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a b s t r a c t

Simultaneous-source shooting can help tremendously shorten the acquisition period and improve the
quality of seismic data for better subsalt seismic imaging, but at the expense of introducing strong in-
terference (blending noise) to the acquired seismic data. We propose to use a structural-oriented median
filter to attenuate the blending noise along the structural direction of seismic profiles. The principle of
the proposed approach is to first flatten the seismic record in local spatial windows and then to apply a
traditional median filter (MF) to the third flattened dimension. The key component of the proposed
approach is the estimation of the local slope, which can be calculated by first scanning the NMO velocity
and then transferring the velocity to the local slope. Both synthetic and field data examples show that the
proposed approach can successfully separate the simultaneous-source data into individual sources. We
provide an open-source toy example to better demonstratethe proposed methodology.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Wide-azimuth acquisition geometry can improve the illumi-
nation of subsalt structures, which helps improve the quality of
seismic imaging. However, wide-azimuth acquisition suffers from
the low-efficiency problem, resulting from the large temporal
shooting interval between two consecutive shots. The large tem-
poral shooting interval is needed to ensure that no interference
exists between adjacent shots. The principal purpose of simulta-
neous source acquisition is to accelerate the acquisition of a larger-
density seismic dataset that allows the temporal or spatial overlap
between different shots, which saves numerous acquisition cost
and increases data quality. The improved seismic data with denser
spatial sampling can also help improve the seismic imaging quality
of the subsalt structure. The benefits of the new technique are
compromised by the intense interference between different shots
(Berkhout, 2008). One way for solving the problem caused by in-
terference is by first-separating and second-processing strategy
(Chen et al., 2014a), which is also called deblending (Akerberg
et al., 2008; Abma et al., 2010; Huo et al., 2012; Mahdad et al.,
2011, 2012; Blacquiere and Mahdad, 2012; Beasley et al., 2012;
Doulgeris et al., 2012; Bagaini et al., 2012; Li et al., 2013; Ibrahim
and Sacchi, 2014; Chen and Ma, 2014; Chen et al., 2014b; Berkhout
),
du (Y. Chen),
K. Xiang).
and Blacquiere, 2014; Chen, 2014, 2015; Qu et al., 2015; Zu et al.,
2015). Another way is by direct imaging and inversion of the
blended data by attenuating the interference during inversion
process (Verschuur and Berkhout, 2011; Dai and Schuster, 2011;
Xue et al., 2014; Chen et al., 2015b; Gan et al., 2014). Currently,
deblending is still the dominant way for dealing with simulta-
neous-source data.

There are generally two types of deblending approaches that
have been reported in the literature: (1) treating deblending as a
noise attenuation approach (Huo et al., 2012; Chen and Ma, 2014;
Chen et al., 2014b; Chen, 2014; Chen and Fomel, 2014, 2015),
(2) treating deblending as an inversion problem (Mahdad et al.,
2011; Abma et al., 2010; Chen et al., 2014a; Gan et al., 2015b). For
the filtering based approaches, most of the approaches are based
on a median filter. Chen et al. (2014b) proposed to use a common
midpoint domain for deblending, because of the better coherency
of useful signals and also because the near-offset useful events
follow the hyperbolic assumption and thus can be flattened using
normal moveout (NMO) correction. A simple median filtering (MF)
can be applied to the NMO corrected common-midpoint (CMP)
gathers to attenuate blending noise. Chen (2014) proposed a type
of MF with spatially varying window length. The space-varying
median filter (SVMF) does not require the events to be flattened
and is also better applied in the midpoint domain. Huo et al.
(2012) used a multidirectional vector median filter after resorting
the data into common midpoint gathers. For inversion based ap-
proaches, because of the ill-posed property of the inversion pro-
blem, there should be some constraint to regularize the inversion

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2015.10.001
http://dx.doi.org/10.1016/j.cageo.2015.10.001
http://dx.doi.org/10.1016/j.cageo.2015.10.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.10.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.10.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.10.001&domain=pdf
mailto:gsw19900128@126.com
mailto:wangshoudong@163.com
mailto:ykchen@utexas.edu
mailto:chenxh@cup.edu.cn
mailto:xiangkui15@126.com
http://dx.doi.org/10.1016/j.cageo.2015.10.001


Fig. 1. Synthetic example in common midpoint domain. (a) Unblended data. (b) Blended data.

