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ration models for anomaly recognition within known ore fields are discussed.
Traditional geochemical exploration methods are based on multivariate statistical analysis, metallometry,
vertical geochemical zonality and criteria of natural field geochemical associations, which suffer several
shortcomings, including lack of a geostatistical generalised approach for separating anomalies from
background. These shortcomings make the interpretation process time consuming and costly. Fuzzy set
theory, fuzzy logic and neural network techniques seem very well suited for typical mining geochemistry
applications. The results, obtained from applying the proposed technique to a real scenario, reveals
significant improvements, comparing the results obtained from applying multivariate statistical analysis.
Computationally, the introduced technique makes possible, without exploration drilling, the distinction
between blind mineralisation and zone of dispersed ore mineralisation. The methodology developed in this
research study has been verified by testing it on various real-world mining geochemical projects.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Research on geochemical methods for exploration of ore deposits
(Cu, Pb, Zn, Au, W, etc.) dates back to 1930when the first survey of this
kindwas carried out by Fersman (1939). Since then, this technique has
been greatly modified and improved (Beus and Grigorian, 1977).
Solovov (1987, 1990) and Baranov (1987) have considered the factors
leading to the technique's acceptance or rejection. Recent work on the
theory and application of soil and rock geochemical analysis in
exploration have identified some problems, particularly in the area of
multivariate anomaly recognition.

For geochemical anomaly separation, various statistical methods
have been used (Cheng et al., 1994, 1996) including probability graphs,
univariate and multivariate analysis (Govett et al., 1975; Beus and
Grigorian, 1977; Solovov and Matveev, 1985; Solovov, 1987, 1990;
Grigorian and Ziaii, 1997). The multifractal IDW (Inverse Distance
Weighted) and fractal concentration–area (C–A) method (Cheng,
1999; Cheng et al., 2000; Lima et al., 2003) and the element
concentration–distance (C–D) (Li et al., 2003) approach were
introduced which can be used to assist exploration geologists and
geochemists in geochemical data analysis and anomaly separation. It
has been applied to the stream sediment geochemical data set
l rights reserved.
(regional exploration). The C–D model and Cheng et al.'s C–A method
may complement each other. In the C–D procedure, original element
concentration data can be treated directly, and therefore it is
unnecessary to process the data with pretreatment of any smoothing
procedure, thus enhancing recognition of a geochemical anomaly
from background.

Exploration geologists often need to separate anomalies associated
with mineralization from background reflecting local and mine scale
geological processes. Mining geochemistry is part of Applied Geo-
chemistry, and is based on the utilization of geochemical techniques to
increase ore reserves of knownmines by assessing the ore potential of
deep horizons. Recent experience in the application of mining
geochemistry techniques, illustrates their efficiency in discovering
blind and weakly eroded ore bodies within areas of active and old
mines (including ancient ones). This trend in geochemical exploration
is without any doubt very important, because it increases ore reserves
and mine revenue (Grigorian, 1992).

Many mining geochemical problems are characterized by being
complex, uncertain and ill-defined. Complexity arises due to various
reasons such as lack of data, insufficient knowledge, and inherent
uncertainty in the system. For example, recognition between blind
and false anomalous patterns is a typical scenario of a complexmining
system. Several models have been developed in the past to predict
geochemical anomalies at mine scale. Most of the models are
concerned solely with the identification of geochemical anomalies
(IGA). The multivariate anomaly recognition in geochemical
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exploration is defined here as blind mineralization, outcropping and
zone dispersed mineralisation (ZDM).

Geochemical anomalies based on ZDM model might well be
similar in intensity to that associated with blind mineralisation.
Grigorian (1985, 1992) presented a zonality model to identify blind
mineralisation from ZDM. In the active mines, vertical geochemical
zonality is the most important peculiarity of primary halos. This
pattern is represented by supra-ore geochemical haloes of blind ore
bodies. So that, the Zonality method is very important and effective in
the search for most promising anomalies.

