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a b s t r a c t

The turning bands method (TBM) is a commonly used method of simulation for large Gaussian fields, its
O(N) complexity being unsurpassed (N denotes the number of points to simulate). TBM can be im-
plemented either in the spatial or the spectral domains. In the multivariate anisotropic case, spatial
versions of TBM are currently available only for the linear model of coregionalization (LMC). For aniso-
tropic non-LMC with symmetrical covariances only the spectral version is currently available. The
spectral domain approach can be slow in the case of non-differentiable covariances due to the numerous
frequencies to sample. Here a derivation of the equations is provided for simulating the anisotropic non-
LMC directly in the spatial domain and the method is illustrated with two synthetic examples. The
approach allows the specification of many different direct and cross-covariance components, each with
possibly different geometric anisotropies and different model types. The complexity of the new multi-
variate approach remains O(N). Hence, a case of two variables defining an anisotropic non-LMC is si-
mulated over one billion points in less than one hour on a desktop computer. These results help enlarge
the scope of application of the TBM. The method can be easily implemented in any existing TBM pro-
gram.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Most multivariate applications of geostatistics rely on the use of
the linear model of coregionalization (LMC) (Journel and Huij-
bregts, 1978; Chilès and Delfiner, 2012; Wackernagel, 2003).
However, in real applications the secondary variables are often of a
different nature compared to the primary variable. As an example,
geophysical variables like gravity or conductivity are re-
presentative of a larger (but unknown) support than the grade
measured on cores and consequently they present a more con-
tinuous behavior at the origin. In these cases, the LMC cannot
represent adequately the spatial joint variations of the variables. It
has been shown (Marcotte, 2015) that estimation precision or si-
mulation conditioning and realism can be improved significantly
by using a suitable non-LMC compared to a forced LMC.

Two likely reasons for the nevertheless persistent popularity of
the LMC are (1) the easy verification of the admissibility of the
model and (2) the availability of simulation methods as LMC can
be simulated by adding a set of univariate realizations. First, a
sufficient (but not necessary) condition for the LMC to be ad-
missible is that all coefficient matrices defining the LMC be posi-
tive semi-definite (Journel and Huijbregts, 1978; Goulard and
Voltz, 1992). In contrast, a non-LMC requires the verification that
frequency dependent spectral matrices are positive semi-definite
at every frequency, a challenging task. To help verifying this ne-
cessary and sufficient condition, Marcotte (2015) derived closed-
form expressions of the spectral densities in the 3D anisotropic
case for seven common covariance models. Marcotte (2015) also
provided a simple program to implement these equations in a
general context with multiple covariance components having
possibly different anisotropies and model types on each compo-
nent. Second, contrary to LMC, non-LMC requires the joint simu-
lation of the variables. This can be achieved using spatial methods
of Cholesky decomposition, a generalized version of the FFTMA
approach (G-FFTMA), multivariate sequential Gaussian simulation
(M-SGS) and continuous spectral methods (Shinozuka and Jan,
1972). The Cholesky approach is limited to small fields of only a
few thousand nodes. The G-FFTMA has high memory require-
ments especially in 3D case where either the correlation ranges or
the field to be simulated are large. M-SGS is known to be slow for
large fields and to reproduce only approximately the desired
covariances (Paravarzar et al., 2015) as it works with local
neighborhoods.

A computationally less demanding alternative is the turning
bands method (TBM) (Matheron, 1973; Journel and Huijbregts,
1978; Emery and Lantuéjoul, 2006). The multivariate case (M-
TBM) has been developed by Mantoglou (1987) in the spectral
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domain. The spectral version of M-TBM has the advantage of
simplicity of the relation between the 3D spectral density and the
1D spectral density on the lines Mantoglou (1987). Using the 3D
anisotropic spectral density expressions given in Marcotte (2015),
it is straightforward to compute the line joint spectral densities for
each anisotropic covariance component. Then, the 1D multivariate
model can be simulated by a continuous spectral method (Shino-
zuka, 1971; Shinozuka and Jan, 1972). But, as remarked by Lan-
tuéjoul (2002) and Chilès and Delfiner (2012), this amounts to
simulate directly in 3D using the continuous spectral method,
known to have slower convergence (Lantuéjoul, 1994, 2002),
especially when the covariances are non-differentiable at the ori-
gin like the common spherical and exponential models. The use of
importance sampling has been proposed recently Emery et al.
(2016) to improve convergence of spectral TBM. Their method is
flexible as it permits simulation of odd cross-covariances and the
joint simulation of a variable and its regularization. To the author's
knowledge, there is no M-TBM spatial version outside the re-
strictive LMC.

