
Journal of Geochemical Exploration 154 (2015) 252–264

Contents lists available at ScienceDirect

Journal of Geochemical Exploration

j ourna l homepage: www.e lsev ie r .com/ locate / jgeoexp
Multifractal modelling-based mapping and identification of geochemical
anomalies associated with Cu and Au mineralisation in the NW Junggar
area of northern Xinjiang Province, China
Feng Yuan a,⁎, Xiaohui Li a,b, Taofa Zhou a, Yufeng Deng a, Dayu Zhang a, Chao Xu a, Ruofei Zhang a,
Cai Jia a, Simon M. Jowitt c

a School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
b Centre for Exploration Targeting, University of Western Australia, Crawley 6008, Western Australia, Australia
c School of Geosciences, Monash University, Clayton, VIC 3800, Australia
⁎ Corresponding author. Tel.: +86 55162901648.
E-mail address: yf_hfut@163.com (F. Yuan).

http://dx.doi.org/10.1016/j.gexplo.2014.11.015
0375-6742/© 2014 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 8 January 2014
Revised 24 November 2014
Accepted 26 November 2014
Available online 10 December 2014

Keywords:
Geochemistry
Singularity
Multifractal models
NW Junggar
China
The NW Junggar area is located within the north of Xinjiang Province, China, and hosts several recently discov-
eredhydrothermal copper and gold deposits. The presence of these deposits and the relatively unexplored nature
of this area means that the NW Junggar region can be considered highly prospective. This study focuses on the
identification of mineralisation-related As, Cu and Au soil geochemistry anomalies within the area using a
combined singularity mapping, multifractal kriging and spectrum–area (S–A) fractal modelling approach. The
approach utilises an optimised version of the singularity mapping technique and outlines details of the use of a
S–A fractalmodelling approach for the precise identification of individual geochemical anomalies. Thismodelling
and anomaly identification was ground-truthed by field reconnaissance, leading to the identification of
mineralisation associated with anomalies determined using fractal and multifractal modelling in the study
area. This successful ground-truthing, and the identification of mineralised areas using the techniques outlined
here, indicate that this approach could be a useful tool in further geochemcial exploration and research, both
in the NW Junggar area and in other areas that host similar Cu and Au deposits.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Exploration geochemistry is an important method in mineral explo-
ration targeting and the determination of the prospectivity of an area
duringmineral exploration. This is especially true of areas that are rela-
tively unexplored, as potential mineralisation-related geochemical
anomalies can be rapidly delineated, meaning that exploration geo-
chemistry data can be used as a guide for targeting areas for more de-
tailed exploration (Bonham-Carter, 1994; Carranza, 2009; Pan and
Harris, 2000;Wang et al., 2011). In addition, these delineated anomalies
can efficiently be used in more advance exploration-focused modelling,
such as GIS-based prospectivity mapping (Bonham-Carter, 1994;
Carranza, 2009; Pan and Harris, 2000; Wang et al., 2011).

The majority of previous studies of exploration geochemical data
have used classical statistical approaches, such as the construction of
probability graphs using frequency distributions and correlation-based
univariate and multivariate analysis (Carranza, 2009; Zuo, 2011a; Zuo
et al., 2012). These classical statistical approaches generally focus on
the frequency distribution of elemental concentrations and the
correlations between multiple variables (Zuo et al., 2009), with subse-
quent geostatistical and kriging-based modelling, allowing the analysis
of spatial structures and the spatial characteristics of exploration geo-
chemical data by the identification of spatial trends and variations by in-
terpolation. However, this interpolation almost invariably leads to the
smoothing-out of anomalous values. This is a significant problem in
mineral exploration and prospectivity modelling, where these anoma-
lies may well be high-priority exploration targets. In addition, anoma-
lous often overlap with background, or weak anomalies are hidden
within the strong variance of background (Cheng, 2007; Zuo and
Cheng, 2008). Background concentrations of elements of interest for
Cu–Au mineralisation and pathfinder elements, such as Au, Cu and As,
have high variances as a result of multiple geological processes (Zuo,
2011a), meaning that the efficient extraction and identification of
anomalies are a key process during the interpretative statistical treat-
ment of exploration geochemistry data (Zuo et al., 2009).

