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Multi-resolution and scale-invariance have been increasingly recognized as two closely related intrinsic
properties endowed in geofields such as geochemical and geophysical anomalies, and they are commonly
investigated by using multiscale- and scaling-analysis methods. In this paper, the wavelet-based mul-
tiscale decomposition (WMD) method was proposed to investigate the multiscale natures of geochemical
pattern from large scale to small scale. In the light of the wavelet transformation of fractal measures, we
demonstrated that the wavelet approximation operator provides a generalization of box-counting
method for scaling analysis of geochemical patterns. Specifically, the approximation coefficient acts as
the generalized density-value in density–area fractal modeling of singular geochemical distributions.
Accordingly, we presented a novel local singularity analysis (LSA) using the WMD algorithm which ex-
tends the conventional moving averaging to a kernel-based operator for implementing LSA. Finally, the
novel LSA was validated using a case study dealing with geochemical data (Fe2O3) in stream sediments
for mineral exploration in Inner Mongolia, China. In comparison with the LSA implemented using the
moving averaging method the novel LSA using WMD identified improved weak geochemical anomalies
associated with mineralization in covered area.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The occurrence of ore deposit is often accompanied with var-
ious types of geoanomalies, such as geophysical and geochemical
anomalies. Delineating geochemical anomalies has become a
common practice in geochemical exploration for prospecting mi-
neral deposits (Cheng et al., 1994; Carranza, 2008; Cheng, 2008,
2012a). Recently, the concealed ore deposits in the covered areas
(e.g., desert, regolith and vegetation) have drawn increasing at-
tentions of economical geologists, but prospecting this type of ore
deposits also brings challenges when using geochemical explora-
tion methods (Cheng, 2012b). Specifically, the elements con-
centrations caused by underlying mineralization in deeply wea-
thered and transported surface media, especially in those con-
sisting of relatively young sediments, can be so low due to the
decay of concentration through such covers that it cannot be easily
detected by ordinary sampling and analytical techniques (Cheng,
2012b, 2014). Hence, identification of weak and complicated
of Geological Processes and
uhan 430074, China.

iuming@yorku.ca (Q. Cheng).
geochemical anomalies in covered area brings the crucial chal-
lenges to geochemical exploration in support of the mineral re-
source prediction. Several recently published literatures have re-
viewed geochemical exploration methods in the past decades (e.g.,
Singer and Kouda, 2001; Carranza, 2008; Garrett et al., 2008; Co-
hen et al., 2010; Coker, 2010; Grunsky, 2010; Anand and Robertson,
2012; Cheng 2012b), and much emphasis has been placed on new
models for geochemical dispersion from deeply buried miner-
alization, new sampling and analytical techniques to enhance
anomalies, and new mathematical models and geoinformatics
techniques for processing and interpreting geochemical anoma-
lies. Among them Cheng (2012b) pointed out that the conventional
approaches to identify geochemical anomalies only considering
their magnitudes may have some limitations when applied in
covered areas mainly due to the complicated signatures of such
anomaly patterns.

With the enlightenment of nonlinear science and complexity
theories in past decades, numerous articles (e.g., Cheng et al.,
1994; Cheng, 2012b; Agterberg, 2014) argued that more compli-
cated properties such as geometry, scaling, singularity, anisotropy
and self-similarity should be considered to extract and delineate
the geochemical anomalies. Fractal/multifractal concepts,
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developed and popularized by Mandelbrot (1967, 1989), provide a
powerful tool for modeling and analyzing these complicated
nonlinear properties endowed in nature. Recent studies have de-
monstrated that not only the mineral deposits are scaling dis-
tributed (e.g., Mandelbrot, 1989; Bölviken et al., 1992; Agterberg,
1995; Cheng, 1995; Turcotte, 2002), but also the resulting geo-
chemical distributions manifest fractal/multifractal natures (e.g.,
Cheng et al., 1994; Agterberg and Cheng, 1999; Cheng, 2008; Afzal
et al., 2010; Agterberg, 2012; Afzal et al., 2013b). Many fractal
models have been proposed and significantly facilitated the pat-
tern recognition and spatial information extraction of complex
geochemical landscapes, such as number–size (N–S) model
(Mandelbrot, 1983), concentration–area (C–A) model (Cheng et al.,
1994), spectrum–area (S–A) model (Cheng et al., 2000), con-
centration–distance (C–D) model (Li et al., 2003), and concentra-
tion–volume (C–V) model (Afzal et al., 2011; Afzal et al., 2013a).
Particularly, local singularity analysis (LSA) based on density–area
fractal model (Cheng, 1999, 2007, 2012b) has developed as one of
the most sophisticated methods to extract weak geochemical
anomalies for characterizing singular mineralization and predict-
ing locations of ore deposits (see e.g., Gonçalves, 2001; Cheng and
Agterberg, 2009; Arias et al., 2012; Agterberg, 2014).