This paper extends the applicability of the spatial M-TBM
method to the case of a more general anisotropic model allowing
any number of different covariance components and anisotropies
in the multivariate model. For simplicity, only the 3D stationary
case is considered. Other restrictions are that each component of
the cross-covariances should be symmetric and each component
shows an anisotropy of the geometric type, i.e. the main correla-
tion directions are the axes of an ellipsoid not necessarily parallel
to the coordinate axes. The approach proceeds by determining the
line joint covariances to simulate from the expressions for the line
spectral densities using the relations presented in Mantoglou
(1987) and Marcotte (2015) for the anisotropic case. Then the re-
quired line joint covariances can be simulated on each line in the
spatial domain by any multivariate method, for example general-
ized G-FFTMA, Cholesky decomposition or M-SGS. The simulated
values on each line are then combined as usual to get the 3D si-
mulation at any desired simulation point.

After reviewing the theoretical background of spectral and
spatial TBM, the 1D joint covariances for simulating along the lines
are derived and synthetic examples are presented illustrating the
capacity of the method to reproduce by TBM any combination of
models with various anisotropies. Computational aspects are
discussed.
2. Theoretical background

A stationary covariance function in dR has the spectral re-
presentation (Mantoglou, 1987; Lantuéjoul, 2002; Chilès and Del-
finer, 2012):

∫( ) = ( ) ( )
( · )C h e F ds 1

i s h
dR

where � is the inner product and F(ds) is the spectral measure.
When C(h) is square integrable, the spectral measure can be
written as a spectral density, ( ) = ( )F ds f s ds. In 3D, the spectral
density is given by (Lantuéjoul, 2002):

∫π
( ) =

( )
( )

( )
− ( · )f s C h e dh

1
2 2

i s h
3 3 3R

where = [ ] = | |s s s s s u, ,x y z , | |s is the norm of vector s, = [ ]u u u u, ,x y z

is a unit vector parallel to s and h is the separation vector between
two points.

Using spherical coordinates, and assuming (temporarily) that
the anisotropy directions are parallel to the coordinate axes, the
3D anisotropic spectral density can be related to the 3D isotropic
spectral density with range 1, by Marcotte (2015):
( ) = (| | ) ( )=f s a f s b 3g iso a u3
3

3, , 1

where =a a a ag x y z
3 and = ( + + )b a u a u a uu x x y y z z

2 2 2 2 2 2 1/2. Similarly, the
3D anisotropic spectral density ( )f s3 can also be expressed as a
function of the 3D radial spectral density obtained with the same
model and range bu:
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Mantoglou (1987) related the 3D spectral density to the 1D
spectral density of the line covariance:

π( ) = (| |) ( | | ) ( )f s f s s/ 2 5TB u3 ,
2

Combining Eqs. (4) and (5) brings, for a particular direction u:
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Taking the 1D Fourier transform on both sides of Eq (6) leads to:
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In words, in the general anisotropic case, the TB covariance along

the line of direction u is equal, up to the multiplicative factor a

b

g

u

3

3
, to

the TB line covariance obtained by applying the usual 3D isotropic
inversion formula to the 3D-isotropic covariance of range bu. This
new result allows easy determination of the covariances to si-
mulate along each line in the TBM so as to ensure the desired 3D
anisotropy. The expressions are the same as for the isotropic case,
except that the range bu changes with direction u. This range is
easily computed knowing the direction of line u with respect to
the main axes of the ellipsoid. Note that when the axes of the
ellipsoid are not parallel to the coordinate axes, it suffices to define
the rotation matrix R that makes the coordinate axes parallel to
the ellipsoid. Then the unit vectors v defining the directions in the
original space are simply rotated in the same way, i.e. u¼vR and
all computations apply to the rotated direction u. Therefore, the
TBM can be applied as easily in the spatial domain as it was in the
spectral domain in Mantoglou (1987). However, it is easier to si-
mulate the required joint covariances in the spatial domain as
simple methods such as SGS, G-FFTMA and Cholesky decomposi-
tion can be used.

