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a b s t r a c t

After a big karst sinkhole happened in Jili Village of Guangxi, China, the local government was eager to
quantitatively analyze and map susceptible areas of the potential second-time karst sinkholes in order to
make timely decisions whether the residents living in the first-time sinkhole areas should move. For this
reason, karst sinkholes susceptibility geospatial analysis is investigated using multivariate spatial data,
logistic regression model (LRM) and Geographical Information System (GIS). Ten major karst sinkholes
related factors, including (1) formation lithology, (2) soil structure, (3) profile curvature, (4) groundwater
depth, (5) fluctuation of groundwater level, (6) percolation rate of soil, (7) degree of karst development,
(8) distance from fault, (9) distance from the traffic route, and (10) overburden thickness were selected,
and then each of factors was classified and quantitated with the three or four levels. The LRM was applied
to evaluate which factor makes significant contributions to sinkhole. The results demonstrated that
formation lithology, soil structure, profile curvature, groundwater depth, ground water level, percolation
rate of soil, and degree of karst development, the distance from fault, and overburden thickness are
positive, while one factor, the distance from traffic routes is negative, which is deleted from LRM model.
The susceptibility of the potential sinkholes in the study area is estimated and mapped using the solved
impact factors. The susceptible degrees of the study area are classified into five levels, very high, high,
moderate, low, and ignore susceptibility. It has been found that that both very high and high suscept-
ibility areas are along Datou Hill and the foothills of the study area. This finding is verified by field
observations. With the investigations conducted in this paper, it can be concluded that the susceptibility
maps produced in this paper are reliable and accurate, and useful as a reference for local governments to
make decisions regarding whether or not residents living within sinkhole areas should move.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Karst sinkholes is one of six major geological disasters, which
include earthquake, collapse, landslide, debris flow, ground fis-
sures and ground subsidence. It has widely been recognized that
16 countries will be and/or are encountering severe karst sinkhole
disasters (Chen and Jin, 1992; Youssef et al., 2012; Frumkin, 2013,
Kranjc, 2013; Van Westen, 2013; Gutiérrez et al., 2015; Carbonel
et al., 2015). China is one example because the carbonate area
covers as much as 3,440,000 km2, accounting for 1/3 of China's
land area (Shi and Liang, 1997). It has been reported that a total of
2087 karst sinkholes occurred in 2013 in China, and the City of
Laibin is notorious for having the most severe karst sinkhole areas
in China. It is estimated that 216 karst sinkholes have occurred in
Laibin (Liu, 2013). One severe karst sinkholes occurred in the Jili
Village of the City of Laibin on June 3, 2010, which caused six
deaths, destroyed more than 100 houses, damaged numerous
power transmission equipment and numerous farmlands, and
caused severe mountain and ground cracks. It is estimated that the
direct economic loss reached US $1,632,493 (http://news.sina.com.
cn/c/2010-06-05/080420416918.shtml).

In order to minimize second-time karst sinkhole destruction
effect, the local government was requested to determine the de-
gree of susceptibility and subsequently make decisions concerning
whether the residents should emigrate from severe susceptible
areas. For this reason, this paper investigates and classifies the
degrees of susceptibility of areas after first time karst sinkholes in
Jili Village of the City of Laibin, Guangxi, China. Related methods
for identifying susceptible areas have been previously reported.
These methods and their advantages and disadvantages can be
categorized and analyzed as follows:

(1) Qualitative approaches: Qualitative methods are usually based
on inventory maps and depend on expert opinions to rank the
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importance of the factors influencing sinkholes (Raghu, 1984;
Aronn, 1991; Mejia-Nabarro and Luis, 1996; Li and Zhou, 2003;
Deborah and Waleed, 2002; Gao et al., 2005; Gutiérrez-San-
tolalla et al., 2005; Farrant and Cooper, 2008; Mancini et al.,
2009). These methods are ultimately validated through field
analysis. The major advantage of qualitative methods is that
they consider a number of site impact factors, which are
combined to make judgments. The disadvantage is that there
is a level of arbitrariness in making these judgments, and the
precision and accuracy of recognizing susceptible areas is
theoretically difficult to assess. For example, the method of
fuzzy comprehensive evaluation has been employed by sev-
eral researchers to produce implicit rules for recognizing the
degrees of susceptibility of different areas. Although this
method has reached full automation at each processing step,
it is difficult to obtain the state score factors and the factor
weights (Kaufmann and Quinif, 2002; Işık, 2007; Choi et al.,
2010; Waele et al., 2011).

