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a b s t r a c t

A fast and efficient method to simulate multivariate fields with non-linear models of coregionalization
(N-LMC) is described. The method generalizes FFTMA to the multivariate simulation of the N-LMC with
symmetric cross-covariances, hence the name GFFTMA. It allows us for example to use an exponential
model as the direct covariance for the main variable, a Cauchy model for the secondary variable and a
K-Bessel model for the cross-covariance. Each covariance and cross-covariance are Fast Fourier Trans-
formed (FFT) to get the discrete spectral densities. Then the spectral matrix is eigen-decomposed at each
frequency separately to provide the square root matrix and to enforce positive-definiteness in cases
where small negative eigenvalues are found. Finally the simulated spectrum is obtained as multiplication
of the root matrix and the white noise coefficients. The method is particularly fast for covariances having
derivatives at the origin and/or for covariances with long range. Hence, two-variables’ 2D fields of 100
million pixels with all-Gaussian or all-cubic covariances and cross-covariance are both simulated in less
than 200 s. The CPU-time increases only as N log(N) (N, the number of points to simulate). Additional
realizations are obtained at a low marginal cost as the eigen-decomposition step needs to be done only
once for the first realization. The main limitation of the approach is its rather stringent memory re-
quirement. Synthetic examples illustrate the simulations of N-LMC with two and three variables for
different combinations of the seven available models. It shows that the theoretical models are all well
reproduced. An illustrative case-study on overburden thickness simulation is provided where the sec-
ondary information consists of a latent Gaussian variable identifying the geological domain.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In geology, mining, petroleum, hydrogeology and other appli-
cations, it is common to observe several secondary variables that
are spatially correlated to the main variable of interest. Often, the
secondary variables are more exhaustively sampled than the main
variable. To improve precision, it is important to include this in-
formation in the simulation of the main variable. Up to now, es-
sentially two cases of figure are encountered in applications. The
first one is when a physical relationship exists between the main
variable and the secondary ones. This situation is common in
geophysics (Asli et al., 2000; Shamsipour et al., 2010, 2011) and in
hydrogeology (Ahmed and de Marsily, 1989; Dong, 1990). The
second case of figure is the modeling of the statistical link by the
linear model of coregionalization (LMC) (Myers, 1983; Marcotte,
1991; Journel and Huijbregts, 1978; Wackernagel, 2003) where it is
assumed that all variables being studied share the same spatial
structures. Advantages of LMC are important: unequalled ease of
),
verification of admissibility (Goulard and Voltz, 1992) and possi-
bility to use a large variety of simulation algorithms, including the
efficient turning bands’ method (Matheron, 1973; Chilès and Del-
finer, 2012) and FFTMA (Le Ravalec-Dupin et al., 2000) as all what
is required is to combine linearly independent univariate simula-
tions. The main disadvantage of LMC is the rather severe restric-
tion it imposes that the variables share common spatial structures.
It is indeed frequent that one observes a smoother behavior on the
secondary variables than on the main variable. Using the LMC in
this case incurs an important loss of information.

Recently Marcotte (2015) proposed a new tool facilitating the
verification of admissibility for non-LMC models (N-LMC) with
symmetrical cross-covariances. A direct follow-up is to find an
efficient method of simulation of the N-LMC. Shinozuka (1971)
developed a continuous spectral method to simulate a multi-
variate homogeneous process by a series of cosine functions. He
proposed to use the Cholesky decomposition of the spectral den-
sity matrix, at selected frequencies. Then, the study was extended
to non-homogeneous oscillatory processes characterized by an
evolutionary power spectrum (Shinozuka and Jan, 1972). Mejía
and Rodríguez-Iturbe (1974) focused on discussing connection of
correlation and spectrum of a random field and provided a si-
mulation method by sampling from the spectral density functions.
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Zagayevskiy (2015) use the spectral method with turning bands to
simulate LMC. Mantoglou (1987) and Emery et al. (2015) imple-
ment variants of the continuous spectral method (Shinozuka and
Jan, 1972) with turning bands that can both simulate N-LMC.