It is worth noting that the range bu does not define an ellipsoid
when u sweeps the unit sphere. Rather, it is b1/ u that defines an
ellipsoid with main axes a a a1/ , 1/ , 1/x y z as shown in Fig. 1. Table 1
gives the covariances (| |)C hTB u, to simulate on lines u for 7 of the
most common models. The list can easily be extended to include
other models as well.

Note that in the univariate case it is usually faster to transform
the domain to an isotropic one and simulate in the transformed
space rather than to compute the anisotropic line covariance di-
rectly in the untransformed space with Eq (7). One Cholesky de-
composition per anisotropic component will be needed in the first
case, and one per line in the second instance. The real value of Eq.
(7) is for the anisotropic non-LMC situation.

2.1. The multivariate case

The method generalizes to the anisotropic non-LMC with
symmetrical cross-covariances. The line covariances and line
cross-covariances are computed using the corresponding expres-
sions listed in Table 1. Then the simulation is done jointly on the
points discretizing each line. This step can be done using SGS,
Cholesky, G-FFTMA or a continuous (Shinozuka, 1971; Shinozuka



Fig. 1. Ranges bu (left) and inverse of the ranges b1/ u (right) as a function of direction defined by u.
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and Jan, 1972; Mantoglou, 1987) spectral method or any
suitable 1D method allowing multivariate joint simulation. Note
that the discretization along the lines (needed for G-FFTMA) in-
troduces an error that was shown to be negligible when more than
20 discretization points per correlation length were used on each
line for cases with only 16 lines (Mantoglou and Wilson, 1982) and
81 lines (Freulon and de Fouquet, 1991). For multi-component
covariances and cross-covariances, contributions of each of the
components are added on each line prior to the line simulation.
Discretization along the lines can be avoided by using continuous
methods of simulation (Lantuéjoul, 1994, 2002) (e.g. with the
continuous spectral method or SGS). However the number N of
points to simulate is usually orders of magnitudes larger than the
number n of discretization points along the lines, which makes
simulation more CPU intensive.

The 3D multivariate model is admissible if and only if all line
multivariate models are admissible. This result stems from the
relation between spectral matrices in 3R ( ˜ (·)f3 ) and those of the
lines of the TBM ( ˜ (·)fTB u, ) (Mantoglou, 1987):

π˜ (| |) = | | ˜ (| | ) ( )f s s f s u2 8TB u,
2

3

where | |s is the scalar frequency along the line defined by the unit
vector u, ˜ (| |)f sTB u, is the spectral matrix associated with line u at

frequency | |s in the TBM and ˜ (| | )f s u3 is the spectral matrix in the 3D
Table 1

Line turning bands covariance of some common 3D anisotropic covariance functions; =hu

unit vector defining the line and ( ) =I h 1u when | | <h bu, 0 otherwise.

Model Definition ( )=C hiso a bu u3, ,

Exponential ( ( − ))C hexp u

Gaussian ( ( − ( ) ))C hexp u
2

Spherical ( − + ( ) ) ( )C h h I h1 1.5 0.5u u u
3

Cubic ( − + − + ) ( )C h h h h I h1 7 u u u u u
2 35

4
3 7

2
5 3

4
7

Penta ( − + − + − + )C h h h h h h I1 33u u u u u u
22
3

2 4 77
2

5 33
2

7 11
2

9 5
6

11

Cauchy ( + ) α−C h1 u
2 with α > 0

K-Bessel (Matern) ( )ν Γ ν
ν

ν− ( )
h K hC

u u
2 1

with ν ≥ 0
space at frequency vector | |s u. As π| |s2 2 is positive, a negative ei-
genvalue of ˜ (| |)f sTB u, at any | |s implies a negative eigenvalue on
˜ (| | )f s u3 at the frequency vector | |s u and vice versa.