Lithogeochemical methods are suggested by Solovov (1987), who
postulates that this approach, or metallometry, is relatively easy when
used, not only for IGA, but also for the quantitative evaluation of ore
reserves. An important point that should be considered in the
interpretation of secondary geochemical haloes is the erosion level
of a mineral deposit since it affects the size and extent of anomalies in
soil. This point has been conceptualised by different examples known
as model of (a) blind economic mineralization, (b) outcropping
economic mineralisation and (c) zone of dispersed mineralisation
(Beus and Grigorian,1977; Ovchinnikov and Grigorian,1978; Levinson,
1980; Solovov, 1987). Soil anomalies associated with outcropping
economic mineralisation would be normally stronger than those
associated with blind mineralisation, and they may be erroneously
assumed to be more promising than others, unless the erosion levels
are taken into account. Soil anomalies based on the ZDM model may
Fig. 1. Location of Sungun–Astam
well be similar in intensity to those associated with the blind
mineralisation. But if they are not properly interpreted, fruitless
exploration may be the result. Root zones (ZDM) of some types of ore
deposits, typically have a differentmetal association from the ore zone
and leakage (upper) zones, and these associations may be helpful in
identifying the relationship of a soil anomaly to mineralisation.
Characterizing horizons of erosional surfaces of a steeply dipping ore
body and its primary halo in host rocks is a problemwith no direct and
known solution. To date there are only two generally reliable ways of
acquiring knowledge on IGA. These are laboratory measurements, and
vertical zonality coefficient interpretation. Laboratory measurement
on the cores obtained from the field or sample archives provides
precise (assuming adequate equipment) vertical zonality coefficient of
values (Beus and Grigorian, 1977; Levinson, 1980). These are used in
geochemical simulation studies, as well as any other design and
development studies in the field. The other method for IGA
determination is a geochemical model of mineralisation in bedrock
and soils (Grigorian, 1985).

In this research, a new method for IGA determination was
introduced. The proposedmethodology, which is based on an artificial
neural network, is quite inexpensive compared with the traditional
exploration methods. Furthermore, it does not require interruption of
production, and provides vertical zonality coefficient values. These
values are comparable to those obtained by laboratory measurements
on core samples. A feasibility study, based on the proposedmethod for
al mineral field in NW Iran.
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IGA estimation, shows effective and useful results. It has been
demonstrated that in porphyry copper mineralisation, an application
of a carefully designed and elaborated neuro-fuzzy model can provide
acceptable results.

Traditional Zonality method has played an important role to
multivariate anomaly recognition in mining geochemistry. The
problem with these methods is demonstrated by the assessment of
primary and secondary geochemical data from porphyry copper in
NW Iran (Grigorian,1994; Ziaii, 1996; Ziaii and Ziaei, 2006). This paper,
presents the results of the application of the Back Propagation
Artificial Neural Network (BP-ANN) with fuzzy c-means (FCM) using
the same data. BP-ANN is one of the most popular versions of ANN,
and is widely used in geosciences such as remote sensing and
geochemical exploration for hydrocarbons (Zhang and Bai, 2002) and
hydrology (Dixon, 2005).

This paper is organized in the following sections: first, a general
overview of the traditional modeling method adopted in this study is
presented; next, the neuro-fuzzy modeling approach is applied to
real-world cases within the framework of mining geochemistry and
finally, conclusions are given and further research directions are
pointed out.

2. Geological setting of study area and previous work

The study area is situated in north-west Iran and 75 km north-west
of Ahar (Sungun and Astamal village) (Figs. 1 and 2). Sungun is the
largest open-cast copper mine in Iran. It is in the primary stages of
extraction. The exploration from 1979 to 1993 confirmed that Sungun
reservoir is about 995 million tons with copper grade 0.661% and
molybdenum grade 240 ppm. The probable reservoir is about
1700 million tons (Technical report the Iranian Copper Company;
Grigorian, 1994; Ziaii, 1996). The Sungun porphyries are of Oligo-
Fig. 2. Geomorphological landsca
Miocene age, and were intruded, as a sub-volcanic complex into Upper
Cretaceous carbonate rocks, a series of Eocene arenaceous–argillaceous
rocks, and a series of Oligocene dacitic breccias, tuffs and trachy-
andesitic lavas. The Sungun porphyry copper deposit is one of two
major copper deposits associated with calc-alkaline intrusive rocks in
the Caenozoic Sahand–Bazman volcanic belt. It is emplaced at a
paleodepth of 2000 m, at temperatures ranging between 670 and
780 °C, and comprising early monzonite/quartz-monzonite and a later
diorite/granodiorite phase. The formation of the Astamal porphyry is
due to the intrusion of the Astamal pluton, of Oligocene age into
Cretaceous limestone. The average composition of this pluton is
granodiorite (Bazin and Hubner, 1969; Hezarkhani and Williams-
Jones, 1998; Hezarkhani, in press).

