
the program memory efficient enough to process point clouds of

108( ) or more. The program would run with only minor



Fig. 8. Processing times for increasing numbers of 3D points in the point cloud, for processing for a (a) 4-core Intel® Xeon® W3530 CPU at 2.80 GHz; and a (b) 8-core Intel®

Core® i7-3630QM CPU at 2.40 GHz. The overall differences in the processing times show how distributing the computation over more CPUs (b) is more beneficial than a
faster CPU (a). Different symbols refer to the degree of overlap in the windowing procedure. Connected symbols show processing times all spatial parameters using
PySESA::spatial and unconnected symbols show processing times all spatial and spectral parameters using PySESA::spectral.

Fig. 9. The percentage speedup associated with processing with an 8-core 2.40 GHz compared with a 4-core 2.80 GHz processor, for (a) all spatial and spectral parameters
using PySESA::spectral, and (b) processing all spatial parameters using PySESA::spatial. Different symbols refer to the degree of overlap in the windowing
procedure.
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modifications on high performance computing environments. The
combination of a one-time binary-tree (k d− tree) space partition,
with a computational complexity n nlog( ), to sort the point
cloud into windows, then successive application of the FFT algo-
rithm, each with a computational complexity n nlog( ), on each
window, results in an overall computational cost of n2( ) to ana-
lyse each point cloud. Therefore the overall processing time as a
function of the number of points in the cloud is quasi-linear in
log–log space (Fig. 8) and doubling the number of processors over
which the computations are handled results in a E50% speedup
(Fig. 9).

Metrics calculated using Fourier methods are not inherently
invariant with respect to rotation or translation (3). However,
because small windows are used in the processing; because de-
trending can be applied; and because spectral metrics computed
in PySESA are based on 2D spectra which are then collapsed (not
radially averaged) to a 1D form; any anisotropy is incorporated.
The one caveat to that statement would be for coarse output grids.
How coarse is too coarse depends on the degree of anistropy in a
typical data window. In choosing an appropriate window size (a
function of output spacing and overlap), there is a trade-off be-
tween a size small enough to ensure data in a typical window are
isotropic, yet large enough to preserve required detail in the
outputs at an acceptable statistical power (related to N). The ef-
fects of window size and degree of window overlap would vary on
the degree of spatial variability in the data, and on the specific
output parameter. Those parameters quantifying lengthscales (e.g.
λmean and l0) are most susceptible to choice of window size, but
large window sizes also affect measures of amplitude (e.g. s1, s
and sd) if amplitudes are strongly varying across the window such
that mean or plane detrending has a diminished effect of ampli-
fying local variations in amplitude relative to the mean amplitude.
Window overlap controls the degree of spatial smoothing in the
outputs and therefore its effects on output parameters is hard to
predict.

On (4), as discussed in Section 1.3, spectral methods provide
the means to calculate horizontal (e.g. λmean and l0) and amplitude
(e.g. s1) scaling and the scaling between them (such as D and ϕ).
Finally, regarding (5), all measures calculated by the PySESA

(summarised in Table 1) have physical connotations (indeed, most
have physical units), being related to either the amplitude or
horizontal lengthscales of signal fluctuations or measures de-
scribing the distribution of amplitudes in the spatial (e.g. skewness
and kurtosis) or frequency (e.g. mk and ν) domains.

PySESA could be extended by inclusion of frequency domain
filtering and bandwidth specification which would allow the user
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to specify a range of wavenumbers over which to calculate the
power spectrum. In addition, co-variance and co-spectra of 4D
data (two dependent amplitudes variables co-registered in space)
such as lidar intensities and elevations, or sonar backscatter am-
plitudes and depths, could be calculated. Finally, the toolbox could
be easily extended to include spatial analogs to the power spec-
trum such as variograms and structure functions.
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Table B1
Minimal example of processing a point cloud using all built-in default inputs.

import pysesa

infile¼‘/home/me/mypointcloudfile.txt’

pysesa.process(infile)

Table B2
Default values for the input parameters to the PySESA::process module.

out¼1 # 1 m output grid

detrend¼4 # detrend type: ODR plane

# Processing type: spectral parameters (no smoothing) only

proctype¼1

mxpts¼1024 # Maximum points per window

# 5 cm grid resolution for detrending and spectral analysis

res¼0.05

nbin¼20 # Number of bins for spectral binning

lentype¼1 # Integral lengthscale type: l <0.5
taper¼1 # Hann taper before spectral analysis

prc_overlap¼0 # No overlap between successive windows

minpts¼64 # Minimum points per window

Table B3
An example of the full processing chain on just 1 window of data.