Almost rising in the same period in 1980s with fractal/multi-
fractal concepts, wavelet transformation (WT) has significantly
fascinated the scientific research and engineering application due
to its capability for multiscale analyzing objects and localizing
signals in both space and frequency domain (Morlet et al., 1982;
Daubechies, 1992; Kumar and Foufoula, 1997; Mallat, 1999), so
called “numerical microscope” in signal and image processing
field. The WT uses a nonlinear approximation scheme with
adaptive geometry in contrast with Fourier transformation using
linear scheme, so it has a better performance on modeling and
analyzing nonstationary or irregular signals (Mallat, 1999). More-
over, an essence of WT is “to see the wood and the trees”, i.e., to
obtain multiscale natures of the signal through the wavelet-based
multiscale decomposition (WMD) algorithm, which provides a
promising approach for multiscale decomposing fractal measures
to depict the scale-invariance or self-similarity across scales. The
WT has been suggested as a natural tool for investigating the in-
terscale relationship of fractal measures because of the inherent
scaling property of the wavelet basis (e.g., Arneodo et al., 1988;
Muzy et al., 1994; Arneodo et al., 1995; Chamoli et al., 2007; Wendt
et al., 2009). There exist an increasing number of research litera-
tures applying WT together with fractal concept for singularity
detection (Mallat and Hwang, 1992), stochastic process modeling
(Basseville et al., 1992) and image compression (Davis, 1998), to
name but a few examples.

The WT has not yet been specifically employed to analyze the
multiscale natures of fractal geochemical patterns especially for
the scaling analysis of singular geochemical distribution. In the
present paper, we aim to apply the WMD to decompose geo-
chemical anomalies and investigate the multiscale component of
geochemical landscapes, and special intention is devoted to ex-
plore the scaling properties mirrored by wavelet approximations.
We argue that the wavelet approximation operator could be re-
garded as a generalized density–area fractal model for analyzing
the singular geochemical distribution. Accordingly, a novel LSA
algorithm using WMD could be constructed, which would address
the drawbacks of moving averaging involved in implementation of
conventional LSA.

This paper is organized as follows: Section 2 reviews the frac-
tal/multifractal theory for modeling singular geochemical dis-
tribution and singularity mapping technique for processing geo-
chemical data. Section 3 simply recalls the methodology of WMD,
elaborates on the scaling analysis of fractal measures revisited
with wavelets and outlines a novel LSA algorithm using WMD.
Section 4 uses a case study dealing with the identification of the
weak geochemical anomalies associated with mineralization in
Inner Mongolia (China) to validate the proposed LSA. Section 5
draws the conclusions.
2. Singularity theory and method for mapping geochemical
anomaly

2.1. Fractal and singularity

In order to understand how the fractal/multifractal theory can
be applied to model and analyze the natures of geochemical
anomalies, we briefly recall herein the basic concepts of fractals. A
key feature of fractal is scale-invariance, which is intimately tied to
a power–law type of proportionally relation between a measure M
(δ) and the measure scale δ

δ δ( ) ∝ ( )−M , 1E D

where ∝ stands for proportionally. E, D and E�D represent topo-
logical dimension, fractal dimension and fractal codimension
(singularity/scaling index), respectively. One of the purposes of
fractal/scaling analysis is to detect such power–laws and quantify
their exponents that characterize the properties of irregular such
as the roughness and singularity. Multifractal modeling quantifies
the multiscaling behaviors and characterizes the spatial distribu-
tion of singularities.