Fig. 2 shows Sungun porphyry copper zone, including Sungun 1,
Sungun 2, Sungun 3, Astamal area and other coppermineralization. As
shown in Fig. 2, the geochemical landscape types in Sungun–Astamal
area comprise of two distinct sub-areas. The Northern sub-area is
mountainous humid zone, and the Southern area is mountainous
humid–semiarid zone. These areas both have cold and snowy winters.

Based on previous studies (Hezarkhani and Williams-Jones, 1998;
Hezarkhani, in press), there was no information for Sungun 2 area,
Figs. 3 and 4. In 1992, Sungun 2 has been selected for waste deposit.
However, the studies based on traditional Zonality method in 1994
recognised Sungun 2 as blind mineralisation. Eventually, by exploring
blind anomalies in Sungun 1 and Sungun 2 the whole area became a
large deposit. Wewill explain this matter in more detail in Section 3.2.

3. Proposed approach

In this section, the traditional methods used for IGA estimation are
explained first. Then the proposed approach for quantitatively
recognition between blind anomalies and false anomalous' patterns
pes of Sungun–Astamal area.



Fig. 3. Geological map of the Sungun prospect showing section C–C and section D–D.
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Fig. 4. Cross section of C–C in Sungun area (after Hezarkhani, in press).
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(ZDM), using Back Propagation Artificial Neural Networks with fuzzy
c-means cluster analysis, are discussed.

3.1. Properties of geochemical data and geochemical anomalies

Secondary and primary geochemical dispersion haloes are
sampled and analysed by geologists and geochemists to detect
geochemical patterns reflecting the underlying geological structures.
The detailed description of the sampling methods and basic statistics
of the raw data are explained in Table 1 (Grigorian and Ziaii, 1997).

At the stage, where detailed evaluations of target areas are needed,
high-density sampling, especially of bedrock and soil is required.
Geometrical characteristics of anomalies such as shape, orientation
and spatial variability can be essential in geochemical anomaly
recognition. The geological structures corresponding to geochemical
characteristics usually show distinct geometric properties. The
discrimination of multivariate anomaly recognition in mining geo-
chemistry should take the following aspects of geochemical values
into account: (i) soil and rock survey geochemical data, (ii) the
Table 1
Results of the geochemical dataset in Sungun and Astamal area

Element Cu
(ppm)

Mo
(ppm)

Pb
(ppm)

Zn
(ppm)

Geothermal
parameters

Sample
size

Area
sampling
(Km2km2)

Sungun
area

36 1.48 23.2 65 Background
values

2900 5

42 2.3 31 74 Threshold values
6500 500 9100 3900 Cmax

Astamal
area

39 2.2 19 64 Background values 920 1
71 4.9 31 94 Threshold values

1460 49 1220 3950 Cmax

26 1.2 15 56 Clark Beus and
Grigorian, (1977)
frequency distribution of indicator-element contents, (iii) element
contents and spatial location of samples, (iv) the geometrical
characteristics of anomalous areas (values, location and distances
between samples), (v) geochemical landscape conditions of area, and
(vi) type of mineralisation and metallogenic zone. The primary data
layer of soil was manipulated in a multiplicative zonality map (MZM)
to generate secondary data layers of (i) soil indicator-element
contents, and (ii) geochemical and mineralogical types. These
secondary data layers were used in the neuro-fuzzy models as inputs.
Core archive data and locations of the wells were used to validate the
model predictions, and not as model inputs.

3.2. Traditional Zonality method

The geochemical indices for evaluation of the newly found
anomalies are derived through studies of the primary geochemical
haloes of typical standard ore deposits. Residual secondary soil haloes
in most cases are well correlated in composition and structure with
the ore bodies and primary haloes which have generated them. Their
successful use is related to the landscape-geochemical conditions in
the ore regions.