Alternatively, Pardo-Igúzquiza and Chica-Olmo (1993) devel-
oped a Fourier integral method for unconditional simulation of
random fields. The FFT was used in both numerical calculations of
density spectral function and generation of realizations. Chilès
(1995) used the discrete spectral method based on the FFT for
simulation of intrinsic random functions. Chilès and Delfiner
(1997) propose various tools to simulate by FFT while minimizing
aliasing effects due to the asymptotic ranges of many covariance
functions. Le Ravalec-Dupin et al. (2000) proposed to integrate FFT
and the moving average method in a fast and flexible method they
named FFTMA. Applications of FFTMA can be found in Le Ravalec-
Dupin et al. (2001), Gloaguen et al. (2005) and Shamsipour et al.
(2011). Le Ravalec-Dupin and Da Veiga (2011) extended FFTMA for
cosimulation of two variables that are linearly correlated. In ad-
dition to being limited to two variables, their method was based
on the Markov–Bayes approximation, so it did not allow full
control and generality of the simulated cross-covariances.

In this contribution, based on the discrete spectral method, the
FFTMA is adapted to the unconditional simulation of multivariate
fields with the N-LMC. One requirement on the coregionalization
is the cross-covariances must be symmetric. The square root of the
spectral matrix is obtained at each frequency sampled by the FFT.
Then spectrum of white noise fields for n variables is computed by
FFT and combined with the square root matrices (one per fre-
quency) so as to generate the desired direct and cross-structures.
To increase the applicability of the FFTMA, we also present a
simple idea to extend the simulation to points that do not fall on a
regular grid. This allows the post-conditioning by cokriging to be
performed to obtain conditional realizations at any desired point.

After reviewing the FFTMA algorithm, we describe the neces-
sary modifications to simulate N-LMC. We then discuss im-
plementation details related to the type of simulated covariance,
the admissibility issue, the computing time and the solution pro-
posed for the case of samples not on a regular grid. We show that
the program, named GFFTMA, reproduces the desired N-LMC. CPU
time and memory requirements are examined. Finally, a case study
is presented.
2. Methodology

The moving average method (MA) was presented for simula-
tion of one dimensional Gaussian random fields in Journel (1974).
Then, it was extended by Oliver (1995) to two and three dimen-
sions. A zero mean Gaussian random field z(x) with covariance C
(h) (h is a distance vector between xi and xj) is generated by

( ) = ( )⁎ ( ) ( )z x g h y x . 1

where n is the convolution operator, y(x) is a Gaussian white noise
and g(h) is a convolution root of the covariance, i.e.

( ) = ( )⁎ ^( )C h g h g h in which ^( ) = ( − )g h g h . For symmetric covar-
iances and cross-covariances, it is possible to choose ( ) = ( − )g h g h ,
hence a symmetric convolution root g exists (although non-sym-
metric roots also exist). Oliver (1995) listed covariance functions
and their auto-convolution root in two and three dimensions. Le
Ravalec-Dupin et al. (2000) recognized the spatial convolution of
Eq. (1) is most efficiently computed in the spectral domain by
using FFT, hence the method FFTMA was developed. Oliver (2003)
described the use of Cholesky decomposition to simulate 2D
N-LMC models combining different model types for the direct
covariances or different ranges.
The convolution theorem, either in its continuous or discrete
versions, states that the Fourier transform of the convolution of
two functions is the product of the Fourier transform of the two
functions (Cooley et al., 1969; Priestley, 1982; Le Ravalec-Dupin
et al., 2000; Rao et al., 2011):

( ⁎ ) = ( )· ( ) ( )g g g g . 21 2 1 2

In the univariate case with symmetrical covariance = ⁎C g g , where
g is the symmetric square root. As the spectral density function

= ( ) = ( ⁎ ) = [ ( )]S C g g g 2, one has ( ) =g S . Thus to obtain the
root spectrum, it suffices, in the univariate case, to take the square
root of the spectral density function of the covariance. Having the
root spectrum, one simply has to multiply it with the spectrum of
a Gaussian white noise and then take the inverse Fourier trans-
form to get back in the spatial domain. The final result is the
convolution of the covariance root with a Gaussian white noise (a
moving average), ensuring correct reproduction of the desired
covariances.