Fractal/multifractal, as a nature consequence of self-similarity
(Mandelbrot, 1983, 1989; Evertszy and Mandelbrot, 1992), has
been widely used to describe, analyze and model various types of
singular geo-processes, such as earthquakes, hurricanes, floods,
volcanoes, landslides and mineralization (Cheng, 2008, 2012b).
Such singular geo-processes often result in anomalous amounts of
energy release or mass accumulation confined to narrow intervals
in space or time, which is termed as singularity (Cheng, 2007).
Singularity is the generic property of fractal/multifractal products
generated by nonlinear natural process. Mineralization resulting
from the hydrothermal process in the Earth’s crust can be con-
sidered as a general type of singular geo-process that can result in
extreme enrichment of metals in form of ore deposits (Cheng,
2007, 2012b). This singular phenomenon is often observed in the
spatial distribution of geochemical concentrations in secondary
media (e.g., stream sediments, soil, tills and water) caused by
underlying mineralization (Cheng, 2007; Agterberg, 2014; Cheng,
2014).

2.2. Density-area fractal model and singularity analysis

From a generalized fractal point of view, the fractal/singular
geochemical distribution can be described as the following pow-
er–law relationship between the total amount of element μ ε( ) and
a ε-radius sampling box ε( ) ⊂B n

∫μ ε μ ε( ) = ≃
( )ε

α

( )
d c ,

2B

where α is known as the singularity index, and c is a constant
called fractal density (Cheng, 2015). Define ρ ε( ) representing the
generalized element density-value of μ ε( ) in box ε( )B with

∫ρ ε χ μ( ) =
ε ε( ) ( ) d

B B , where χ ε( )B is a probability density function

within the box. If ρ ε( ) denotes the arithmetic average of μ ε( ) for 2D
geochemical data, then the density–area fractal model proposed
by Cheng (1999) can be obtained as

∫ρ ε ε μ ε( ) = ≃
( )ε

α
( )

− −d c .
3B

2 2



Fig. 1. Multiresolution space-frequency tilling of wavelet analysis. The shape of a
wavelet resolution adaptively depends on scale.
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Above model is often used to map the spatial distribution of
singularity index of 2D geochemical pattern. The singularity in-
dices for indicating geochemical anomaly can be divided into three
cases: (1) α < 2 indicates high concentration or enrichment of
elements, showing positive singularity; (2) α > 2 indicates low
concentration or deficit of elements, showing negative singularity;
(3) α ≈ 0 indicates background field with non-singular. Several
recent studies have demonstrated that singularity index acts as a
powerful high-pass filter for extracting weak geochemical or
geophysical anomalies from complicated background field, and the
LSA is particular helpful for discovering concealed ore deposits or
other buried geological bodies (e.g., Ali et al., 2007; Zuo et al.,
2009; Wang et al., 2011; Chen et al., 2015; Chen et al., 2013).

The LSA or singularity mapping can be implemented by dif-
ferent methods such as regular/irregular windows, contours and
geological units defined by integrated layers of geological patterns
(Cheng, 2006, 2012b). Among them the simplest form is the
square window-based box-counting algorithm (Cheng and Agter-
berg, 2009). The density-value ρ ε( )i are obtained from the average
value within a series of window size ε ε ε ε ε= < < < =... imin 1 2 max

for any given sampling point on the map. This process is equiva-
lent to the multiscale moving averaging (MA) which results in a
suit of ρ ε( )i , and these density-values at same point satisfy a
power–law scaling whose index quantifies the singularity
strength. From the definition of Eq. (3), it would become
straightforward to understand that the multiscale density mea-
sures are obtained by convolving geochemical data with a suit of
box function (viz., the reciprocal of box numbers). However, it is
well known that MA algorithm employs a linear averaging scheme
for characterizing geochemical variables within the window, and it
often ignores the complex features of geochemical patterns. In
practice, it would be ill-suited for processing nonstationary
anomalies especially for those non-isolated singularities. In the
subsequent section, we would like to introduce a generalized box-
counting algorithm provided by WMD for analyzing geochemical
measures and calculating element density-value.
Fig. 2. Pyramid architecture of the multiresolution analysis. Details and approx-
imations are progressively built in pyramid from up to scale j.
3. Local singularity analysis revisited with wavelets