Recent research has identified that the release of energy or the accu-
mulation of mass during various geological processes, such as volcanic
eruptions, occurs within narrow intervals in time or space, leading to
the formation of geological anomalies (Cheng, 2008a; Cheng and
Agterberg, 2009). These anomalies can also be termed singularities,
and the geological processes that form them are termed singular
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processes (Cheng, 1999, 2007, 2012). These singular processes always
result in fractality and multifractality, primarily due to the natural non-
linear attributes involved in these processes (Cheng, 2007, 2008b;
Cheng and Agterberg, 2009). Recent advances in the methods used in
fractal and multifractal analysis have included the development of sin-
gularity mapping techniques, multifractal interpolation models, and
spectrum–area (S–A) fractalmodels, all of which have been used to sep-
arate and identify geochemical anomalies (Cheng, 2007; Cheng and
Agterberg, 2009; Cheng et al., 2010; Yuan et al., 2012; Zuo et al.,
2009). These models cannot only be used to describe the fractal and
multifractal characteristics of geochemical data, but can also be used
to identify more effectively strong and weak anomalies from complex
geochemical background data. Here, a case study using geochemical
data from the NW Junggar area of China is presented.

The NW Junggar area is located in the north-west of Xinjiang Prov-
ince, China, in an area of continental dry climatewith an average annual
rainfall of 291mm(Fig. 1a). This combination of low rainfall and dry cli-
mate means this area is sparsely vegetated; where present, this vegeta-
tion is dominated by plants acclimatised to arid regions. This area is
sparsely populated, and the industry of this area is dominated by animal
husbandry, with few people involved in agriculture and/or mining.

Several copper and gold deposits have been discovered in the study
area. Although this area has only undergone minimal exploration,
meaning that the area should be considered highly prospective for fu-
ture mineral exploration and the discovery of copper and gold deposits.
Here, the focus is on theNWJunggar area, and theuse of both fractal and
multifractalmodelling approaches, usingAs, Cu andAu soil geochemical
data to identify geochemical anomalies related to known Cu and Au
mineralisation, and to identify highly prospective areaswith no current-
ly known mineralisation. A number of these highly prospective areas
were also visited to ground-test the results of the geochemical data
analysis, directly leading to the discovery of newareas ofmineralisation,
and verifying the usefulness of this fractal and multifractal modelling
during mineral exploration in the NW Junggar area and elsewhere.
Fig. 1. (a) Map showing the location of the study area within the north of Xinjiang Province i
(b) Simplified geological map of the NW Junggar area, showing major faults and Au and Cu de
2. Geology and mineralisation

The NW Junggar area is located in the north-west of Xinjiang
Province, China, within the southwestern Central Asian Orogenic
Belt (Fig. 1a). The area is divided into the Sawuer–Taerbahatai and
Xiemisitai sub-regions (Fig. 1b).

The region is dominated by structures developed during NE–SWand
E–W extension, with the latter associated with the development of the
Sawuer, Taerbahatai and Hongguleleng faults in addition to numerous
faults and folds in the north of the area. The study area to the south of
the Hongguleleng Fault also contains ENE–WSW-oriented faults that
dip to the NW, and all major faults are associated with well-developed
subsidiary fractures, with varying spatial and temporal characteristics
indicative ofmultiple phases of faulting. These structures play an impor-
tant role in controlling outcropping lithologies, magmatism, and the
type and location of mineralisation in the study area (Chen et al.,
2010; Shen et al., 2007).

The study area contains Palaeozoic pyroclastic, volcaniclastic sedi-
mentary and volcanic rocks, and widespread intrusive rocks of ultra-
mafic to felsic composition, although the majority of these intrusions
are of felsic composition (Fan et al., 2007; Zhou et al., 2006). These intru-
sions are present as batholiths and stocks, in addition to apophyses and
dykes, and the majority of these intrusions are of diorite, quartz diorite,
granodiorite, monzogranite and alkali granite composition (Jahn et al.,
2000; Zhou et al., 2006).

The NW Junggar area is adjacent to the Salma–Sawuer metallogenic
belt and the Genghis–Tarbaghatai metallogenic belt of Kazakhstan
(Shen et al., 2007). These metallogenic belts host the Chaersike mag-
matic chromite, the South Makesute magmatic copper–nickel sulphide,
and theKezierkayin andKensai porphyry copper deposits, in addition to
numerous volcanic sediment-hosted polymetallic copper deposits, and
disseminated and quartz vein-type gold, tungsten, mercury, and aurif-
erous sulphide deposits. In comparison, only a few mineral deposits
have been exposed in the continuation of these two metallogenic belts
n an area dominated by the Central Asia Orogenic Belt (modified after Jahn et al., 2000);
posits in the study area (modified after BGMRXUAR, 1993).



Table 1
Statistical analysis of soil geochemical data from study area.

Element Concentration CV⁎

Min Max Mean Standard
deviation

Skewness Kurtosis (%)

As (mg/kg) 0.28 333 14.85 14.74 7.12 109.40 99.25
Cu (mg/kg) 4 222 37.78 18.32 2.24 14.29 48.52
Au (μg/kg) 0.1 370 1.35 7.55 43.07 2028.16 559.64

⁎ CV: Coefficient of Variation.