2.1. The FFTMA in the multivariate case

Le Ravalec-Dupin and Da Veiga (2011) present an approximate
method to simulate sequentially two variables with different
structures and a given correlation. Their approach is to simulate a
first variable and then to simulate the second one conditional to
the first one using a Markov–Bayes hypothesis for the cross-cov-
ariance. It is only an approximate method due to the Markov–
Bayes hypothesis that does not allow full control on the simulated
cross-covariances. For example, when the first variable has a
spherical covariance, the second variable could not be simulated
exactly with a Gaussian covariance. Here, we seek to generalize
the simulation to any number of variables and to allow any cov-
ariance and cross-covariance, with the only restriction that the
coregionalization must be an admissible model. For this, FFTMA is
used to simulate directly the joint distribution of the n variables
with imposed covariances and cross-covariances. The idea is based
on the fact that knowledge of direct and cross-covariances is
equivalent to knowledge of the direct and cross-spectral densities.
Hence, the goal is to simulate n variables having completely spe-
cified spectral matrices at all frequencies.

The covariance matrix function C(h) is

⎛
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Assuming symmetry of cross-covariances, the corresponding
spectral matrix S(f) (f is frequency) is obtained by separate Fourier
transform of each of the × ( + )n n 1 /2 covariance functions:
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where ( ) = ( )S f S fij ji as the Fourier transform of a real even function
is also real and even.

At any given frequency f, by Bochner's theorem, the spectral
matrix must be positive semi-definite. Then one can use the
square root matrix decomposition of S(f) as ( ) = ( ) ( )S f U f U f T , where
T denotes the transpose operator, =U VD VT1/2 and D and V are
respectively the diagonal eigenvalue matrix and the orthonormal
eigenvector matrix, i.e. one has =S VDVT and = =VV V V IT T . Now,
consider a zero-mean unit-variance Gaussian white noise y(x) in
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Fig. 1. Example of slope discontinuity at practical range ap after periodization of
the exponential model.
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the spatial domain. It is well known that its Fourier transform ( )∼y f
is also a zero-mean unit-variance Gaussian white noise. Hence,
one has

[ ( ) ( ) ( ) ( ) ] = ( ) ( ) = ( ) ( )∼ ∼E U f y f y f U f U f U f S f 5T T T

where ( )∼y f is a column vector of size n containing the Fourier
transform coefficients at frequency f for the corresponding n in-
dependent Gaussian white noises. This equation leads to the fol-
lowing algorithm in the discrete case:

� Compute the FFT of each of the × ( + )n n 1 /2 periodized cov-
ariances and cross-covariances evaluated on the regular grid (N
points); this provides S(f).

� Generate n independent white noise vectors on N grids and
compute their FFT ( )∼y f .

� For all frequencies, respectively compute the eigenvalue–ei-
genvector decomposition of the spectral matrix S(f) and get the

( ) = ( ) ( ) ( )U f V f D f V f T1/2 . The eigen-decomposition is done on a
small matrix of size ×n n at each frequency. For all frequencies,
U(f) consists of ×n n matrices.

� Calculate the spectrum of simulation at all frequencies f as
( ) = ( ) ( )∼ ∼z f U f y f .

� Take the separate inverse FFT on each component of vectors ( )∼z f
to obtain the simulation z(x) in spatial domain that have the
right covariances and cross-covariances.

The reader will note that the above procedure is the direct
analog of what is done by FFTMA in the univariate case, where S(f)
is a scalar, and one computes ( ) ( )∼S f y f and then takes the inverse
Fourier transform. In the multivariate case S(f) is a matrix, and the
square root is replaced by the square root matrix decomposition.
The Cholesky decomposition of S(f) could also have been used, and
in fact it was used in the initial versions of GFFTMA. However, it
appeared that the Cholesky decomposition was numerically un-
stable in some models at high frequencies where all the spectral
values are close to zero.