3.1. Wavelet transformation and multiscale decomposition

The continuous wavelet transformation (CWT) of a function
( ) ∈ ( )f Lx n2  at scale a (related to wavelength) and position b is

computed by correlating ( )f x with a wavelet atom (Grossmann
and Morlet, 1984) as following

⎛
⎝⎜

⎞
⎠⎟∫ ψ( ) = ( ) − > ∈

∈ ( )

ψ
−∞

+∞
f a

a
f

a
d a ZW b x

x b
x x

b

,
1

, 0, ,

, 4

n
n

n

where ψa b, defines a family of isotropic wavelet obtained by

translation and dilation of the mother wavelet ψ ( ) ∈ ( )Lx n2  . Note
that L1-norm (1/a) has been used in Eq. (4) for normalization. Eq.
(4) can be further considered as a convolution product:

ψ( ) = * ( )ψf a fW b b, a , thereby decomposing the function ( )f x into
elementary space-scale contribution by convolving it with a suit of
mother wavelets which are well localized in space and frequency.
Fig. 1 shows a tiling of space-frequency plane defined by a 1D
wavelet basis. The shape of a wavelet resolution adaptively de-
pends on the scale. As the scale decreases, the space support is
reduced but the frequency spread increases. It suggests that the
resolution of WT can be improved adaptively for analyzing high-
frequency signal, while become poor for analyzing low-frequency
signal. The zooming capability of the wavelet transformation not
only can locate isolated singularity events, but can also
characterize more complex multifractal signals possessing non-
isolated singularities (Mallat and Hwang, 1992; Mallat, 1999).

The framework of WMD is introduced by Mallat (1989a,b) to
project signal ( )f x onto a set of basis
φ ψ{ ( ) { ( )} } ∈ ∈ = … −( )

≤ j ix x k, , , , 1, 2, 2 1J k j
i

j J
n n

k, ,   , where

ψ ψ( ) = ( − ) ( )
( ) − ( ) −x x k2 2 , 5j
i jn i j
k,

φ φ( ) = ( − ) ( )− −x x kand 2 2 , 6j
jn j

k,

are obtained by dilating and translating the mother wavelet ψ ( )x
and father wavelet (scaling function) φ ( )x , respectively, with the
special choice =a 2 j and =b k2 j for discretization. The WMD is
realized using a simple scheme, the so-called pyramid algorithm
(Fig. 2). More details about the WMD algorithm can be found in
Mallat (1989a,b). Hence, the signal ( )f x can be represented as

∑ ∑ ∑ ∑φ ψ( ) = ( ) + ( )
( )∈ = ∈

( ) ( )f A dx x x
7

j
j

J

i
j
i

j
i

k
k k

k
k k,

1
, ,

n n 

with ∫ φ= ( ) ( )A f dx x xj
jk k, and ∫ ψ= ( ) ( )( ) ( )d f dx x xj

i
j
i

k k, , are termed as
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approximation coefficient and detail/wavelet coefficient, respec-
tively. For instance, the multiscale representation of 2D signal ( )f x
up to scale J consists of a low-resolution approximation A J

x and
three high-frequency details =( )D i, 1, 2, 3j

i
k, in horizontal-, ver-

tical- and diagonal-direction.

3.2. Scaling analysis of fractal measures with wavelets

For a fractal measure defined in Eq. (2), it has following scaling
property at the vicinity of a singular point ∈x n

0 

μ λε λ μ ε( )~ ( ) ( )α ( ) , 8x
x

x
0

0 0

where λ is a scalar number. In order to multiscale analyze fractal
measures, the wavelet transform can be used to decompose μ ( )x
as

⎛
⎝⎜

⎞
⎠⎟∫ ψ μ( ) = − ( ) ∈

( )ψf a
a a

dW b
x b

x b,
1

, .
9n

n

It has been shown that by using mother wavelet ψ ( )x the scaling
behavior − α ( )c x x0

x0 of singular function ( )f x can be mirrored by
detail/wavelet coefficients (Arneodo et al., 1988; Muzy et al., 1994;
Wendt et al., 2009). However, for scaling analysis of fractal/singular
measures μ ( )x defined in Eq. (2), it is more suitable by using father
wavelet φ ( )x since it satisfies the general condition: ∫ φ ( ) =