# import module

import pysesa

# read point cloud from file
Appendix A. Implementation and installation

� PySESA is completely open source and has been developed
under a GNU General Public License. The project homepage is
http://dbuscombe-usgs.github.io/pysesa/ which provides doc-
umentation and further analysis examples.

� The program requires NumPy, SciPy, Cython, matplotlib,
NIFTy, joblib, and statsmodels modules. A setup.py

distutils17 script is provided to automatically install these
dependencies.

� The program is available on the Python package repository
(https://pypi.python.org/pypi/pysesa) and can be installed from
the command line using: pip install pysesa.

� The ASCII format is used for both input and outputs, despite the
overhead involved in textural conversions and the sequential
nature of I/O operations, for maximum compatibility with other
software.

� PySESA has a git version-control backend and is freely avail-
able on the github® online repository: https://github.com/dbus
combe-usgs/pysesa which allows centralised storage and cus-
tomisation by users (‘forking’) through development branches
(‘forks’). Additions of new functions and sub-modules can be
made or incorporated into other software tools by interested
developers.

� Each function is annotated with docstrings explaining func-
tionality and syntax, which can be accessed within python using
module.__doc__, or using the module? syntax in ipython.18

� sphinx19 has been used to generate html web pages for the
project. These can be compiled locally using the supplied
Makefile (make html) or batch (make.bat) file on Windows®.

� So far the program has been tested with Python version 2.7, on
various distributions of Linux and Windows® 7.
pointcloud¼pysesa.read.txtread(infile)

# create windows of data

windows¼pysesa.partition(pointcloud).getdata()

# process window number 50

k¼50

# get all spectral statistics for that window

spec_stats¼pysesa.spectral(

pointcloud[windows[k],:3].astype(‘float64’)).getdata()
Appendix B. Example usages of PySESA

The submodule PySESA::process allows full control over all
types of workflows through use of a number of processing flags. A
minimumworking example usage of the PySESA module, accepting
all default values for parameters, is shown in Table B1.

This instance writes out the following results file whose name
17 https://docs.python.org/2/distutils/
18 http://ipython.org/
19 http://sphinx-doc.org/latest/index.html
contains some of the processing parameters:
/home/me/mypointcloudfile.txt_zstat_detrend4_ou-

tres0.5_proctype1_mxpts512_minpts16.xyz
The above is the same as passing a list of default-valued vari-

ables to PySESA::process, which is included for completeness
in the PySESA::test module (Table B2).

pysesa.process(infile, out, detrend, proctype,

mxpts, res, nbin, lentype, minpts, taper,

prc_overlap)
A minimal example analysis of spatial and spectral analysis on

just 1 window of data is shown in Table B3 and and to extend this to
all windows, utilising parallel processing over all available cores
could be achieved using the following minimal example (Table B4).

To obtain just the integral lengthscale of the kth window, de-
trended using the orthogonal distance regression detrending
technique, one could use the following in Table B5 and to get the
spatial statistics from the same data, use the following in Table B6.

In this final example, the output grid resolution is changed to
25 cm, and the various outputs from the spectral module are
obtained separately (Table B7).
# get all spatial statistics for that window

spat_stats¼pysesa.spatial(

pointcloud[windows[k],:3].astype(‘float64’)).getdata()

http://dbuscombe-usgs.github.io/pysesa/
https://pypi.python.org/pypi/pysesa
https://github.com/dbuscombe-usgs/pysesa
https://github.com/dbuscombe-usgs/pysesa
https://docs.python.org/2/distutils/
http://ipython.org/
http://sphinx-doc.org/latest/index.html


Table B7
An example of obtaining the various output parameters of the spectral module, all
together and separately.

# 25 cm output grid

out¼0.25

# re-create windows of data

windows¼pysesa.partition(pointcloud, out).getdata()

result¼pysesa.spectral(pointcloud[windows[k],:3].astype

(‘float64’))

# get all spectral parameters

result.getdata()

# get the fit parameters for log-log power spectrum

result.getpsdparams()

# get integral lengthscale

result.getlengthscale()

# get spectral moment parameters

result.getmoments()

# get rms and wavelength parameters

result.getlengths()

Table B4
An example of how to scale processing of 1 data window (Table B3) to all data
windows, using parallel processing.