2.2. Post-conditioning by cokriging

The classical method of post-conditioning by cokriging (Chilès
and Delfiner, 2012) is used, either by simple cokriging or by or-
dinary kriging or kriging with a trend (Emery, 2007). Therefore,

( ) = *( ) + ( ( ) − *( )) ( )Z x Z x Z x Z x 6CS S S

where *( )Z x is the cokriging estimate at simulated point x using
the data, *( )Z xS is the cokriging estimate at simulated point x using
the simulated values at sample points and ZS(x) are unconditional
simulated values obtained with GFFTMA.

An important limitation of the FFTMA is to simulate only on a
regular grid. This is a problem for the post-conditioning step as
one also needs simulated values at sampled points. Moreover, they
must have the right structure and be compatible with all the
points already simulated on the regular grid. Relying on the
screening effect approximation, one idea is to locally propagate the
unconditional simulated vectors of the regular grid to sample
points. By the Cholesky or SGS method, values on the sample
points can be simulated conditioned by the neighboring regular
grid vectors. This is repeated for each sample point in turn. Sample
points that are simulated by SGS or Cholesky are added to the
already simulated vectors for the next sample points. At the end of
the procedure, correlated random vectors with approximately the
right covariance structure and compatible with the regular grid are
available at each sample point. One can then proceed with the
post-conditioning as usual. Note that this step is relatively fast
compared to a standard SGS as only the sample points need to be
simulated, not the grid points that are already simulated by
GFFTMA.

2.3. Models with asymptotic range

Following Le Ravalec-Dupin et al. (2000) and Chilès and Delfi-
ner (2012), the size of the field to simulate internally must be at
least = +L b a, where b is the size of the desired simulation in a
given direction and a is the correlation range in this direction. For
covariances that possess only an asymptotic range, the practical
range is used (i.e. the distance where the covariance represents
only 5% of the sill). One exception is for the Gaussian covariance
model where it was found that the practical range was not suffi-
cient to ensure good covariance reproduction at small distances.
For this model, the practical range was extended from a3 to a3 .
Note that for all models with asymptotic ranges, the periodicity of
the FFT introduces a discontinuity of the slope of the periodized
covariances at mid-distance of the simulated field (see Fig. 1). This
discontinuity causes the simulated models to become numerically
not admissible as some small negative spectral values appear in
the spectrum. The solution adopted here is to replace the direct
spectral negative values by very small positive values and the
corresponding cross-spectral values by zeros. In addition, all ne-
gative eigenvalues found during the eigen-decomposition are
simply replaced by zeros. This ensures numerical admissibility of
each simulated N-LMC. Examples in the next section show that
these simple corrections to ensure positive-definiteness at all
frequencies of the FFT do not introduce a measurable bias on the
covariance. All the simulated covariances and cross-covariances do
not depart significantly from the intended theoretical N-LMC.

To account for possible geometric anisotropies in different di-
rections and of covariances formed of multiple nested components,
the maximum range or the practical range among all directions and
all components of the N-LMC was retained as the unique parameter
a used to define the extension of the simulated grid.

2.4. Test of GFFTMA

The examples presented in Figs. 2–5 seek to illustrate the ver-
satility of GFFTMA and the quality of reproduction of the multi-
variate models. The models are described in detail in Table 1. In
each case, 200 realizations of a square field of size 500 � 500 are
obtained for isotropic cases with two variables (Figs. 2 and 3) and
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Fig. 2. One realizations of v1 and v2 (top row) and the direct and cross-variograms. Case 1 of Table 1 mixing exponential, Generalized Cauchy with ν = 2 and K-Bessel with
ν = 1. Mean variogram is computed by combining E–W and N–S directions over 200 realizations. Only the first 25 individual realization variograms (light gray) are shown.
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three variables (Fig. 4) and for an anisotropic case with two vari-
ables (Fig. 5). The direct and cross-variograms of the first 25 rea-
lizations are illustrated together with the mean variogram com-
puted over the 200 realizations. Models used include mixtures of
spherical, exponential, Gaussian, cubic, penta, generalized Cauchy
and K-Bessel. The coregionalizations are all N-LMC as different
structures appear on the direct and cross-variograms. The models
are checked to be admissible with program TASC3D (Marcotte,
2015). This program uses the theoretical 3D spectral densities of
the same models available in GFFTMA to verify the positive-defi-
niteness of the spectral matrices at any set of user specified
frequencies. It allows any number of components in the direct and
cross-covariance models of the N-LMC, each component being
isotropic or anisotropic.