−∞

∞
dx x 1,

which is equivalent to a box function (i.e., a characteristic function
of box). Therefore, the Eq. (9) using father wavelet (scaling function)
computes the value of approximation coefficient A j

x .
According to the way that proved the scaling properties of

wavelet coefficient in Arneodo et al. (1988), it can be readily de-
duced that the scaling behavior of fractal measure μ ( )x in Eq. (8)
can be mirrored by approximation coefficient as

λ λ( )~ ( ) ∈ ( )φ
α

φ
−f a f aW x W x x, , , . 10n n

0 0 0 

Here, we just give a succinct proof using the dyadic WT of
fractal measures as following:

∫
∫
∫

φ μ

φ μ

φ μ

= ( − ) ( ) ′ =

= ( ′ − ) ( ′)

= ( ′ − ) ( ′)

= ( )

α

α

α

− −

− − −( + )

− −( + ) −( + )

− +

A d

d

d

A

x k x x x

x k x

x k x

2 2 , with 2

2 2 2

2 2 2

2 . 11

j jn
j

j

jn
j

j

n j n
j

j

n j

k k

k

k

k

,

,
1

1
,

1

1

For 2D measure μ ( )x , in considering n¼2 the approximation
coefficients A j

x at singular point x0 scale like

= ∈ ( )α+ ( )−A A x2 , . 12j j
x

x
x

1 2
0

2
0

0
0 

Thus, the local singularity strength α ( )x0 can be estimated as

α ( ) = ( ) + ( )+A Ax log / 2. 13j j
0 x x2

1
0 0

The father wavelet plays a role of generalized box, so the re-
sulting wavelet approximation coefficients A j

x of signal ( )f x pro-
vide a natural generalization of the classical box-counting method
for multiscale analyzing the fractal measures. Furthermore, the A j

x
can be regarded as a convolution product φ* ( )f kj , namely the
realization of weighted moving averaging in which the weighted
function is derived from orthonormal basis φj k, . Therefore, the

approximation coefficient A j
x obtained from WMD may equiva-

lently quantify the generalized areal density-value ρ ε( ) defined in
model (3), since it depends on the weighted average value of ( )f x
within a 2j-radius square box. Consequently, the approximation
coefficients can be employed to rewrite the density–area fractal
model in Eq. (3) as
≃ ( ) ( )α ( )−A c 2 . 14j j
x

x 2

Above model shows homologous scaling properties with Eq.
(13) and could provide a generalized power–law relation for
modeling the singular geochemical distributions.

3.3. Singularity mapping algorithm using wavelet transformation

With the local singularity analysis, the spatial distribution of
singularities plays an important role in investigating the local
structure of geochemical pattern and finding potential locations of
ore deposits. Here, we proposed a novel local singularity analysis
(singularity mapping) algorithm using WMD for processing 2D
geochemical pattern in supporting mineral exploration, as follows.

(i) First compute the multiscale approximation coefficients A j
x

( = …j J1, 2, 3, , ) by using the undecimated wavelet transform
(i.e., stationary wavelet transform, SWT) of 2D geochemical
data. The code for 2D SWT used for obtaining pointwise A j

x in
this manuscript is modified from wavelet toolbox in MATLAB
to avoid coordinate shifting. There exist a certain number of
families of father wavelets, and it should be noted that the
novel LSA algorithm using Haar wavelet can be regarded as the
realization of conventional LSA.

(ii) Estimating the local singularity index according to the logarithmic
transformation of Eq. (14) yielding: α( ) ≃ + ( ( ) − )A c jxlog log 2j

x2 2 .
For a location on the map, the slope estimated from the linear
relationship between A j

x and j on log–log paper by using linear
regression analysis can be considered as the estimate of α( − )2 .
Then the 2D distribution of singularity strength can be mapped
straightforward. The uncertainty related to the estimation of
singularity index also can be recorded and mapped to evaluate
the reliability of singularity mapping result.