254 F. Yuan et al. / Journal of Geochemical Exploration 154 (2015) 252–264
within China, including the Aermuqiang and Xiemisitai copper deposits,
and the Quoerzhenkuola, Buerkesidai and Tasite gold deposits (Fig. 1b).
This indicates that the NW Junggar area should be considered highly
prospective for future mineral exploration.

Among the discovered deposits in the study area, the
Kuoerzhenkuola and Buerkesidai gold deposits are the two largest
volcanic-hosted gold deposits. They are hosted in a caldera structure
consisting of volcanic and subvolcanic rocks, and controlled by a caldera
fracture systemoverprinted by regional faults. The host rocks aremainly
andesite in the Kuoerzhenkuola deposit, and carbonaceous silty tuff in
the Buerkesidai deposit, respectively. Numerous researchers have stud-
ied the characteristics and genesis of these two deposits, and have pro-
posed various models (Guo, 1997; Wang et al., 2004; Yin et al., 1996).
After further studies on geology, geochemistry and geochronology,
Shen et al. (2007) proposed that these two volcanic-hosted gold
deposits share the same genesis, and are both classified as volcanogenic
hydrothermal gold deposits. There have been only a few studies on
Xiemisitai and Aermuqiang copper deposits, and Shen et al. (2010)
proposed that Xiemisitai copper deposits should be classified as of
hydrothermal origin.
3. Data

A total of 2854 topsoil samples were collected over a 2 by 2 km grid
within the study area, out of which 3–5 samples were composited into
one sample. These soil samples overlie Palaeozoic units and intrusions
and the locations of these samples are shown in Fig. 2.

The concentrations of a total of 39 major and trace elements were
measured during this study. Here, the concentrations of As, Cu and Au
within these soil samples are considered, and they are used in the iden-
tification of anomalies associatedwith knownCu andAumineralisation.
Arsenic was determined by hydride generation-atomic fluorescence
spectrometry (HG-AFS), Au by graphite furnace atomic absorption spec-
trophotometry (GF-AAS), and Cu by inductively coupled plasma mass
spectrometry (ICP-MS).

A statistical treatment of the data was undertaken and the summary
results are shown in Table 1. The concentrations of As, Cu and Au are
highly spatially variable andhave high skewness and kurtosis values, in-
dicating that these data sets contain outliers and are non-normally dis-
tributed (Fig. 3). These data are also positively skewed; this is especially
apparent in the Au data that have the highest skewness and kurtosis co-
efficients, and the highest number of outlying data points.
4. Multifractal modelling

In order to identify more reliably, and to separate strong and weak
anomalies associated with known Cu and Au mineralisation, the singu-
larity mapping technique and S–A fractal modelling approach were
used on the concentrations of As, Cu and Au.
Fig. 2. Location map of soil samples, NW Jungga
4.1. Singularity mapping technique

Singularity mapping is a technique used to identify geochemical
anomalies that result from singular processes (Cheng, 2007; Zuo and
Cheng, 2008; Zuo et al., 2009, 2015–in this issue). These singularities
can be estimated using a slidingwindowmethod that uses the following
formula to define the relationship between the average element con-
centration and the size of the window:

X ¼ c � εE−α

where X is the average concentration, c is a constant value, α is the sin-
gularity, ε is the size of the window, and E is the Euclidean dimension
(Agterberg, 2012). These techniques are still using, however, Euclidean
properties, and they have not yet been adapted to Compositional Data
Analysis (CoDA), as geochemical data are compositional, because they
comprise strictly positive components, which sum up to a constant,
e.g., 1,000,000 mg/kg or 100 wt.% (Aitchison, 1986; Filzmoser et al.,
2009, 2010, 2014; Egozcue and Pawlowsky-Glahn, 2011; Reimann
et al., 2012; Buccianti, 2015–in this issue; Sadeghi et al., 2015–in this
issue).

Singularity estimation can use either raw or gridded geochemical
data after interpolation. Themethod uses the following steps: (1) defin-
ing a set of sliding windows A(r) with both variable and identical inter-
val window sizes, rmin= r1 b r2 b… b rn= rmax; this approach generally
uses square window shapes; (2) calculating the singularity at all loca-
tions within the study area during steps (3) and (4); (3) calculating
the average concentration C[A(ri)] obtained for each size of window;
and (4) plotting the average concentration C[A(ri)] against the size of
the window r used to obtain that average concentration on a log–log
graph, which should theoretically show a linear relationship (Zuo
et al., 2013):

logC A rið Þ½ � ¼ cþ 2−αð Þ log rð Þ:

The singularity value α can be estimated using a linear fitting meth-
od from the log–log relationship defined using steps (1)–(4) above.
An α value close to 2 indicates that the given location does not have
the characteristics of singularity, whereas locations with values N2
are indicative of areas with element concentration enrichment, and
r area of northern Xinjiang Province, China.