2.5. Computing time

Because of the use of FFT, GFFTMA is probably unequaled for
the computing time required to get the unconditional simulations.
The post-conditioning is generally the slower step, although this
step can be also quite fast when dual kriging is used in a global
neighborhood (Royer and Vierra, 1984; Davis and Grivet, 1984).
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Fig. 6a shows the well known N log(N) CPU time relationship of
the FFT transform (N is the number of simulated pixels) as the
correlation between CPU time and N log(N) reaches 0.999. Note
that one realization for two variables on 100 million pixels is ob-
tained in approximately 200 s for the cubic and Gaussian models
with range 100, 500 s for the spherical model with range 200 and
2800 s for the spherical model with range 100 pixels. All compu-
tations are done on an Intel Xeon (2.13 GHz). The most consuming
computation is the eigen-decomposition. We stress that this
computation step is done only once to get the square root ma-
trices. When the model has a linear behavior at the origin and a
small range, the eigen-decomposition must be computed at almost
all frequencies (which is the total number of pixels in the
simulation). On the contrary, with differentiable variograms at the
origin and/or for large range covariances, most frequencies have a
quite small contribution that can be disregarded without dis-
cernable effects. In all cases, every additional realization is ob-
tained in a comparatively negligible time that is independent of
the covariance model used, as each realization calls for only two
FFTs and the product of the square root matrices with the Gaussian
white noise FFT coefficients. As expected, the simulation time in-
creases linearly with the number of realizations (Fig. 6b).

2.6. Memory usage

No doubt, the main limitation of the approach is the memory
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usage, especially when simulating large grids for models with long
practical range. The maximum memory mobilized by the current
implementation of GFFTMA is approximately ( + )p n n n32 s a

d
sim

2 ,
where p is the number of variables, ns is the number of pixels si-
mulated, na is the number of pixels required to reach the maximal
practical range, d is the dimension of the studied field and nsim is
the number of realizations to simulate. Table 2 gives the approx-
imate maximum size that can be simulated using only the avail-
able RAM memory in 2D and 3D as a function of memory available
above the memory required to run the operating system and
Matlab's overhead. For larger fields, the program has to use a swap
file, which slows considerably the execution time. Clearly, results
of Table 2 indicate that GFFTMA is more suitable for simulation in
2D than in 3D, although mid-size problems in 3D can still be
treated.
3. Case study – overburden thickness simulation

The case study bears on the cosimulation of overburden
thickness and surface lithological information represented by a
Gaussian latent variable. The overburden thickness data includes
4730 boreholes in Montérégie Est, in the south of Québec. The
study area covers approximately 14, 000 km2 split into two main
geological domains. The geological domain located at northwest
(domain A) has generally higher overburden thickness than the
rest (domain B). The sample locations are shown in Fig. 7.

A bivariate field is aimed to simulate by the GFFTMA. The
logarithm of overburden thickness is treated as the first variable.
Another known information is the indicator of geological domain
of the studied area. A number of approaches can be used in the
simulation of the geological types or facies, such as sequential
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indicator simulation (Journel and Isaaks, 1984; Deutsch and Jour-
nel, 1998), multiple point statistics (Guardiano and Srivastava,
1993; Ortiz and Deutsch, 2004), truncated Gaussian simulation
(Matheron et al., 1987), and truncated pluriGaussian simulation
(Galli et al., 1994). In this paper, we used the truncated Gaussian
simulation, i.e. the geological domain indicator is obtained by
thresholding a continuous latent Gaussian variable at the sampling
points. First, the fixed threshold of the Gaussian field has been
determined using declusterized proportions of each geological
domain. Then the latent variable variogram is chosen so as to
match the indicator variogram and log(thickness)-indicator cross-
variogram. Having the variogram model of the latent variable, the
Gibbs sampler provides latent Gaussian at sampling points in
agreement with the geological domain indicator. For each condi-
tional realization, a different Gibbs sampler realization of the la-
tent Gaussian variable at sample points is used.