Several benefits can be achieved from using the proposed LSA
based on WMD for mapping geochemical anomalies. First it pro-
vides a generalization of box-counting method for scaling analysis
of fractal/singular geochemical measure, and the choice of the box
function derived from orthonormal basis becomes flexible. Second
it provides a nonlinear (weighted averaging) scheme instead of
linear (averaging) scheme for calculating the element density-va-
lue in density–area fractal modeling, thereby getting rid of the
possible smooth behaviors that may mask singularities. Third the
novel LSA using a fast multiscale decomposition algorithm would
spend less numerical computation in comparison with the time-
consuming algorithm of the conventional LSA using MA, especially
for processing a large dataset.
4. Case study and results

4.1. Geological setting

The Shamai-Chaobuleng mineral district is situated in Inner
Mongolia province of the northern China (Fig. 3). This region is
composed of 40.2% Quaternary sediments (Q), 33.4% Tertiary se-
diments (T), 17.0% granites and 9.4% other Formations (Fig. 3).
More than 70% of the area is covered by Quaternary and Tertiary
sediments. The drilling data revealed that the thickness of Qua-
ternary and Tertiary sediments in this region ranges from 0.5 to
3.0 m and from 42.0 to 77.0 m, respectively (Cheng, 2012b, a; Zuo
et al., 2013; Cheng, 2014). The Chaobuleng skarn-type Fe poly-
metallic deposit is located in the NE which is one of the famous
mineral deposits in this region and it is controlled by regional-
scale NE trending faults. The mineral assemblages associated with
the Fe polymetallic mineralization often have high concentrations



Fig. 3. Simplified geological map of Chabuleng-Shamai, Inner Mongolia of north China (after Zuo, 2013).

Fig. 4. Spatial distribution patterns of Fe2O3 (%)in stream sediments. (For interpretation of the references to color in this figure, the reader is referred to the web version of
this article.)
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of Fe, Cu, Mo, Ag, As, Pb, Zn, Bi and Ti.
The stream sedimentary geochemical data used in this study

were collected and analyzed during the Chinese National Geo-
chemical Mapping (CNGM) project as part of the “Regional Geo-
chemistry National Reconnaissance (RGNR) Project”. In this re-
search, one of the main ore-forming compounds, Fe2O3, was stu-
died together with LSA to address the identification of weak
anomalies caused by buried Fe polymetallic deposit. Fig. 4 shows
the raster patterns of Fe2O3 (%) with resolution of 1�1 km2 gen-
erated by using the inverse distance weighted (IDW) interpolation.
The concentrations of Fe2O3 were determined by using X-ray
fluorescence and the detection limit for Fe2O3 was 0.05%. Loga-
rithmic differences and standard deviations between the analytical
values and the recommended values of the standard reference
samples are lower than 0.07%.
4.2. Multiscale decomposition of geochemical patterns

Wavelet-based multiscale decomposition is undertaken to de-
compose 2D geochemical pattern (Fe2O3) into multiscale components
including approximations and details. There exist a variety of wavelet
families in WMD algorithm (e.g., Haar, Daubechies (db), symlets (sym),
and Biorthogomal, etc.), and a proper wavelet should be determined
for processing geochemical data. Three criteria may influence the
choice of wavelet including number of vanishing moments, support
size and regularity (Mallat, 1999, p599). The wavelet regularity is
crucial for increasing the fidelity of separated components, and higher
vanishing moment is better to analyze the singular signals. Consider-
ing the fact that the practical geochemical pattern usually presents
fractal natures, the regular orthonormal wavelets with higher compact
support such as db 4–10 and sym 4–8, may be better choices for ob-
taining reasonable decompositions. Consequently, after a test of using



Fig. 5. Multiscale decomposition of geochemical patterns (Fe2O3) using wavelet transformation. (a), (c), (e) and (g) represent the multiscale approximations at scale j¼1, 2,
3 and 4. (b), (d), (f) and (h) represent the multiscale details at scale j¼1, 2, 3 and 4.
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Fig. 6. Map showing the singularity distributions of Fe2O3 obtained from the conventional LSA algorithm.

Fig. 7. Map showing the singularity index distribution of Fe2O3 obtained from the novel LSA algorithm using WMD.
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various wavelet functions, we choose db8 wavelet function in WMD
for decomposing the geochemical pattern in this study.