Fig. 2. Local slope maps using (a) PWD, (b) velocity-slope transformation.
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problem. Akerberg et al. (2008) used sparsity constraint in the
Radon domain to regularize the inversion. A sparsity constraint
was also used by Abma et al. (2010) to minimize the energy of
incoherent events present in blended data. Lin and Herrmann
(2009) connected a curvelet-based sparse inversion algorithm
with the emerging field of compressive sensing. Bagaini et al.
(2012) compared two separation techniques for the dithered slip-
sweep (DSS) data using the sparse inversion method and f–x
predictive filtering (Canales, 1984), and pointed out the advantage
of the inversion methods over the filtering based approaches. In
order to deal with the aliasing problem, Beasley et al. (2012)
proposed the alternating projection method (APM), which chooses
corrective projections to exploit data characteristics and is claimed
to be less sensitive to aliasing than alternative approaches. Mah-
dad and Blacquiere (2010) proposed a coherence-based inversion
approach to deblending of the simultaneous-source data. The
convergence properties and the algorithmic aspects of the method
were discussed by Doulgeris et al. (2012) and Mahdad et al. (2012),
respectively. Although the inversion-based approaches have been
demonstrated to obtain better deblending performance (Bagaini
et al., 2012), it usually takes many iterations to process the data.
Currently, the most efficient way for deblending is using some
types of median filtering. However, most of the median filtering
approaches are directly borrowed from the signal-processing field
and do not utilize the structure information of seismic data.

In this paper, we propose a novel type of MF that makes use of
the structural features of seismic data by means of first flattening
the seismic record in local spatial windows and then applying MF
along the flattened dimension. The flattening operator is con-
structed by predicting the neighbor traces following the local
slope. One concern for such flattening processing is the estimation
of an accurate-enough local slope map, which can be solved by
first scanning the NMO velocity and then transferring the velocity
to the local slope in the common midpoint domain. We first



Fig. 3. Flattened domain of the blended data. The MF is to be applied along the
third dimension of the cube. (a) From the slope map using PWD. (b) From the slope
map using velocity-slope transformation.

Fig. 4. Flattened domain of the blended data after MF.
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review the principle of separating simultaneous sources (de-
blending) and then introduce the theory of both traditional MF
and the proposed structural-oriented median filter (SOMF). Next,
we introduce the method of transferring the NMO velocity to local
slope in the common midpoint domain. Finally, we use two syn-
thetic examples and one simulated field data example to demon-
strate the separating performance of the proposed approach.
2. Method

2.1. Deblending of simultaneous-source data

In a simultaneous-source acquisition, more than one source are
blended onto one constant receiver record:

d m, 1Γ= ( )

where d is the blended data, m is the unblended data, and Γ de-
notes the blending operator (Mahdad et al., 2011; Chen et al.,
2014a, 2015a). The principal issue in simultaneous-source acqui-
sition is to separate the blended sources into individual sources as
if they were acquired independently, which also corresponds to
solving Eq. (1) for m.

The simplest way to approximate m is called the pseudo-de-
blending:

m d. 2Γ^ = ( )⁎

Eq. (2) corresponds to arranging the seismic records according to
the shot schedules of each source in a common receiver gather,
which honors the coherency between different shots in each
source and makes the interference from other sources randomly
spread the receiver domain. The inversion problem as shown in
Eq. (1) is then transformed to be a noise attenuation problem that
separates the spatially coherent signals from the random
interference.

A more accurate but also time-consuming approach for solving
Eq. (1) is to use iterative solver to invert m with some constraints.
One of the currently popular and effective ways is to use a POCS
like solver with a transformed domain sparse constraint (Abma
et al., 2010; Chen et al., 2014a; Gan et al., 2015c, 2015d):

m A TA m d m , 3n n n1
1 λΓ Γ= [ + ( − )] ( )+

− ⁎

where mn is the inverted solution after nth iterations, A and A 1−

denote the forward and inverse sparse transforms respectively, T
denotes a thresholding operator, and λ denotes the step size of the
model update. The Fourier transform, the curvelet transform, the
Radon transform, and the seislet transform are the currently
popular sparse transforms for deblending.

The performance of deblending heavily depends on the sparsity
of the selected sparse transform. However, most sparse transforms
are model dependent, which means that the transforms are based
on some assumptions about the data structure. As we know, the
seismic data is highly non-stationary and the commonly used
sparse transforms cannot obtain acceptable level of sparsity, which
will result in non-optimal inversion performance. What is even
worse is that the inversion may not be stable when blending in-
terference is too strong or the sparse transform domain is not
sparse enough. Even though we can use inversion based de-
blending approach to obtain satisfactory results, the deblending
process will take a large number of iterations. Considering the
modern seismic acquisition is becoming amazingly larger and
larger, the iterative inversion is very time consuming. In the next
sections, we will propose a non-iterative deblending approach
based on median filtering, which is of exceptional convenience for
removing the blending interference.



Fig. 5. Deblended results using slopes from (a) PWD, (b) velocity-slope transformation.