(2) Quantitative approaches: Quantitative methods originate from
mathematical statistical approaches that are carried out by
determining the correlation between impact factors and
sinkholes (Yilmaz, 2007; Galve et al., 2008, 2009a,b, 2015; Lee
et al., 2010; Hyun and Saro, 2010; Gómez-Ortiz and Martín-
Crespo, 2012; Taheri et al., 2015). Many methods, such as the
analogy monitoring method (Kim, 2006), probabilistic theory
(Galve et al., 2009a,b), traditional statistical analysis (Lee et al.,
2010), value of information method (Kim, 2006), and artificial
neural network (Kim et al., 2009), have been proposed in past
decades. In particular, linear and nonlinear regression meth-
ods have widely been applied to estimate and evaluate
geological disasters, such as those reported by Lee and Min
(2001), Ayalew and Yamagishi (2005), Lulseged and Hiromitsu
(2005), Lee and Sambath (2006), Bathrellos et al. (2009), Tao
Fig. 1. Stud
et al. (2010), and Wang et al. (2012). Each of these quantitative
methods has its shortcomings. For example, the results pro-
duced by the fuzzy uncertainty method are difficult for
experts to interpret and verify because the model is too ideal;
various uncertain factors are not considered simultaneously
(Kyriaki et al., 2013). However, the logistic regression model
(LRM) overcomes this shortcoming because it can effectively
determine the relationship between a dichotomous response
and variables, whereas traditional multivariate linear regres-
sion methods cannot. In particular, the LRM method can
simultaneously handle both continuous and discrete variables,
which are not needed in normal distributions. The LRM
method can also effectively recognize areas susceptible to
other geological disasters such as landslides (Lamelas et al.,
2008; Verachtert et al., 2011).

This paper attempts to assess the degree of susceptibility of a
first-time karst sinkhole region. The study area in Jili Village,
Guangxi, China is chosen to assess our method.
2. Study area and data set

2.1. Study area

Jili Village, located in the middle of Guangxi, China, covers
approximately 5 km2 and is centered at 109°10′50″E and 23°35′
34″N. The landscape contains corrosion accumulation and a re-
sidual peak simple plain. An isolated karst peak is located in the
center of the area. Sparse vegetation is located at the top of the
peak, and bare bedrocks are observed everywhere. Karst sinkholes
occurred in the hill valley and the foothill region on June 3, 2010
(see Fig. 1).
y area.



Fig. 2. Lithology cross-section of the study area (Courtesy of Hydrological geology engineering team of Laibin, 2010).
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The study area is a typical subtropical monsoon climate, with
warm temperatures and long hours of sunshine year-round. The
interannual variation of precipitation in the area is large from April
to September during the rainy season, and rainfall days account for
more than 3/4 of the year. The groundwater is rich with spring
flow at a rate of 100–1336.5 L/s. A river named Hongshui River,
which is located 25 km north of Jili Village, is the groundwater
drainage of the study area. The annual average flow of Hongshui
River is nearly 2000 m3/s; the maximum average flow is about
15,000 m3/s; the minimum average flow is about 286 m3/s; and
the annual runoff is approximately 608.3�108 m3 (Laibin hydro-
logical monitoring station).

Strata of the study area tend to the east, and the strata lithology
is complex and changeable. Influenced by the South and North
tectonic system and the new China tectonic system, the rock strata
are squeezed, dragged, flexed and fractured, so rock mass integrity
is very poor. Field investigation found that the dip angle of the rocks
is generally less than 15°. The lithology from the old to the new
exposure is: Lower Carboniferous (C1), Middle Carboniferous (C2),
Lower Cretaceous (K1) and Quaternary (Q) (Fig. 2), and the location
of the cross section AB is shown in Fig. 3.

Karstsinkholesarelocatedontheaxisofsecondaryfoldofeastwing
syncline of Pingtang and west wing syncline of Laibin. In the middle
there is a hill named Datou hill, whose syncline has been broken. The
eastwing syncline isQuaternary, drillingverification for siliceous rock
and limestone.Attitudeofbed intheaxialpartof thesyncline isgentle,
withwest side 85–95°∠15–20°, east side 325–330°∠20°.

The geologic structure of the study area is very complex. Karst
sinkholes have occurred in the shield part of Epsilon-type structure,
which likes a Chinese sonogram, with a tectonic line lying nearly in
the north-south direction. A normal fault, named small Pingyang,
lies 3 km west from the sinkhole area. Folds and fractures are
formed on the mountains. This area is recognized as the HuangLong
limestone group of the carboniferous system. The limestone has
been weathered. There are many large fully developed karst con-
duits in the mountain area. There are nine faults in the study area,
five of which (denoted F1, F2, F7, F8, and F9 in Fig. 3) lie along the
North-North-East distributions parallel to the fold axial; and four of
which (denoted F3, F4, F5, and F6 in Fig. 3) lie along the North-
West-West distributions parallel to the large fault (Li, 1984; Zhong
et al., 1984; Zhou et al., 2014). In conjunction with their shifts, these
faults form what is known as a checkerboard pattern (Fig. 3).