With reference to traditional models of geochemical anomalies,
and features of partially overlapping haloes of hydrothermal ore
mineralisation, a universal model for exploring blind mineralisation
and determining the degree of denudation of a deposit with the help
of models of geochemical anomalies and overlapped haloes, has been
summarised. It is based on three criteria: counter zoning (Grigorian,
1985, 1992), natural field of geochemical associations (Baranov, 1987)
and metallometry (Solovov, 1987, 1990). Calculating the vertical
zonality coefficient from primary geochemical halos has been applied,
since the results of the drilling stage of exploration became available.
These calculations assume a linear relationship between vertical
zonality coefficients and depth of mineralisation responses. It should
be mentioned that the linear model was used to emphasise that in



Fig. 5. Geochemical model for porphyry copper deposit.
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these calculations it is assumed that a known function (linear or non-
linear) is sufficient to model the relationship between these
geochemical haloes of parameters and the aforementioned depth
mineralisation responses (Grigorian, 1992).

The primarymethod for IGA determination is a geochemical model
of porphyry copper mineralisation in bedrock and soil in the Sungun
deposits. Fig. 5, shows a graph of multiplicative vertical geochemical
elements distribution pattern in ores and primary halos (geochemical
modelling) from three porphyrycopper deposits, where the mineral
observation points fall on a straight line. Themodel shown in Fig. 5 has
been constructed for the Aktogy (Kazakhstan), Asarel (Bulgaria) and
Tekhut (Armenia) porphyry copper deposits. Despite the considerable
differences in their geological setting, the points that are strictly on
the straight line, suggest the existence of a quantitatively uniform
vertical geochemical zonality in the structure of primary haloes of the
deposits (Grigorian, 1994; Ziaii et al., 2006).

It can be deduced from Fig. 5 that such a zonality implies the same
levels (upward and downward) of mineral deposits and haloes of a
given ore formation. Such haloes of a given ore formation are
characterised by strictly defined vertical geochemical zonality
coefficient values (Ziaii et al., 2006; Ziaii and Ziaei, 2006). The
practical significance of this quantitative uniform geochemical
zonality will be evident, if it is considered that it makes possible the
evaluation of the level of erosion crosscut by any geochemical
anomaly in a given formational type; such as a porphyry copper
deposit in this particular case. A gradient characterising the vertical
zonality coefficient allows the reliable differentiating among various
types of mineralization and their primary haloes: supra-ore, upper-
ore, ore, lower-ore, and under-ore (Solovov, 1987, 1990; Grigorian,
1992). The above-described quantitative uniform geochemical zon-
ality of porphyry copper mineralisation based on the results of
detailed geochemical modelling of only three deposits, was used in
interpretation of geochemical sampling results in the Sungun ore
district.
Using the Zonality method resolves the known problems of
exploration for blind mineralisation and identification of zones of
dispersed ore mineralisation in the field of geochemical exploration.
For example, at the Sungun porphyry Cu–Mo ore field the Zonality
method of geochemical exploration discovered two types of blind
mineralisation (see Figs. 3, 5 and 6, Sungun-2 and Sungun-1) and two
ZDM (see Figs. 5 and 8). Two of the anomalies, which were considered,
promising for blind mineralisation on the basis of Fig. 5, have been
tested. The 66 and 67 drillings (Fig. 7) of both anomalies support the
results obtained using traditional Zonality method.

The Zonality method within the south and north Astamal areas
(Fig. 8) revealed geochemical anomalies with lowgrades of Cu andMo.
To assess the possibilities for the occurrence of blind mineralisation,
associated with these anomalies, the vertical geochemical zonality
multiplicative coefficient values were calculated. Based on calcula-
tions on lithogeochemical data and Zonality method (Fig. 5), three
ZDM anomalies (A, B, and C in Fig. 8) have been recognised in Astamal
area. Two of the ZDM anomalies in north and south Astamal
(anomalies B and C, Fig. 8) were tested by drilling two drill-holes on
each anomaly.

Based on calculations on lithogeochemical data and Zonality method
(Fig. 5), a blind mineralisation anomaly (Fig. 9) has been recognised in
Sungun 3 area. Multivariate blind anomaly recognised using Zonality
method, based on lithogeochemical data has been shown in Fig. 9.

An anomalous zone related to a single source, may be composed of a
series of smaller anomalies (supra-ore and sup-ore anomalies).
Discontinuity in Figs. 6, 8 and 9 can be caused by such factors as high
ground noise, background noise, analytical errors, less optimum survey
grid layout, and uneven geological condition. Before the interpretation
of the anomalous patterns, their component anomalies should be
reassembled. These components must meet the following criteria:

a) Coexistence of two local maxima for supra-ore and sup-ore. This
coexistence implies blind mineralisation.