Here, the WMD of geochemical pattern (Fig. 4) stops at the 4th
decomposition level since the resulting components of further
levels do not contain the anomaly details of interests related to
local mineralization. Fig. 5a, c, e and g show multiscale approx-
imations of geochemical pattern at scale j¼1, 2, 3 and 4, respec-
tively, consisting of low-frequency components. These wavelet
approximation maps could be regarded as smoothing (averaging)
results of original geochemical pattern because of the low-pass
filtering of the father wavelet in WMD. Moreover, they show si-
milar geometric patterns with scale increasing essentially due to
the power–law dependence of approximation values on the scales.
In addition, Fig. 5b, d, f and h show multiscale details of geo-
chemical pattern at scale j¼1, 2, 3, and 4, respectively. Each detail
is the superposition of three high-frequency components in hor-
izontal-, vertical- and diagonal-direction. Notably, more details or
anomalies patterns appear on Fig. 5b, d, f and h compared with
original geochemical map (Fig. 4), which is attributed to the high-
pass filtering of the mother wavelet in WMD.

It is known that the WMD algorithm could be a powerful tool
for decomposing geochemical pattern into multiscale components
of different frequency bands from fine scale to coarse scale, then
some questions can be raised for geochemical data processing and
interpretation in mineral explorations. For instance, Can these
multiscale anomalies imply any statistical properties of complex
geo-processes? what are the specific geological or geochemical
implications of different scale anomalies? Can we use these mul-
tiscale natures of geochemical pattern for fractal/scaling analysis?
In the subsequent session, we would like to elaborate upon the
idea that these multiscale geochemical components possess sta-
tistical self-similarity in which the scaling property can help detect
the spatial distribution of singularities, and the proposed LSA
based on the generalized density–area fractal model in Eq. (14) is



Fig. 8. Log–log plots of approximation coefficients versus scale (logs based on 2).

Fig. 9. Histogram of singularity indices estimated by (a) the conventional LSA and (b) the novel LSA.
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used to quantify the interscale relationship of these multiscale
approximations.

4.3. Singularity mapping for identifying weak geochemical
anomalies

Since the study area is covered by large-area grasslands, geo-
chemical information are often mashed or weakened by deeply
weathered and transported covers. From the spatial distribution of
Fe2O3 in Fig. 4, it can be observed that the overburden covered
areas (green) consisting of Quaternary and Tertiary strata generally
have a lower geochemical background values than those of the
outcrops areas (red) including intrusions and other formations,
mainly due to the masking and decaying effects of these covers
(Cheng, 2012b; Zuo et al., 2013; Cheng, 2014; Zuo et al., 2014). The
weak or complicated geochemical anomalies in grassland area
with low background or in granite area with high background
bring the challenges for finding potential ore deposits. For in-
stance, some ore deposits (e.g., Chaobuleng) located in the grass-
land area with low background value exhibit too weak anomalies
to identify directly from geochemical pattern in Fig. 4. Similarly,
those ore deposits occurring in granites area show insignificant
geochemical anomaly patterns due to the interference of high
background field (see in Fig. 4). Recent studies suggested that the
effect of the covers on geochemical signals can be removed by
nonlinear weak information extraction techniques such as the LSA
and the S–A fractal filtering methods (Cheng, 2012a,b).

The LSA has a remarkable talent for delineating weak geo-
chemical anomalies due to the fact that the realization of singularity
index acts a high-pass filtering in processing geochemical data. To
show this high-pass filtering talent, the spatial distribution of sin-
gularity indices is first obtained from the conventional LSA using
moving average, where 3 square windows are defined with size of
[3 km, 5 km, 7 km]. Note that the scale range of window size is
determined by consideration of scale of local structure of interest
(Cheng, 2007), and a small window size is chosen here since the
resulting small-scale singularities may reflect the local anomalies
associated with mineralization. From the singularity map in Fig. 6 it
is observed that a number of weak anomaly patterns have been
enhanced and identified from the complex background fields, par-
ticularly showing an intimately association with most of the ore
deposits in the study area. These results demonstrated that LSA can
identify weak geochemical anomalies and would assist in mapping
mineral perspective. However, from signal filtering point of view,
the result in Fig. 6 obtained from the conventional LSA still has
somewhat imperfections. The area A and B for instance contain
obvious residual interferences of high background field caused by
granitic intrusions.