Fig. 8 shows the direct and cross variograms of the log(thick-
ness) and the latent Gaussian variable. The experimental vario-
gram of overburden log(thickness) is well adjusted by an ex-
ponential model. The latent variable was chosen to have a Gaus-
sian covariance model because it provided better fit to the geo-
logical domain indicator variogram and log(thickness)-indicator



Table 1
Models used in Figs. 2–5 and 9.

Case Figure Model description

1 Fig. 2 v1–v1: Exponential ( = = )a C250, 1p

v1–v2: Cauchy ( ν= = =a C155, 0.6, 2p )

v2–v2: K-Bessel ν( = = = )a C158, 1; 1p

2 Fig. 3 v1–v1: Spherical ( = = )a C250, 1
v1–v2: Cubic ( = = )a C310, 0.85
v2–v2: Penta ( = = )a C350, 1

3 Fig. 4 v1–v1: Spherical ( = = )a C250, 1
v1–v2: Cubic ( = = )a C310, 0.5
v1–v3: Gaussian ( = = )a C250, 0.5p

v2–v2: Penta ( = = )a C350, 1
v2–v3: Penta ( = = )a C310, 0.8
v3–v3: Gaussian ( = = )a C208, 1

4 Fig. 5 v1–v1: Exponential ( = = = )a a C240, 120, 1p hor p vert, ,

v1–v2: K-Bessel ν( = = = = )a a C158, 118.5, 0.6, 1p hor p vert, ,

v2–v2: K-Bessel ν( = = = )a C158, 1; 1p iso,

5 Fig. 9 v1–v1: Nugget (C¼0.15)þExponential ( = = )a C27 km, 0.45p

v1–v2: Nugget(C¼0.001) þ Gaussian ( = = )a C32.6 km, 0.3p

v2–v2: Nugget(C¼0.001)þ Gaussian ( = = )a C24.6 km, 1p

Table 2
Maximum size of simulated field as a function of available RAM above overhead
memory required by operating system and Matlab (for =n 1sim , =n 100a , p ¼ 2).

Available RAM 2D 3D

4G 5400�5400 210�210�210
16G 11,000�11,000 400�400�400
48G 19,000�19,000 620�620�620
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Fig. 7. Map of sample data. Gray dots: boreholes in geological domain A, black
dots: boreholes in geological domain B. The area covered by simulation in Fig. 10 is
outlined (dashed line).
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cross-variogram. The fit obtained after the Gibbs sampling re-
produces the assumed model as expected. Finally, the cross-var-
iogram is also well fitted by a Gaussian model. Because the two
variables have different direct variogram structures, they define a
N-LMC model with zero-lag correlation of R¼0.38.

Two series of unconditional realizations of logarithm of over-
burden thickness were obtained on a regular grid: an univariate
simulation by FFTMA and the bivariate N-LMC simulation invol-
ving geological domain by GFFTMA. Then, the unconditional si-
mulated values were extended to the sample point locations by
local LU simulation.

Fig. 9 shows direct and cross variograms of the two variables
for 30 unconditional realizations obtained in cosimulation of
N-LMC. The average variograms of the 30 realizations coincide
almost perfectly with the models. Each realization is then post-
conditioned by cokriging using the same N-LMC model.
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Fig. 6. Evolution of computing time as a function of (a) the number of simulated pixels an
variables for four different models in (a) and a spherical model with range 100 in (b).
3.1. Comparison of statistics of conditional realizations by N-LMC
model and univariate simulation

To assess the gain obtained by considering the geological in-
formation, the full dataset is split into two parts: a small part (10%)
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Fig. 8. Model fitting for direct and cross variograms of log(thickness) and one latent field representing the geological domain information.
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Fig. 9. Comparison of the direct and cross variograms of log(thickness) and the latent variable between 30 realizations and the theoretical model.