Different types of models with different ranges and rotations or
anisotropy ratios can be specified for each covariance and cross-
covariance component. It is then however necessary to verify the
admissibility of the 3D model (or equivalently all line models). For
this, a program like TASC3D (Marcotte, 2015) can be useful.
3. Computational aspects

The complexity of the algorithm in terms of multiplications and
divisions is described (additions are neglected). Assume that N
points are to be simulated by TBM for p correlated variables and k
realizations, using L lines and n discretization points on each line.
For simplicity here, the simulation on each line is done using a
Cholesky method. The complexity of the usual Cholesky decom-
position is ( )O n p3 3 for one line. Taking advantage of the Toeplitz
structure of the line covariance matrix defined by discretization
points reduces the complexity to ( )O n p2 2 (Dietrich, 1993). Gen-
erating the k realizations on each line requires ( )O kn p2 2 . So, this
step is ( ( ))O L kn p2 2 . Then, the N points are projected on each of the
L lines giving a complexity of O(NL) (the p ensuing additions are
neglected). Usually one has ⪢ ⪢N n p, so the global complexity for
| |h b/ u, =C Cu
ag

bu

3

3 , = ( )a a a ag x y z
1/3, = ( + + )b a u a u a uu x x y y z z

2 2 2 2 2 2 1/2, = [ ]u u u u, ,x y z is the

TBM covariance (| |) = ( )=C h h C hTB u u
d

dhu
u iso a bu u, 3, ,

( − )( − )C h hexp 1u u u

( − ( ) )( − ( ) )C h hexp 1 2u u u
2 2

( − ( ) + ( ) ) ( )C h h I h1 3 2u u u u
3

( − + − + ) ( )C h h h h I h1 21 35 21 6u u u u u u
2 3 5 7

( )hu ( − + − + − + ) ( )C h h h h h h I h1 22 165 231 132 55 10u u u u u u u u
2 4 5 7 9 11

α( − + ) ( − ) α+C h h h1 2 / 1u u u u
2 2 2 1

( ( ) − ( ))ν Γ ν
ν

ν ν− ( )
−h K h h K hCu

u u u u
2 1 1



Table 2
Simulation parameters.

Simulation parameter Symbol Value

Number of points to simulate N 10 000 (100�100)
Number of realizations k 100
Number of lines L 500
Number of discretization points on lines n 500
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large fields is O(NL). To give orders or magnitude, n and L are ty-
pically a few hundred, k is usually less than 100, p is a few units
(often two or three) but N can easily reach –10 106 9.

Note that Mantoglou (1987) reports CPU times proportional to
N1/3 for the 3D case. However, only small fields ( <N 104) were
considered in this paper, so the dominant term was likely the line
term. The spectral line method used to simulate discretization
points was proportional to n as the number of frequencies was
fixed to a small value. As the number of discretization points n was
taken proportional to N1/3, one gets the N1/3 proportionality. For
larger fields, the O(NL) proportionality mentioned above would be
observed.

The O(NL) complexity is obtained when the same set of lines is
used for each realization. Freulon and de Fouquet (1991) re-
commended to instead generate anew the set of lines for each
realization to ensure overall better model reproduction. This in-
creases the complexity to O(kNL). Whether or not the gain in
model reproduction worth the additional computations depends
probably on the number of lines and the uniformity of their dis-
tribution on the sphere. With many lines (say >L 500) selected
according to the Van der Corput sequence (Freulon and de Fou-
quet, 1991) so as to provide a uniform coverage, it is unlikely that
taking a different sets of lines for each realization would improve
substantially the model approximation. However, this remains to
be proved formally.