After referencing the basic geological data and hydrological
data, combined with field investigation, it is preliminary judged
that the potential occurrence are caused by:

(1) The depths of overburden thickness are quite thin and the
rocks are easily to be dissolved.
(2) It is an area with quite complex geologic structure, and the
karst sinkholes were located on the fault zone, with fractured
rock mass.

(3) There are large karst pipelines in the hills, karsts were well-
developed and the groundwater circulation is strong.

(4) The torrential rain after drought is the direct reason for karst
sinkholes.

2.2. Data sets

The data sets used in this study contain the following:

(1) Geographical data: The geographical data includes a terrain
contour map with a scale of 1:5000 created in July 2010, a
mining well distribution map with a scale of 1:5000 created in
July 2010, aerial photos acquired in June 2013, and relevant
documents for geologic data from the Geological Environment
Monitoring Station of the City of Laibin, Guangxi, China.

(2) Geological data: The geological data includes a geological map
with a scale of 1:5000 created in July 2010, a quaternary soil
structure map with a scale of 1:5000 created in July 2010, and
geodetic positions of the sinkholes were measured by hand-
GPS in July 2010. The size and shape of the sinkholes are
measured by a laser range finder. The formation lithology data
were obtained by drilling in July 2010, and the overburden
thickness of the soil was measured by geological radar via
high-density resistivity measurements (detailed parameters
are shown in Table 1). Other data sets contain soil perme-
ability and soil sampling data.

(3) Digital elevation model (DEM): The digital elevation model was
obtainedbydigitizinga1:5000hardcopymap;andsavingthemap
as a DEMwith a grid size of 10 m�10 musing ArcMap software.

(4) Hydrological data: The hydrological data includes a hydrology
map with a scale of 1: 100,000, and a groundwater contour
map with scale of 1:5000 edited in July 2010.

The details of the collected data are listed in Table 2.
3. Data processing

3.1. Data pre-processing

Data pre-processing involved a data quality check, data for-
mat conversion, spatial coordinate transformation, projection
transformation, coordinate registration and map vectorization. The
pre-processing flowchart is depicted in Fig. 4.



Fig. 3. Faults distribution in the study area (Courtesy of Laibin hydrological monitoring station, 2010).

Table 1
Detailed parameters of the geological radar used.

Radar
type

Antenna Sampling
frequency

Number of
sampling
points

Sampling
interval

Superposition
times

MALA
ProEx

50 MHz 512 MHz 500 0.3 m 128
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To the further processing, the data in the database are nor-
malized to a same scale and Gauss–Kruger projection coordinate
system, which is a three-degree zone in the Xi'an 80 coordinate
system, China.
3.2. Data management

The data for karst sinkholes analysis are derived from multi-
source spatial data sets, typically graphic data and attributes data.
The graphic data can be divided into vector data and raster data.



Table 2
Details of the collected data.

File name File Type Coordinate system Scale Coordinate Transform Production year

Hydrology geological Paper map Xi'an 1980 1: 100,000 No 1997
Groundwater level Paper map Xi'an 1980 1:5000 No 2010
The structure of soil Paper map Xi'an 1980 1:5000 No 2010
Sinkholes distribution CAD Beijing 1954 1:5000 Yes 2010
Formation lithology CAD Beijing 1954 1:5000 Yes 2010
geological map of bed rocks CAD Beijing 1954 1:5000 Yes 2010

Fig. 4. Flowchart of data pre-processing.
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Vector data include data pertaining to geological lithology, fault
structure, and land use. Raster data include DEMs. The attribute
data are stored in a data table that includes disaster attributes and
environmental attributes. Disaster attributes include farmland
destruction, damaged roads, destroyed houses and other economic
loss data. Environmental attributes include land use attributes,
geological lithological attributes and landform attributes. ArcGIS
version 9.3 was employed to effectively manage the multi-source
data collected (Chen, 2008). The technological process is depicted
in Fig. 5.

3.2.1. Spatial data management
Three layers for the three categories of spatial data, geo-

graphical data, geological data, and hydrological data, were cre-
ated using ArcGIS. Each of the layers contains different types of
spatial data. For example, the geographical layer consists of such
elements as transportation, land use and land cover, residences,
and wells. The geological layer consists of such elements as soil
structure, soil hole, soil thickness and characteristics, crack, fault,
karst, karst sinkholes, and geological radar layout. The hydrological
layer consists of the following elements: groundwater depth,
groundwater runoff, groundwater undulation, groundwater char-
acteristics, and reservoir.
3.2.2. Attribute data management
Factors including type, length, and precision of attribute data

were formulated for the different types of spatial data. The attri-
bute data were input by connecting the map to the attributes files
using ArcGIS software. As shown in Table 3, the data type, length,
decimal for groundwater depth (m) were text, 50, and 2, respec-
tively. An example for description of a karst sinkhole, which in-
cludes ID, name, sinkhole date, XY coordinates, shape, slope, depth,
length, and level.
4. Spatial analysis