Table 3
Mean MAE (in m) for 30 realizations.

Simulation cases On 981 testing points within
5 km distance from
boundary

On all 4257
testing points

Case 1 (Univariate
simulation)

6.49 6.95

Case 2 (N-LMC simulation) 6.21 6.68
% improvement with N-LMC 4.3 3.9
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is used as conditioning data and the rest (90%) is used as test data.
Conditional realizations are obtained at the test data locations for
two different cases: one using the univariate simulation of log
(thickness) and the second using N-LMC simulation of log(thick-
ness) with the Gaussian latent variable as secondary information
at both conditioning points and test data locations. Then the final
simulations of log(thickness) for overburden are transformed to
the thickness. Table 3 shows mean statistics of 30 realizations
obtained with the two instances. The mean absolute error (MAE)
of simulation with N-LMC shows an improvement of 3.9% to 4.3%
compared to the univariate simulation, indicating that despite the
small zeros-lag correlation (R¼0.38), the geological information
remains useful.

Fig. 10 shows 3 realizations of the univariate simulation (left)
and the N-LMC (right), still using 10% of the thickness data and all
the latent data. Clearly, the realizations of the N-LMC show larger
thickness toward the North than do the univariate realizations.
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Hence, one concludes that the geological information conveyed by
the latent variable has a noticeable impact on the simulations
despite the low correlation between the log(thickness) and the
latent variable.
4. Discussion

Examples were provided illustrating simulation of the models
available in GFFTMA. The average experimental direct and cross-
variograms reproduced almost perfectly the theoretical model in
all cases presented (see Figs. 2–5) even for N-LMC known to be not
strictly admissible like the N-LMC models having a compactly
supported direct covariance function (e.g. models in Figs. 3 and 4).
These models are known to be non-admissible (Marcotte, 2015),
because at high frequencies the spectral densities of the compactly
supported covariance function possess multiple zeros, hence the
spectral density matrix cannot be positive semidefinite at these
frequencies. However, this fact has little consequence in practice as
seen by the quality of the reproduction of all direct and cross-
covariances. Moreover, the adopted correction for the small ne-
gative eigenvalues renders these models admissible at the sam-
pled scale. In the post-conditioning by cokriging, there were no
instance where the cokriging matrix was found not positive
definite.

The eigen-decomposition is done at each frequency where the
amplitude exceeds the threshold A /10max i,

6, where Amax i, is the
maximum amplitude found in the direct spectrum of variable i. As
soon as one threshold is exceeded, the spectral matrix is eigen-
decomposed. As a consequence, the CPU times of GFFTMA are
largely related to the behavior at the origin of the models present
in the N-LMC. Linear behavior variograms have larger high fre-
quencies, hence eigen-decomposition must be computed at more
frequencies. For the same behavior at the origin, the smaller the
range with respect to simulated field size, the larger the CPU time.
Nevertheless, the CPU times remain tractable and always keep the
N log(N) dependency, where N is the number of pixels to simulate.
Moreover, the eigen-decomposition is done only once, irrespective
of the number of realizations. Previous trials with the Cholesky
decomposition, instead of eigen-decomposition, to compute the
square root matrices were significantly faster but proved nu-
merically unstable in many circumstances. For this reason, it is
preferable to stick to the slower eigen-decomposition.