Fig. 2 shows the execution time for a single realization of the
bivariate non-LMC described in Table 3. The TBM operates with
100 lines each discretized by 100 points. Cholesky factorization is
employed to simulate line joint covariances. As anticipated, one
observes the proportional increase of execution time with N at
large N values.
4. Examples

Two illustrative examples are examined. The first one is the
univariate simulation of an anisotropic field. The second one is the
simulation of a non-LMC anisotropic field. The direct and cross-
variograms are computed and checked for reproduction of the
theoretical ones. The variogram mean and standard deviation are
computed over k realizations and the distribution of deviations of
the mean variogram from the theoretical model are compared at
each lag to a Student distribution as suggested in Emery (2008)
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Fig. 2. Computation time vs. number of simulation points N; single realization;
TBM with 100 lines, 100 discretization points per line.
and Paravarzar et al. (2015):
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4.1. Univariate anisotropic case

The 2D anisotropic fields are generated on a regular grid using
the 3D TBM with the simulation parameters described in Table 2.
The lines were uniformly distributed on the sphere using the Van
der Corput sequence as suggested by Freulon and de Fouquet
(1991) (Fig. 3). The same set of lines was used for each realization
of a given run. When more than one run was used, a different set
of lines was taken for each run. All variograms were computed
using the FFT approach described in Marcotte (1996). Table 3
shows the models used.

Fig. 4 shows the individual realizations and the mean vario-
gram obtained with the first model of Table 3. The 95% confidence
interval for the mean variogram is also illustrated. The mean var-
iogram is close to the theoretical one and the confidence interval
around the theoretical model includes the mean variogram.
Fig. 3. Five hundred lines obtained using the Van der Corput sequence represented
on an equal area (Lambert azimuthal) projection.



Table 3
Description of the models.

Figure Description Model parameters

Fig. 4 Univariate Spherical ( = = = =a a a C40, 10, 10; 1x y z )
Fig. 6 Bivariate non-LMC

v1–v1 Matern ( ν= = = = =a a a C10; 1; 1x y z )

v1–v2 Matern ( ν= = = = =a a a C15, 8, 10; 0.6; 1.6x y z )
v2–v2 Matern ( ν= = = = =a a a C15, 6, 10; 1; 2x y z )

Fig. 5. PP-plot of mean variogram empirical CDF vs. Student distribution; 50 rea-
lizations; the solid line is the mean CDF over 100 repetitions; dashed lines are the
first and third quartiles of the 100 runs.
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However, as the variogram values at different lags are correlated,
runs with another random seed and the same number of realiza-
tions sometimes lead to a mean variogram almost systematically
below or above the confidence interval. To assess the unbiasedness
of the TBM implementation, 100 independent runs of 50 realiza-
tions each were realized. For each run, the proportion (over all
lags) of mean variogram values outside the confidence interval
was computed for various confidence levels. For a given con-
fidence level, an empirical distribution of 100 proportions is
therefore obtained. The mean and the first and third quartiles of
these distributions are shown in Fig. 5. The confidence band of the
PP-plot clearly includes the line of equality and the mean is almost
superposed to this line. One can therefore conclude that no sig-
nificant bias is present in the spatial anisotropic TBM im-
plementation for this model and the choice of simulation para-
meters given in Table 2.

4.2. A non-LMC

The second model of Table 3 is a non-LMC bivariate model as
the shape parameters and the ranges are different for the two
direct covariances and the cross-covariance. The model admissi-
bility was tested with program TASC3D (Marcotte, 2015). Fig. 6
shows the direct and cross-variograms obtained for the 50 reali-
zations, the mean variogram, the theoretical model and the con-
fidence intervals along x and y directions for a single run. The
mean variogram is well within the confidence band around the
theoretical model.
5. Discussion

The turning bands method is particularly appropriate to si-
mulate large fields. First, its complexity is only O(N) for a fixed
number of lines and realizations. This is better than common
methods like FFTMA, Cholesky, and SGS. Second, points can be
Fig. 4. Variograms along x (left) and y (right) obtained for the different realizations; me
mean variogram (dashed lines).
simulated anywhere and according to any sequence. Hence, it is
possible to simulate blocks without having to store the point si-
mulation over the whole field. Third, the memory requirement of
the method is not a problem as only the covariances along the
lines, evaluated at chosen discretization points, need to be stored.
This is in contrast to G-FFTMA, where available memory limits the
size of the fields in 2D and 3D that can be simulated, or with SGS
which needs to work locally to keep memory and CPU require-
ments to a reasonable level.