4.1. Selection of impact factors

Many factors affect karst sinkholes. These factors mainly include
karst development, groundwater, overburden, topography and hu-
man activities. The conditions relevant to karst development include
the degree of karst development and rock mass structure; ground-
water conditions include groundwater depth, fluctuation frequency,
fluctuation level and runoff intensity; overburden conditions include
overburden thickness and soil structure; and human activities
mainly include artificial pumping intensity. Based on early published
literature (Galve, et al., 2008, 2009a,b, 2015; Kyriaki et al., 2013), the
results obtained from the field investigation and available data, 10
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Fig. 5. Spatial database management framework of the collected sinkholes data.

Table 3
Attribute table of data structure.

Field name Data type Length Decimal

Name of sinkholes Text 50
Name of traffic route Text 50
Area (m2) Numerical value 8 1
Groundwater depth (m) Numerical value 16 2
Percolation rate of soil Numerical value 8 2
Soil structure Float 16
Formation lithology Character 30
…… …… ……
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factors are initially selected in this paper: (1) formation lithology,
(2) soil structure, (3) profile curvature, (4) groundwater depth,
(5) fluctuation of groundwater level, (6) percolation rate of soil,
(7) degree of karst development, (8) distance from fault, (9) distance
from the traffic route, and (10) overburden thickness.

4.2. Quantity of impact factors

The LRM model only handles the numerical values of these
impact factors, the first task is therefore to quantify the factors
selected above. The grid size of each factor must be unified before
the factors are quantified. The layer data are raster using ArcMap
software based on the multi-source spatial database established in
Section 3. According to Li and Zhou (2003), a 10 m pixel resolution
from 1:5000 scaled hardcopy map was selected. The principle is as
follows:

= + − × + × ( )− −G S S S7.49 0.0006 2.0 10 2.9 10 1s
9 2 15 3

Where Gs represents the size of the grid, S represents scale de-
nominator of the base map, which is 5000 in this study. a 10 m
pixel resolution is calculated according to formula (1). There are a
total of 48,100 pixels which contain 185 columns and 260 rows. In
this paper, the quantification method is proposed as follows:

) Take the selected factors as the first level, and then classify the
first level factors into the sub-levels;
) Retrieve the grid number at a resolution of 10 m�10 m (cor-
responding DEM grid size) from the sub-level layer;

) Calculate the ratio of the factor of the classified sub-level layers
using the relation

=
( )

x
N
S 2

ij
ij

ij

where i¼1, 2, …, n, represents the sequence number of the first
factor level; j¼1, 2, …, m represents the sequence number of the
second factor level; Nij represents the number of grid sinkhole dis-
aster points within the region of the secondary factor; Sij represents
the area of the secondary factor; xij is the value required for the
secondary factor. The index value computed by Eq. (2) is an
indication of how much the factor contributes to the karst sinkholes.

With the proposed impact factor quantity method, the details
of each of impact factor are quantified as follows.

4.2.1. Formation lithology
Formation lithology is one of the most important causes of

karst sinkholes (Yuan, 2013). Geophysical field exploration (e.g.,
drilling), and other comprehensive investigations have revealed
that factors such as a high rate of rock dissolution and under-
ground piercing cavity are capable of accelerating karst sinkholes.
Four levels of formation lithology were classified (Yilmaz, 2007):
(1) limestone, dolomite and dolomitic limestone, (2) siliceous
rocks and limestone, (3) limestone conglomerate, and (4) siliceous
rocks and siliceous mudstone. Using Eq. (2), the quantified index of
formation lithology is calculated and presented in Table 4. The
map of the four layers of formation lithology is depicted in Fig. 6.

4.2.2. Soil structure
Soil structure mainly refer to the permutation and combination

of different types of lithological soil. It has commonly been ac-
cepted that changes in the permeability of soil and seepage de-
formation resistance can cause karst sinkholes. Therefore, the
study area is divided into four types of soil structure (Lei et al.,
1997; Zhu et al., 2000): (a) one-dual structure, (b) two-dual



Table 4
"Formation lithology” impact factor levels and quantification index.

Impact
factor

Criteria

Level 1 Level 2 Level 3 Level 4

Formation
lithology

Limestone, do-
lomite and do-
lomitic
limestone

Siliceous
rocks and
limestone

Limestone Conglomerate, si-
liceous rocks and
siliceous mudstone

Quantified
index

0.313 0.256 0.244 0.187

Table 5
“Soil structure” impact factor levels and quantification index.