The memory requirements are rather important as the field
size to simulate internally in GFFTMA to reduce aliasing is equal to
the size of the field to simulate plus the maximal practical range
found among all model components. As an example, with a
maximal practical range of 100, 48G of RAM enables simulation of
a field comprising approximately 238 million pixels in 3D, corre-
sponding to 620 pixels along each dimension. One avenue to limit
the size of the simulation may be to try to approximate models
displaying asymptotic sills (exponential, Gaussian, Cauchy and
K-Bessel) by combination of models with compact support
(spherical, cubic and penta). This could reduce significantly the
size of the field to simulate internally, although it is not clear if the
number of frequencies to eigen-decompose does also diminish.
5. Conclusion

The GFFTMA program can generate unconditional simulations
in both isotropic and anisotropic situations for any number of
variables and any number of covariance components for each di-
rect and cross-covariances. It enables us to simulate N-LMC with
symmetric cross-covariances. Basic covariance models included in
GFFTMA are nugget, exponential, Gaussian, spherical, cubic, penta,
generalized Cauchy and K-Bessel (Matérn). If needed, other models
can be added easily with a single line of code. Simulated examples
show that GFFTMA succeed to produce realizations having on
average the desired N-LMC.
Acknowledgments

This research was financed by NSERC (RGPIN-2015-06653) and
by Polytechnique Montral. The constructive comments of three
anonymous reviewers were helpful to improve the manuscript.
Appendix A. Usage of GFFTMA

The program GFFTMA is a Matlab function used to produce
unconditional simulations of N-LMC models. For conditional si-
mulation, it must be completed with other functions performing
1-extension of the unconditional grid to sample points not lying
on the grid and 2-the post-conditioning by cokriging with the
same N-LMC model. The check of the admissibility of the N-LMC
model can be done with program TASC3D (Marcotte, 2015).

= ( )
GFFTMA is called with :
datasim gfftma model,seed,nsim,vsiz,grid,thres

The input model is a cell variable of size ×n n, n being the
number of variables. Each model { }i j, possesses pij elementary
components. As GFFTMA assumes symmetric cross-covariances,
model { }i j, must be the same as model { }j i, . Each component is
specified with 4 parameters (when all components of all models
are isotropic) or 6 parameters in the 2D anisotropic case and
9 parameters in the 3D anisotropic case. In the isotropic case, the
four parameters are 1-model type, 2-range, 3-shape, 4-sill. In the
2D anisotropic case, the 6 parameters are 1-model type, 2-first
range, 3-second range, 4-anticlockwise rotation, 5-shape para-
meter and 6-sill. In the 3D anisotropic case, the 9 parameters are
1-model type, 2-first range, 3-second range, 4-third range, 5-ro-
tation around x, 6-rotation around y, 7 rotation around z, 8-shape,
and 9-sill. The shape parameter is used only for model types 7
(Cauchy) or 8 (K-Bessel). The rotations follow the same convention
and order as described in Marcotte (1991), i.e. all anticlockwise
rotations, z first, then y, then x. The model types are 1-nugget,
2-exponential, 3-Gaussian, 4-spherical, 5-cubic, 6-penta, 7-Cauchy
8-K-Bessel. As soon as one model component is anisotropic, all
models (even isotropic ones) must be specified with the aniso-
tropic convention.

The input seed is the seed of the random number generator.
The input nsim is the number of realizations required.
The input × d1 vector vsiz allows the user to specify the

number of pixels to use internally for the simulation. This enables
us to fix the random numbers to the same values for two different
calls to GFFTMA by specifying the same seed and the same vsiz.
The internal number of pixels must be chosen so as to prevent
aliasing, i.e. it must be larger than practical range (in pixels) plus
the desired size (in pixels) to simulate. Normal usage is to leave
this vector empty. The program then computes the required
number of pixels.

The input grid is a vector. In 1D it contains [nx,dx], in 2D it
contains [nx,dx,ny,dy] and in 3D [nx,dx,ny,dy,nz,dz], where nx is the
number of pixels desired in the x direction and dx is the distance
between consecutive pixels along x, and similarly for directions y
and z.

The input thres is the multiplying factor applied to the maximal
spectral density value. The spectral matrices where
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( ) > ⁎ ( )S f thres S fmaxi f i for at least one i are eigen-decomposed.

When thres is left empty, the default value = −thres 10 6 is used.
Using larger values reduces the number of required eigen-de-
compositions and thus speeds up the simulation but it may affect
the correct reproduction of the linear behavior at short distances
of the exponential and spherical models.

The output datasim is a cell array of size ×nsim nvar with the
results of the simulation.
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