Fig. 6. Blending noise sections using slopes from (a) PWD, (b) velocity-slope transformation.
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2.2. Median filtering

The MF is commonly used to remove spiky noise in signal-
processing field. For the purpose of removing spiky noise in seis-
mic data, the MF is applied point by point. For each point in the
seismic data, we choose a local window that centers at the current
point and then pick the median of the local window to be the final
value of the current point. The basics of finding the median of a
local window is to solve the following minimization problem:

u u uarg min ,
4

i j
u U

l

L

m l p,
1m i j,

∑^ = ‖ − ‖
( )∈ =
where ui j,
^ is the output value for location xi j, , U u u u, , ,i j L, 1 2= { … },

i j, are the position indices in a 2-D profile, and l and m are both
indices in the filtering window. L is the length of the filtering
window, and p denotes Lp norm. Commonly p¼1 corresponds to
standard MF.

Because the blending noise caused from the simultaneous
shooting is spike-like along the spatial direction, we can use the
MF to effectively remove it. However, the traditional MF is only
applicable to those seismic data that mainly composed of hor-
izontal reflections, otherwise much useful reflection energy will be
damaged. Thus, we need to either find a way to flatten the seismic
data or apply the MF along the structural direction.



Fig. 7. Deblending error sections using slopes from (a) PWD, (b) velocity-slope transformation.

Fig. 8. Amplified deblending error sections ( 5× ) using slopes from (a) PWD, (b) velocity-slope transformation.
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2.3. Structural-oriented median filtering

We propose a type of median filter that is applied along the
local structure to remove the blending interference. The principle
of the approach is to first flatten the seismic data in a local spatial
window:

P D D . 5j j
R

j
R= ( )

where Pj is the jth flattening operator, and j corresponds to the jth
trace. And then, we apply a traditional median filter along the
flattened direction. Here, the flattening operator is chosen as a
plane-wave prediction operator related with the local slope. D j

R

denotes the jth spatial window (corresponding to jth trace) with a

radius of R, D j
R denotes the flattened local spatial window. Eq. (5)

has the following detailed form (Gan et al., 2015a):
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Here, P i j k j i j, , ,σ( )( )→( ) denotes the prediction operator from trace i to
trace k in jth spatial window, which is connected with the local



Fig. 9. Pre-stack synthetic example. (a) Unblended data in shot domain. (b) Blended data in shot domain. (c) Blended data in midpoint domain. (d) Deblended data in shot
domain.
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slope of ith trace i j,σ . di j, denotes the ith trace in the jth spatial
window. di j, denotes the ith trace in the jth spatial window after
flattening. Prediction of a trace consists of shifting the original
trace along dominant event slopes (Fomel, 2010). Prediction of a
trace from a distant neighbor can be accomplished by simple re-
cursion (Liu and Fomel, 2010), i.e., predicting trace k from trace 1 is
simply

P P P P . 7j k j j k j k j k j j j j j j j1, , 1, 1, , 1, 2, 3, 2, 1, 2, 1,σ σ σ σ( ) = ( )… ( ) ( ) ( )( )→( ) ( − )→( ) − ( )→( ) ( )→( )

The dominant slopes are estimated by solving the following
least-square minimization problem using regularized least-
squares optimization:

W Darg min , 82
2σ σ^ = ∥ ( ) ∥ ( )σ

where W is the destruction operator defined as
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where I stands for the identity operator, and i k→ describes pre-
diction of trace k from trace i (same as the previous version
P i j k j i j, , ,σ( )( )→( ) except for not in a specific spatial window). The op-
timization approach as shown in Eq. (8) for obtaining local slope
estimation is called plane wave destruction (PWD) (Fomel, 2002).

For each trace, we apply the aforementioned flattening, and
then we can obtain a 3D cube of the flattened domain. The final
filtered result is obtained by selecting the middle slice in the ad-
ded third dimension after applying median filtering.

2.4. Estimating local slope from velocity analysis

The local slope estimation in highly noisy blended data is
challenging. Instead of directly estimating the local slope using the
PWD algorithm, we can alternatively first calculate the NMO ve-
locity using simple NMO-correction based velocity analysis and
transform the NMO velocity to local slope (Liu and Liu, 2013) by
using

p t x
x

t x v t x
,

,
,

9n
2

0
( ) =

( ) ( ) ( )

where t0 is the zero-offset traveltime, t(x) is the traveltime re-
corded at offset x, v t x,n 0( ) is the NMO velocity, and p t x dt dx, /( ) =
is the local slope. The detailed introduction of the velocity to slope
transformation was introduced in Liu and Liu (2013).
3. Examples

The first example is a simulated synthetic example. The data
has been sorted into the common midpoint domain. Fig. 1a and b
shows the unblended and blended data, respectively. By using the
direct slope estimation using the PWD algorithm and the velocity-
slope transformation, we can obtain two dramatically different