Impact factor Criteria

Level 1 Level 2 Level 3 Level 4

Soil structure Silty clay Silty clay,
sand gravel

Silty clay, sand
gravel, clay

Silty clay, silt,
clay and sand
gravel

Quantified
index

0.396 0.256 0.203 0.145
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structures, (c) multi-dual structures, and (d) mixed-dual struc-
tures. One-dual soil layer structures are commonly composed of
silty clay. Two-dual structure layers consist of silty clay and sand
Fig. 6. Four types of fo
gravel. Multi-dual soil layers consist of silty clay, sand gravel, and
clay; and mixed-dual soil layer structures consist of silty clay, silt,
clay, and sand gravel. Based on results obtained using Eq. (2), the
quantification index of soil structure is presented in Table 5.
rmation lithology.
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4.2.3. Profile curvature
The karst sinkholes in Jili Village occurred at the edges of the

foothill, and surface water typically flows along the hillside and
then converges in the sinkholes, contributing to second-time
sinkholes. Seepage erosion and disintegration produced by
groundwater are important causes of the formation and develop-
ment of sinkholes. For this reason, this paper takes the profile
curvature of surface terrain as an impact factor.

The profile curvature refers to the surface terrain slope. This
paper uses the curvature to measure surface variations. The cur-
vature is calculated using a second-order differential
equation (Moore et al., 1993), which is a combination of the ele-
vation gradient in both the horizontal and vertical plane. The
mathematical model is expressed by
Fig. 7. Map
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2
is the

rate of elevation changes in the x and y directions.
In this paper, it adopts the method of converting the map of

contour in a scale of 1:5000 to DEM. There are two steps involved
in the data conversion from contour to DEM. First, the Triangular
Irregular Network (TIN) is extracted through contour data (See
Fig. 7), second the DEM is derived from TIN, and finally, the
profile curvature (See Fig. 8) is calculated with DEM data. The
of TIN.



Fig. 8. Map of profile curvature.

Table 6
“Profile curvature” impact factor levels and quantification index.

Impact factor Criteria

Level 1 Level 2 Level 3 Level 4

Profile curvature (deg.) 413 8–13 �5–8 o�5
Quantified index 0.198 0.419 0.243 0.140
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study area is divided into four levels based on changes in slope.
Based on Eq. (2) and Eq. (3) and according to the real situation of
the study area and previous literature (Lulseged and Hiromitsu,
2005), the classification criteria and quantification index are as
presented in Table 6.
4.2.4. Groundwater depth
Using an underground water level detector, groundwater depth

data were obtained. The data reveal that the depth of groundwater
in the study area is deeper than that in any other nearby areas.
However, the depth of the groundwater is relatively shallow at the
foothill. “The groundwater depth is sensitive to rainfall, which
suggests that the rainfall controls the groundwater depth and is
therefore a main external factor. According to the monitoring data
from Laibin Weather Bureau, the total rainfall in the first nine
months before karst sinkholes occurred in the study area is of
623.4 mm, while the rainfall ahead to one month of collapse is
approximately 609.7 mm (see Fig. 9). Moreover, two days before
the disaster, the rainfall lasted 12 h with a total rainfall of 442 mm.

Based on discussions in previous literature (Manda and Mi-
chael, 2006), the groundwater depth is classified into four levels:
o5 m, 5–10 m, 10–20 m, and greater than 20 m. Using Eq. (2), the



Fig. 9. Monthly mean rainfall of the study area (Laibin Weather Bureau).

Table 7
“Groundwater depth” impact factor levels and quantified index.

Impact factor Criteria

Level 1 Level 2 Level 3 Level 4

Groundwater depth (m) o5 5–10 10–20 420
Quantified index 0.415 0.225 0.183 0.177
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quantification index of the groundwater depth is calculated and
presented in Table 7.

4.2.5. Fluctuation of groundwater level
The groundwater fluctuation layer is obtained by the method of

spatial interpolation to the data obtained by an underground
water level detector, and thus the observation period of this data
perfectly matches the groundwater depth data.

A river named Hongshui River, which is located 25 km north of
Jili Village, is the groundwater drainage of the study area. The
annual average flow of Hongshui River is nearly 2000 m3/s; the
maximum average flow is about 15,000 m3/s; the minimum
average flow is about 286 m3/s; and the annual runoff is ap-
proximately 608.3�108 m3 (Laibin hydrological monitoring sta-
tion).The groundwater depth observations show that the fluctua-
tion of the groundwater level in the study area is greater than that
in the other areas. The fluctuation of the groundwater has a
stronger effect on the karst sinkholes than the groundwater level
does. The fluctuation of groundwater is classified into four levels
(Galve et al., 2008; Kyriaki et al., 2013): o3 m, 3–5 m, 5–10 m, and
greater than 10 m. Based on Eq. (2), the quantification index of the
groundwater fluctuation levels are as shown in Table 8, and a map
describing the extent of groundwater level fluctuations is depicted
in Fig. 10.