As discussed in Section 3, the proposed LSA calculates singu-
larity index using a WMD scheme and theoretically possess a
better ability for analyzing fractal/singular geochemical pattern
compared with the conventional LSA algorithm. Singularity map-
ping result (Fig. 7) is then recalculated using the novel LSA based
on WMD, where 3 scales (j¼1, 2, 3) are used in order to make a
comparison with the results of Fig. 6. Fig. 8 gives the log–log plots
of approximation coefficients versus scales for testing points. The
coefficient of determination (R2) has been used to examine the
goodness-of-fit of using regression analysis to fit the power–law
function in log–log scale, and its mean value of all the sampled
points has been recorded as 0.95, indicating reliable estimations of



Fig. 10. (a) Q–Q plots of singularity estimates. (b) Plot of singularity estimates using the conventional LSA versus the novel LSA. (For interpretation of the references to color
in this figure, the reader is referred to the web version of this article.)

Fig. 11. Profiles showing the high-pass filtering performance of singularity index for identifying the weak anomalies. (a) Original profile anomaly of Fe2O3. (b) Singularity
indices estimated by the conventional LSA. (c) Singularity indices estimated by the novel LSA. (d) The differences in the singularity estimates of the novel and conventional
LSA.
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singularity index. From the histogram statistic in Fig. 9, most of
singularity indices are around α ≈ 2 indicating non-singular
background field and approximately satisfy the normal distribu-
tion, while the (positive/negative) singular values seems to follow
extreme-value distribution (e.g. Pareto and power–law) with long
tails (see Q–Q plot in Fig. 10a).

In comparison with the conventional method (Fig. 6), on one
hand, from the visual perspective the novel LSA obtains more
distinct patterns indicating weak geochemical anomalies. The in-
terferences of high background field caused by granites in such as
area A and B have been removed more thoroughly in Fig. 7. On the
other hand from the perspective of singularity estimates, the
histogram in Fig. 9 shows a bigger standard deviation of Fig. 7 than
Fig. 6, and the novel LSA results in more points with α ≈ 2 (in-
dicating background) as well as a longer and thicker tail of sin-
gularity distribution (indicating anomalies) (Fig. 10a). These facts
suggest the novel LSA possesses a better ability of distinguishing
the singular anomalies and background field. Moreover, from the
plot of singularity estimates using the novel LSA versus conven-
tional LSA, it can be appreciated that the novel LSA holds a better
enhancing ability for estimating the singularity value of geo-
chemical patterns. Note that when the two results are similar, a
straight line (y¼x) (red line in Fig. 10b) can be obtained. Such
advantages of the novel LSA over the conventional method also
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have been illustrated in profile plots in Fig. 11. Significantly, from
the plot (Fig. 11d) of the difference in singularity estimates using
the novel LSA (Fig. 11b) and the conventional LSA (Fig. 11c), it can
be observed that the hidden geochemical anomalies caused by ore
deposits show more distinct singularity signatures and higher
singularity values. These results demonstrated that the novel LSA
(using WMA) has an improved filtering ability than the conven-
tional LSA for enhancing weak geochemical anomalies. In addition,
Fig. 7 delineates more lineaments (linear anomaly patterns) in
NWW or NE directions, since the wavelet analysis is more suitable
for analyzing the non-isolated singularities compared with moving
averaging method.
5. Conclusions

Wavelet-based multiscale decomposition (WMD) acts a pow-
erful tool for analyzing the multiscale natures of geochemical
pattern and provides a natural generalization of box-counting
method for scaling analysis of fractal/singular geochemical mea-
sures. Based on the scaling property of wavelet approximation
coefficients, a novel local singularity analysis (LSA) was presented
in this contribution to detect the spatial distribution of singula-
rities. It provides a nonlinear (weighted averaging) scheme for
calculating the element density-value in density–area fractal
modeling, in contrast with the conventional LSA using linear
(averaging) scheme. The novel LSA using WMD can better model
and quantify the (non-isolated) singularities in geochemical pat-
terns resulted from mineralization, which was demonstrated in a
case study dealing with geochemical data of Fe2O3. The singularity
mapping result suggested that the novel LSA possesses a superior
ability for enhancing and identifying weak geochemical anomalies
associated with mineralization in covered area.
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