Fig. 10. Pre-stack synthetic example. (a) Unblended data in midpoint domain. (b) Deblended data in midpoint domain. (c) Blending noise in midpoint domain. (d) De-
blending error in midpoint domain.
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local slope estimations, as shown in Fig. 2. It is obvious that the
velocity-slope transformation can obtain much better slope esti-
mation. Figs. 3b and 4 show the 3D cubes of the flattened domain
for blended and deblended data, respectively, using the local slope
map from the velocity-slope transformation. Fig. 3a shows the
flattened blended data that uses the slope map from the PWD
algorithm. Fig. 3a and b is very similar, which demonstrates the
fact that the flattening process is not very sensitive to the esti-
mated slope. A traditional MF is applied along the third dimension
of the 3D cube as shown in Fig. 3b. Fig. 5a and b shows the final
deblended data using the two slopes from PWD and velocity-slope
estimation, respectively. Both deblended results are very success-
ful because all the blending noise has been removed and there is
no obvious damage in the useful energy. We can further confirm
the performance by comparing the blending noise sections (Fig. 6)
and the deblending error sections (Fig. 7). We also amplified the
error sections (Fig. 8) in order to better compare the difference.
From Figs. 7 and 8, we can conclude that both deblended results
are very similar to the unblended data and the deblended data
using the slope from velocity-slope transformation has smaller
deblending error. We provide a Python script that can regenerate
all the figures (from Figs. 1 to 8) of the first example. From this
example, we can see that the two slope estimation approaches will
generate similar flattened events and will generate similar de-
blended results. Thus, the proposed structural-oriented median
filter might obtain robust deblending performance even when the
slope estimation is not very accurate. It should also be mentioned
that though the proposed algorithm is relatively robust, it still
depends on an acceptable estimation of the local slope. In the case
of extremely strong blending noise, even with the slope–slope
transformation we cannot obtain good slope estimation,
preliminary processing steps are required to obtain an acceptable
slope estimation. The Python script (SConstruct) should be run in
the Madagascar open-source environment (Fomel et al., 2013),
which can be downloaded at www.ahay.org.

The second example is a simulated pre-stack example. The
unblended 3D data cube is shown in Fig. 9a. There are 1501 time
samples in this synthetic example and the temporal sampling is
4 ms. The peak frequency is 10 Hz. There are 251 shots and 51
receivers in this example. The shot and receiver intervals are both
50 m. We simulate the blending geometry by using two sources
shooting at the two sides of a towed-streamer. Both of the two
sources shoot arbitrarilywith a small random dithering. The si-
mulated blended shooting causes strong interference to the data
as shown in Fig. 9b. It is apparent that the blending noise appears
coherent in common shot gathers and appears random in common
offset gathers. By sorting the shot domain (Fig. 9b) to the midpoint
domain (Fig. 9c), we can observe that the blending noise appears
random in both common offset gathers and common midpoint
gathers. The deblending procedures using the proposed approach
are applied to Fig. 9c. The detailed deblending comparison is
provided in Fig. 10. Fig. 9d shows the final deblended result that is
sorted back to the shot domain. We can conclude a successful
separation considering the high similarity between Fig. 9a and d.
In Fig. 10, we compare the unblended and deblended data in the
midpoint domain in (a) and (b), and show the removed the
blending noise cube and deblending error cube in (c) and (d), re-
spectively. From the very clean deblended data, incoherent
blending noise, and small deblending error, we can further con-
firm that the proposed approach obtain a successful separation
between the signals and interference.

The third example is a simulated field data example. Fig. 11a

http://www.ahay.org


Fig. 11. Field data example. (a) Unblended data. (b) Blended data. (c) Deblended data. (d) Blending noise.
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shows the unblended data from a constant-receiver 2D marine
survey. Fig. 11b shows the blended data. As we can see, the
blending interference appears incoherent in common receiver
gathers and coherent in common shot gathers. Fig. 11c shows the
deblended result using the proposed approach and (d) shows the
blending noise cube. It is obvious that the blending noise in each
common receiver gather does not contain coherent reflections and
the blending noise appears as coherent source when observed
along the third dimension. As we can see, we can use the proposed
approach to obtain a nearly perfect separation of simultaneous
sources.
4. Conclusion

We have proposed a novel deblending approach using a
structural oriented median filter. The proposed median filter is
applied in a pre-flattened third dimension of the original data. We
use prediction operator following the local slope to flatten the
seismic record in local spatial windows. The key aspect in the
flattening process is the estimation of the local slope from the
highly noisy blended data. Instead of directly estimating the local
slope using the PWD algorithm, we can use the velocity-slope
transformation to alternatively estimate the slope. While the slope
estimation from the PWD algorithm can help obtain acceptable
deblending performance, the slope from velocity-slope transfor-
mation can help obtain even better performance. Both synthetic
and field data examples show successful deblending performance
using the proposed approach.
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