4.2.6. Percolation rate of soil
As is usually the case, the soil near the fault is easily cracked. In

addition, strong weathering generally occurs in the fault inter-
section area, which leads to a relatively high percolation rate of
soil near the fault. Based on the experts' experiences of the Laibin
hydrological monitoring station and reference of Ha et al. (2009),
the impact factor of “Percolation rate of soil” was classified into
Table 8
“Groundwater fluctuation” impact factor levels and quantification index.

Impact factor Criteria

Level 1 Level 2 Level 3 Level 4

Fluctuation of ground water level (m) o3 3–5 5–10 410
Quantified index 0.066 0.153 0.406 0.375
three levels. Using Eq. (2), the quantification index of the perco-
lation rate of soil is calculated and presented in Table 9.

4.2.7. Degree of karst development
The degree of karst development is one of the most important

factors affecting karst sinkholes. The degree of karst development
is assessed by a ground penetrating radar (GPR) instrument, using
high density resistivity and drilling data (see Fig. 11), and is di-
vided into four levels. Based on Eq. (2), the quantification index of
the degree of karst development is as presented in Table 10.

4.2.8. Distance from fault
The study area contains nine faults. It is observed that almost

all sinkholes have occurred in the buffer area, which is created
using a distance of 250 m along fault centerline. The analysis also
shows that (1) many sinkholes have occurred in the cross-hatched
area and (2) a distinct linear relationship between the distribution
density of sinkholes and the distance from the fault exists. The
distance away from fault is divided into three levels: o50 m, 50–
100, and 100–250 m. Based on Eq. (2), the quantification index of
distance from the fault is as presented in Table 11. A line buffer
located 250 m from the fault centerline is created and depicted in
Fig. 12. It can be indicated from Fig. 12 that three levels are enough
to reveal the impact factor of distance from fault to karst sinkholes.

4.2.9. Distance from traffic routes
There are three main traffic routes across the study area, the

Gui-Lai expressway, the Liu-Nan expressway, and a railway. They
are located in the east, west and north direction of the study area
respectively, and the three traffic routes form a semicircle that
half-encloses the study area. Based on previous literature (Kyriaki
et al., 2013), the distances from the sinkholes are categorized into
four levels: o100 m, 100–400 m, 400–600 m and 4600 m. Based
on Eq. (2), the quantification index of distance away from the
traffic route is as presented in Table 12.

4.2.10. Overburden thickness
The overburden thickness refers to the soil thickness over cap

rock. The depths of overburden thickness were acquired by geo-
physical prospecting methods and Kriging interpolation method in
ArcGIS software. Based on previous literature (Gómez-Ortiz and
Martín-Crespo, 2012), overburden thicknesses are classified into
four levels in the study area: o5 m, 5–10 m, 10–25 m and 425 m.
Using Eq. (2), the quantification index is calculated and presented
in Table 13.
4.3. Spatial analysis using a logistic model

4.3.1. Logistic regression model
Logistic regression, which was first proposed by Verhulst in

1845, can be expressed by

=
+ ( )

β β β

β β β

+ +…+

+ +…+P
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x x
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Where P is the sensitive probability, βi (i¼1, 2… n) are the logistic
regression coefficients, β0 is a constant, and xi (i¼1, 2… n) are the
independent variables.

To determine which variables (impact factors) significantly af-
fect karst sinkholes, this paper first selects initial impact factors,
computes the coefficients using the logistic model, and later de-
letes coefficients (impact factors) that make only slight contribu-
tions to karst sinkholes. The same computation is then repeated
through iteration until all coefficients are calculated. A flowchart of
this process is shown in Fig. 13 and consists of the following steps:



Fig. 10. Fluctuation of ground water level.

Table 9
“Percolation rate of soil” impact factor levels and quantified index.

Impact factor Criteria

Level 1 Level 2 Level 3

Percolation rate of soil cm/s 43�10�3 3�10�4–3�10�3 o3�10�4

Quantified index 0.435 0.356 0.209
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1. Step 1: initially choose reasonable impact factors that are con-
sidered to contribute to sinkholes;

2. Step 2: subdivide the impact factors into secondary classes, as-
sociated with their values;

3. Step 3: rasterize all layers and generate a uniform grid size;
4. Step 4: employ the logistic model to calculate the coefficients,
β1… βn, based on the collected data, and establish a logistic
model;

5. Step 5: delete the impact factors whose contribution to karst
sinkholes are small, and re-compute the coefficient of the LRM;

6. Step 6: repeat Step 4 and Step 5, until all coefficients are
calculated;

7. Step 7: use the computed coefficients to establish an LRM for
classifying the levels of susceptible areas.

The data used in the logistic model are randomly selected from
the collected data set. A total of 115 sinkholes “pixels” and 480
non-occurring sinkholes “pixels” (each pixel represents an area of
5�5 m2) are employed in this study. The data are input into the
logistic model for regression computation. During the iterations, it



Fig. 11. Line profile of GPR (from Geological Environment Monitoring Station of Guangxi).