In the univariate case, the spatial implementation of TBM was
in the past limited to isotropic univariate models or to geometric
anisotropies where an affine correction on the coordinates enables
the transformation of the field to an isotropic one. When the
covariance is composed of multiple components with different
geometric anisotropies, it is required to simulate separately each
component and then add the different simulated components.

In the multivariate case, a similar spatial approach can be fol-
lowed only when the LMC applies. It suffices to simulate each
covariance component after suitable affine transformation to an
isotropic field and then add the contributions linearly with
weights computed from each coefficient matrix. However, in the
non-LMC case, this approach is no more feasible as the variables
must be simulated jointly to ensure the reproduction of all direct
an variogram (solid line), theoretical variogram and 95% confidence interval for the
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Fig. 6. Direct (first and third rows) and cross-variograms (middle row) along x (left column) and y (right column) obtained for 50 different realizations, non-LMC; mean
variogram (solid line), theoretical variogram and 95% confidence interval for the mean variogram (dashed lines) are also shown.
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and cross-covariances. The joint simulation can be done with the
spectral approach (Mantoglou, 1987), but this can be slow when
simulating non-differentiable covariances (Lantuéjoul, 1994, 2002;
Chilès and Delfiner, 2012). In these cases, the spectral density
decays slowly with the frequency, requiring the consideration of
many frequencies in the simulation. Moreover, the spectral ap-
proach requires the decomposition (by Cholesky or eigende-
composition) of spectral matrices at all sampled frequencies. On
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the other hand, the spatial approach developed in this paper en-
ables straightforward simulation along each line with routinely
available methods like Cholesky decomposition, multivariate SGS
or G-FFTMA. It was illustrated, with a synthetic example, that the
method is unbiased and reproduces the desired anisotropies.
Asymptotically, as the number of lines and discretization points
increase, the method is exact.

In the proposed spatial M-TBM, the covariances to simulate
along each line are obtained by applying, separately to each
component, the classic TBM inversion formula for a 3D isotropic
model with range and scale factor computed according to the di-
rection of the line. Hence, the covariance to simulate is line or-
ientation dependent, similarly to the spectral approach where the
line spectral density is also a function of the line orientation. Be-
cause of this dependence on line orientation, a different Cholesky
decomposition (or other method) has to be done for each line.
Nevertheless, Fig. 2 shows that the proposed method can simulate
two correlated variables for up to one billion points in less than
one hour (on an Intel Xeon), and this, without any parallelization.

Note that for the univariate case and the LMC, the current ap-
proach of affine correction is still to be preferred to the new
method described. A single Cholesky decomposition per compo-
nent needs to be done in contrast to one decomposition per line in
the new approach. However, for non-LMC, only the new approach
can be used in the spatial domain. The non-LMC considered as-
sumes that all the cross-covariances are symmetric and that a valid
non-LMC is specified. Lack of admissibility will eventually be de-
tected by failure of the Cholesky line covariance decomposition.

Only the unconditional case was considered. The conditioning
of the realizations to observed data can be done routinely by post-
conditioning by cokriging (Chilès and Delfiner, 2012), using the
same non-LMC. When the number of data does not exceed say
10 000, it is possible to do the conditioning quickly by using the
dual formalism of kriging (Davis and Grivet, 1984; Royer and
Vieira, 1984). The complexity of this operation is O(mN) wherem is
the number of data. For a fixed number of data, the complexity
remains O(N) like for the unconditional simulation.
6. Conclusion

A spatial multivariate turning bands method was presented
that allows us to simulate anisotropic non-LMC directly in the
spatial domain. The expressions to use along each line were de-
rived for seven of the most common covariance models. The
covariance expressions along the lines are the same as in the
classical 3D isotropic case, except that the range and the scale
factor have to be computed as functions of the line direction. It
was shown that the method is unbiased and fast. It provides a
useful tool for the simulation of very large fields where other si-
mulation method face CPU and memory restrictions. The proposed
method can be easily included in any existing spatial TBM
program.
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