# define a function that will get repeatedly

# read by the parallel processing queue

def get_spat_n_spec(pts):
return pysesa.spatial(pts.astype(‘float64’)).getdata()

þ pysesa.spectral(pts.astype(‘float64’)).getdata()

# import the parallel processing libraries

from joblib import Parallel, delayed, cpu_count

# Processing type: spatial plus spectral

#parameters (no smoothing)

proctype¼4

# process each window with all available cores,

# by queueing each window in a sequence

# and processing until they are all done

w¼Parallel(n_jobs¼cpu_count(), verbose¼0)

(delayed(get_spat_n_spec)(pointcloud[windows[k],:3])
for k in xrange(len(windows)))

# parse out the outputs into variables

x, y, z_mean, z_max, z_min, z_range, sigma, skewness, ...

kurtosis, n, slope, intercept, r_value, p_value, ...

std_err, d, l, wmax, wmean, rms1, rms2, Z, E, ...

sigma, T0_1, T0_2, sw1, sw2, m0, m1, m2, ...

m3, m4, phi¼zip(*w)

Table B5
An example of calculating the integral lengthscale on the kth window of data.

detrend¼4 # Orthogonal distance regression

pysesa.lengthscale(pysesa.detrend(

pointcloud[windows[k],:3],detrend).getdata()).getle-

ngthscale()

Table B6
An example of calculating all spatial statistics on the kth data window.

pysesa.spatial(pysesa.detrend(

pointcloud[windows[k],:3],detrend).getdata()).getdata()
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Appendix C. Two dimensional tapering

A vectorised implementation of a 2D taper is the outer product
of two 1D vectors (below denoted A and B) describing window
functions of lengths i and j, respectively:

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

T i j

A B A B A B

A B A B A B

A B A B A B

, .

17

j

j

i i i j

0 0 0 1 0

1 0 1 1 1

0 1

( ) =

· · … ·
· · … ·
⋮ ⋮ ⋮ ⋮
· · … · ( )

This approach is both highly optimised and allows im-
plementation of any custom (user-defined) 1D window function
for tapering. Currently, the NumPy taper functions hanning (raised
cosine), hamming (weighted cosine), bartlett (triangular) and
blackman are implemented.
Appendix D. Spectral smoothing

The smoothing of power spectral density, KΨ ( ), is bin averaged,
padded, then convolved with the Gaussian kernel g e dK K2 2 2 2= π−
through application of the convolution theorem, such that

g gK K , 182 2Ψ Ψ{ ( ) × } = { ( )}· { } ( )

where denotes Fourier transform. Then the inverse Fourier
transform is applied, the padding removed, and the absolute value
is taken as the smoothed power spectrum. This approach takes
computational advantage of the fact that smoothing power spec-
trum with the kernel then taking derivatives is equivalent to
smoothing power spectrum directly with the derivative of the
kernel (Lashermes et al., 2007), or

g
g

K
K K

K
. 192 2( )δ

δ
Ψ Ψ δ

δ
( ) × = ( ) × ( )
Appendix E. Background power spectrum

To summarise briefly, Gaussian random fields are fields drawn
from a multivariate normal distribution that is characterised by its
mean and covariance. A Hermitian random field is drawn from a
Gaussian distribution with power spectrum KΨ ( ):

H
G

X Y
X

X
K ,

20
m

m

m m
2

( )
Ψ( ) =

( )
( )

( )

where G Xm( ) is a matrix of realisations drawn from a Gaussian
(μ¼0, s¼1) probability distribution function. The random field is
the given as the real part of inverse Fourier transform of H Xm( ),
shifted so the zero-frequency component is at the centre of the
spectrum. The background spectrum is calculated in 2D from the
Gaussian field.
Appendix F. Spectral slope and intercept

The parameter vector , t
1 1γ ω( ) , where t indicates transpose, is

calculated as the least-squares solution of the following over-de-
termined linear system:
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which is solved using the robust linear regression routine provided
by the statsmodels module.
Appendix G. Supplementary data

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.cageo.2015.10.004.
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