Table 10
“Degree of karst development” impact factor levels and quantification index (Note:
High-developed¼Line karst rate 410%; Mid-developed¼Line karst rate 5–10%;
Low-developed¼Line karst rate 1–5%; No development¼Line karst rate o1%.).

Impact factor Criteria

Level 1 Level 2 Level 3 Level 4

Development de-
gree of karst

High-
developed

Mid-
developed

Low-
developed

No development

Quantified index 0.241 0.223 0.358 0.178

Table 11
“Distance from fault” impact factor levels and quantification index.

Impact factor Criteria

Level 1 Level 2 Level 3

Distance from fault (m) o50 50–100 100–250
Quantified index 0.509 0.323 0.168
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is observed that the sigma error of the coefficient for the impact
factor “distance between the traffic routes and the sinkholes area”
is greater than 0.05, which means that it will contribute little to
the karst sinkholes. Therefore, it is eliminated from the next
iteration. This computation is repeated until all sigma errors of
impact factors are less than a given threshold (0.05). Finally,
9 coefficients β ( = … )i 1, 2, , 9i plus a constant, β0, are solved for.
With the solved coefficients, the logistic model is established
based on Eq. (5), and the corresponding factors are listed in
Table 14. These factors are considered contributors to karst sink-
holes in the study area and are thus referred to as impact factors.
=
+ ( )

− + + + + + + + − −

− + + + + + + + − −
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e
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4.3.2. Identification of susceptible areas
The probability of each pixel in the study area is calculated

using Eq. (5), in which the quantification indices of the impact
factors are employed. The magnitude of probability indicates the
probability of karst sinkholes occurrence (Table 15). The study area
is categorized into five classes of susceptibility according to the
real situation and previous literature (Yilmaz, 2007): very high
susceptible area, high susceptible area, moderate susceptible area,
low susceptible area, and non-susceptible area; the corresponding
probabilities are 0.823–0.964, 0.716–0.823, 0.522–0.716, 0.076–
0.522, and 0–0.076, respectively. The corresponding five classes of
sinkhole areas are mapped in Fig. 14a. The results of statistical
analysis of each class of susceptible area are listed in Table 16. As
shown in the table, the percentages of the sinkhole area over the
entire study area are 0% for “non-susceptible”, 6.2% for “low”,
25.0% for “moderate”, 27.6% for“high” and 41.2% for “very high.” It
can therefore be concluded that the higher the susceptibility level
is, the greater the sinkhole occurrence probability becomes.

5. Precision assessment and field verification

To verify the precision achievable when using the logistic regres-
sion method, this paper uses the Sridevi Jadi model (Jadi, 1997), i.e.,
⎛
⎝⎜

⎞
⎠⎟′ = − −

− ( )
P

KS
S

K KS
N S

1
6

1
3

where N is the total number of pixel; S is the number of pixels cor-
responding to existing sinkholes; K is a combination of the unit
numbers of very high susceptible areas, high susceptible areas, and
moderate susceptible areas; KS is the total number of pixels corre-
sponding to sinkholes of medium, high, and very high susceptible
areas, which corresponds to the probability of karst sinkhole



Fig. 12. Distance from fault.

Table 12
“Distance from the traffic route” impact factor levels and quantification index.

Impact factor Criteria

Level 1 Level 2 Level 3 Level 4

Distance from the traffic route(m) o100 100–400 400–600 4600
Quantified index 0.241 0.223 0.358 0.178

Table 13
“Overburden thickness” impact factor levels and quantification index.

Impact factor Criteria

Level 1 Level 2 Level 3 Level 4

Overburden thickness (m) o5 5–10 10–25 425
Quantified index 0.300 0.313 0.289 0.098

G. Zhou et al. / Computers & Geosciences 89 (2016) 144–160156
occurrence. For the pixels considered in the study area, N is 48,100, S
is 192, KS is 180, and K is 23,243. Based on Eq. (6), 73% prediction
accuracy is achieved in the study area. This value demonstrates that
our prediction is reliable in theory (Galve et al., 2009a,b; Li et al.,
2011).

To further evaluate the accuracy of the method proposed in this
paper, we conducted a field investigation. The field verification
was carried out just to confirm if there were sinkholes in the area,
the size and number, and the geological structure etc. the detailed
field verification data is shown in Table 17.