Fig. 6. Multivariate blind anomaly recognised using Zonality method, based on lithogeochemical data in Sungun-1 and Sungun-2 in NW Iran.
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Fig. 8. Multivariate ZDM anomaly recognised using Zonality method, based on lithogeochemical data (100×20 m) in north and south Astamal, NW Iran.

Fig. 7. Cross section of C–C in the Sungun area (see in Fig. 3), bore hole test.
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Fig. 9. Multivariate blind anomaly recognised using Zonality method, based on lithogeochemical data (100×20 m) in the Sungun-3, NW Iran.
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b) Existence of a single component implies ZDM.
c) Using mean value geochemical indicator elements, outside

geochemical anomalies, for eliminating background noise in data
interpretation

d) The multiplicative geochemical anomalies and their spatial associa-
tionswith particular geological features are critical aspects ofmineral
distribution for exploration and understanding ore geometry.

This combination of anomalies was conducted for the ZDM
anomalies. The results are shown in Figs. 6, 8 and 9. The blind
mineralisation and ZDM anomalies recognised with Zonality method
are more coincident than those with alteration methods (Figs. 4 and 7).
This finding demonstrates that traditional zonality method is more
powerful than alteration methods.

However, traditional methods of multivariate statistical analyses,
used to recognise anomalous mineralisation in mining geochemistry,
have several shortcomings: (1) it is difficult to isolate anomalies where
the data are not normally distributed; (2) it is hard to separate distinct
anomaly populations corresponding to well defined formation
mechanisms, while separating anomalies from background; (3) it is
Fig. 10. The proposed neuro-fu
not fitting to present illustrations of multivariate anomalies on
contour maps and (4) the presentation of polydimensional results
obtained from analyses in the form of coefficients of zoning, general-
ised quantities-multiplicative geochemical indicator ratios for the
type of mineralisation, intensity, etc (Simeon, 1981).

3.3. The proposed neuro-fuzzy model

Neuro-fuzzy techniques can be considered as a hybrid discipline
between neural networks and fuzzy logic. They not only bring out the
best of both techniques, but they also facilitate a comprehensive
sensitivity analysis, common with neural network without going into
elaborate sensitivity analysis associated with fuzzy logic. Neuro-fuzzy
modelling is an approach where the fusion of neural networks and
fuzzy logic find their strengths, since these two techniques comple-
ment each other. The neuro-fuzzy approaches employ heuristic
learning strategies, derived from the domain of neural network
theory to support the development of a fuzzy system. It is possible to
completely map neural network knowledge to fuzzy logic (Bezdek,
1981; Bezdek et al., 1984). A combination of network and fuzzy logic
zzy network architecture.



Fig. 11. Multivariate BM anomaly recognised using BM-ANN, based on FCM in Sungun-3 NW Iran.
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techniques should help overcome the shortcomings of both techni-
ques (Dixon, 2005). Neuro-fuzzy techniques can learn a system
behaviour from a sufficiently large data set, and automatically
generate fuzzy rules and fuzzy sets to a pre-specified accuracy level.
Also, they are capable of generalisation, thus overcoming the key
Fig. 12. Multivariate ZDM anomaly recognised using B
disadvantages of the fuzzy logic-based approaches, viz., self-learning,
inability to meet pre-specified accuracy, and lack of generalisation
capability (Bezdek, 1981; Bezdek et al., 1984).

The fuzzy c-means (FCM) algorithm partitions a data set into a
predefined c-number of clusters. It is a data clustering technique,
M-ANN, based on FCM in South Astamal NW Iran.
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where each data point belongs to a cluster to some degree that is
specified by a membership grade. It provides a method that shows
how to group data points that populate some multidimensional space
into a specific number of different clusters. Clustering is a mathema-
tical tool that attempts to discover structures or certain patterns in a
data set, where the objects inside each cluster showa certain degree of
similarity. A more detailed discussion of FCM with examples is given
by Bezdek (1981) and Bezdek et al. (1984). Combined use of FCM and
non-linear mapping furnishes a powerful method to find meaningful
data grouping within a dataset (Vriend et al., 1988). In this study FCM
cluster analysis, and non-linear mapping, are considered as suitable
for discerning structures in geochemical datasets.

In this study, a four-layer neuro-fuzzy network has been
considered (Fig. 10), where the nodes of the first layer represent the
inputs. The activation functions of the second layer nodes and the
third layer act as a hide node, so that the input layer provides the fuzzy
rule (FCM) base. The output of this layer determines the activation
level at the output memberships. As ordinary neural nets, the neuro-
fuzzy one learns from a training data set, Tansing functions and rules,
by means of a Back Propagation Artificial Neural Network (BP-ANN)
algorithm. Tansing is a neural transfer function. Transfer functions
calculate a layer's output from its net input.

Use of neuro-fuzzy model requires similar steps as neural
networks. Development of a neuro-fuzzy model is comprised of
three steps: (a) learning, (b) validation, and (c) application and the
entire data sets were divided accordingly. During the learning step the
neuro-fuzzy networks were provided with various combinations of
data for pattern recognition purposes and the neuro-fuzzy network
modified its internal representation by changing the values of its
weights to improve the mapping of input to output relationships.
During the validation step, the network was given a set of data as new
input, and the net mapped the inputs to output relationships based on
previously learned patterns without their weights. Once the learning
and validation steps were completed, the application data, which
were much larger than the learning and validation data sets, were
used to generate geochemical exploration blind mineralisation from
ZDM.

This approach was established on the basis of geochemical
characteristics and origin of the various populations in geochemical
data, such as background, blind anomalies and ZDM anomalies (false
anomalies).

The topology of the BP-ANN with FCM was optimised using the
outputs of the BP-ANN and the correct rate. As shown in Fig. 6, the
output of the BP-ANN is in the form of two distinct types of false
anomalies (False) and blind mineralisation (True). The application of
this method does not need any information related to the statistical
distribution of input data. The proposed approach is the quantitative
recognition between anomalies of economic and non-economic
patterns, using BP-ANN with FCM analysis.

4. Case study

This section explains the lithogeochemical data that have been
provided by NICICO (National Iranian Copper Industries Company)
from Sungun and Astamal area. The samples have been analysed by
emission spectrometry, atomic absorption and other methods for
elements Cu, Mo, Pb, Zn, Ag, As and Sb (Table 1). For data fromNW Iran
(Sungun and Astamal area), the BP-ANN has four nodes in the input
layer and has two nodes in the output layer, (Fig. 10). The input
consists of Cu, Mo, Pb and Zn.

The background noise has been eliminated by using FCM. This has
been shown in Figs. 11 and 12 as the areas inside the broken-line
elliptic shapes. The obtained data then will be checked by the trained
BP-ANN for discrimination of BM from ZDM. After applying the
proposed method (combination of FCM and BP-ANN), Sungun-3 has
been recognised BM (Fig. 11), and South Astamal anomaly has been
recognised ZDM (Fig. 12). Our findings revealed that the combination
method applied in this research is more powerful than the traditional
Zonality method.

5. Conclusion

Multivariate anomaly recognition for mining geochemistry has
suffered from major problems in recognition and illustration of
anomalies on contour maps. Previous work focused only on the
separation of anomalies from the background. However, there actually
exist at least two distinct anomaly populations in mining geochem-
istry. Therefore, the traditional Zonality methods cannot correctly
separate anomalies from background as the two distinct populations
are treated as one single population. As the prospecting methods are
different for different anomalous populations, the two distinct
anomaly population have to be separated first, which has not been
recognised previously. Conventional statistical analysis, which has
been used as a traditional Zonality method in geochemical explora-
tion, is time consuming and costly. This is because it lacks
geostatistical generalised mechanisms for separating anomalies from
background. Therefore, the traditional Zonality methods, on the basis
of the previous concept, cannot accomplish the separation.

This study demonstrates that BP-ANN, with FCM, can be applied to
multivariate recognition of lithogeochemical anomalies and separa-
tion of the two type anomalies (ZDM or false anomaly and BM), even
when normality in the data is not met. The FCM cluster analysis
produces the training set for BP-ANN and separated background from
lithogeochemical anomalies. It has been shown that the resultant
output has been significantly improved, comparedwith the traditional
method. The results, obtained by applying the proposed technique to a
real scenario, reveals significant improvements, when comparing the
results obtained from applying multivariate statistical analysis.
Computationally, the introduced technique makes it possible, without
exploration drilling, to distinguish between zones of dispersed ore
mineralisation (false anomaly) and blind mineralization.
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