Based on the field investigation results, it is demonstrated that
the majority of sinkholes are mainly distributed in the very high
susceptible and high susceptible areas along Datou Hill and foot-
hills (Fig. 14). The geological characteristics corresponding to each
susceptibility level considered in this study are as follows:

(1) Very high susceptible area: most karst sinkholes are mainly
located in the very high susceptible and high susceptible



Fig. 13. Flowchart describing process of identifying impact factors using the logistic model.

Table 14
The coefficients regressed using the logistic model.

Factors formation lithology soil structure profile curvature groundwater depth ground water level

Coefficients β1¼0.211 β2¼0.310 β3¼0.087 β4¼0.155 β5¼0.206

Factors Percolation rate of soil Degree of karst development Distance from fault Distance from the traffic route Overburden thickness

Coefficients β6¼0.198 β7¼0.356 β8¼�0.264 β9¼eliminated β10¼�0.286

Table 15
Probability of each susceptibility level.

Susceptibility
Level

Very
high

High Moderate Low Non-
susceptible

Probability (P) 0.823–
0.964

0.716–
0.823

0.522–0.716 0.076–
0.522

0–0.076
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areas, where the geological structure is very complex; karst is
well developed, and the integrity of rock mass is poor. The
karst sinkholes occurred in a single form (see Fig. 14c and d).

(2) High susceptible area: this area includes areas where many
geological faults are located. The siliceous rocks in this area
have been weathered to a brecciated texture. Flexure and
fractures further formed loose rocks and soil mixtures. A lot of
crack appeared on the ground (see Fig. 14f and g).

(3) Moderate susceptible area: this area includes regions where
sinkholes previously occurred, but these sinkholes were
smaller than those in other areas. The distribution is zonal and
punctuated, and the level of karst development is inter-
mediate (see Fig. 14h).

(4) Low susceptible area: this area includes regions where the
terrain is flat and the activity of groundwater is gentler (see
Fig. 14b).

(5) Non-susceptible area: this area includes regions where the
geological condition is very good. The karst is not developed,
the siliceous rocks are hard and thick, and the area is located
far from faults (see Fig. 14e).

Based on the above analysis, it is suggested that residents in the
very high susceptible and high susceptible areas should be
relocated.
6. Conclusions

This paper conducts a geospatial analysis on the basis of ten
types of geospatial data for karst sinkhole susceptibility in Jili, a
small village in southwest of China, which has experienced the
first-time sinkholes. The ten types of geospatial data are quanti-
tated and then managed using ArcGIS software. The Logistic Re-
gression model is applied to select the significant contribution
factors to the sinkhole. Nine out of the ten factors, including for-
mation lithology, soil structure, profile curvature, groundwater
depth, ground water level, percolation rate of soil and degree of
karst development, the distance from fault, and overburden
thickness were identified to be significantly related to karst sink-
holes occurrences.

In the regression coefficient results of Logistic model based on
hydrogeological information and GIS, it was proved that the high-
hazard karst susceptibility areas were located along Datou Hill and
foothills, which are consistent with the results of field investigation.
And the preliminary susceptibility models obtained and the



Fig. 14. Classification and the recognized susceptible areas and their field verification.

Table 16
Division of susceptibility.

Susceptibility
level

Partition
pixel
numbers

Percentage (%) Pixel num-
bers of
sinkholes

Percentage of
sinkholes (%)

Very high 1351 2.8 79 41.2
High 7030 14.6 53 27.6
Moderate 17,584 36.6 48 25.0
Low 13,579 28.2 12 6.20
Non-susceptible 8556 17.8 0 0

Table 17
The detailed field verification data.

Susceptibility level area Sinkholes number Sinkholes size Geological characteristics

Very high 13 Diameter: 40–70 m Well-developed karst;
Visible depth: 10–30 m single karst sinkholes

High 13 Diameter: 30–60 m Geological faults located
Visible depth: 5–20 m weathered siliceous rocks

a lot of crack
Moderate 4 Diameter: 2–20 m Intermediate-developed karst

Visible depth: 5–10 m small sinkholes, zonal and punctuated distribution
Low 0 – Flat terrain

gentler groundwater activity
Non-susceptible 0 – No-developed karst

far from faults
hard and thick siliceous rocks

G. Zhou et al. / Computers & Geosciences 89 (2016) 144–160158



G. Zhou et al. / Computers & Geosciences 89 (2016) 144–160 159
validation show that it is possible to produce reasonably satisfactory
predictions on the spatial distribution of future sinkholes in the
study area. The validated models suggest that the distribution of
around 73% of the future sinkholes might be anticipated with the
17% of the area with the highest susceptibility. Moreover, about 46%
of the area could be considered as safe. These predictions were
tested by means of independent validation, which might be used as
a reference by the local authorities to make decisions whether or
not residents living within the sinkhole areas should move.
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