Fig. 3. Histograms showing the distribution of As, Cu and Au within the data set used in this study.
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locations with values b2 are indicative of areas with depleted element
concentration (Cheng, 2007; Zuo et al., 2013).

However, this use of a log–log plot and linear fittingmethod to iden-
tify singularities generally has some data points that deviate from a
single straight line, meaning that this approach using a single straight
line may not accurately model all data points (Zuo et al., 2013)
(Fig. 4), indicating that these data may havemultifractal characteristics.
In order to estimate more accurately the location of singularities, this
approach uses the following steps to optimise singularity estimation:

(1) Plotting window size and corresponding element concentration
data points on a log–log graph.

(2) Using a least squaresmethod tofit thefirst three data points from
the smallest window size, and then increasing the window size
and calculating the fitting coefficient R2. This initial calculation
is then followed by more calculations with increased window
sizes and again using a least squaresmethod tofit the data points
relating to windows smaller than the largest window size, and
again calculating R2

fitting coefficients.
(3) Selecting the data point sets with the highest R2 values, and

fitting a single straight line through these data points.
(4) Steps 2 and 3 are then repeated starting from the data point ad-

jacent to the data point sets above to obtain another straight line
until all of data points fit to a single straight line.

(5) The final step is to select a single straight line to calculate singu-
larity values relating to the main research aim.

The original approach using a single straight line to fit all data points
yields a poorfitting coefficientR2 value of 0.5004,meaning that it is hard
to use a single straight line to fit all data points. However, using the
Fig. 4. Log–log plot with fitted linear correlation lines showing the relationship between
the half window size (r) versus average concentrations C[A(ri)].
piecewise linear fit method, outlined above, means that all data points
can be fitted using two straight lines, yielding fitting coefficient R2

values close to 1 (Fig. 4).
These fitting results indicate that the distribution of data in this area

has two different scale independent ranges. The small range represents
depleted element concentrations, whereas the larger range represents
enriched element concentrations. The fact that the anomaly analysis,
undertaken during this study, is focused on the identification of local
geochemical anomalies,means that the first straight line defined during
the piecewise linear fit modelling outlined above is used to calculate the
location of singularities.

The results of the global linear and piecewise linearfitmethods, both
identify data with depleted element concentrations, although these
data are more clearly identified using the piecewise linear fit method.
The other straight line fit, obtained using the piecewise linear fit meth-
od, can also be used for research into the larger-scale magmatism and
ore-forming processes that control the concentrations of the elements
of interest in this area.

4.2. Multifractal kriging interpolation

Cheng (1999) proposed a multifractal interpolation method using
singularity and moving average interpolation to simultaneously mea-
sure local singularities and the spatial correlation between data, whilst
also overcoming the smoothing effect of applying a moving average
interpolation method. The key principle of this method is the addition
of a singularity value to the moving average interpolation method as
follows:

Z x0ð Þ ¼ εα x0ð Þ−2 X

Ω x0 ;εð Þ
ω x−x0kkð ÞZ xð Þ

where α(x0) is a singularity at location x0, and ω is the weight of the
moving average function. If x0 is located in an areawith normal or back-
ground concentrations, for a 2D data set, α(x0) = 2, meaning that the
multifractal interpolation method outlined above will give a value
equal to the moving average interpolation method. In comparison, if
x0 is located in an area of greater than average element concentrations
(i.e., areas of enrichment), which contain local singularity characteris-
tics and have α(x0) values N2, the multifractal interpolation method
will give a larger value than the moving average interpolation method,
and if x0 is located in an area of lower than average element concentra-
tions (i.e., areas of depletion) with α(x0) values b2, the multifractal in-
terpolation method above will yield values lower than those obtained
using the moving average interpolation method.

Multifractal interpolation cannot only convert point data to a contin-
uous surface, but also it can retain the local spatial structure and singu-
larity during this interpolation (Cheng, 2001a). This approach has also
proven to be useful inmineral exploration, and the interpretation of ex-
ploration geochemistry data (Lima et al., 2003; Cheng, 2008c; Zuo,
2011b; Yuan et al., 2012).



Fig. 5.Maps showing the location of As singularities using global linear and piecewise linear fitting methods and different maximumwindow sizes of 30 and 60 km, NW Junggar area of
northern Xinjiang Province, China.
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Ordinary Kriging (Krige, 1951; Matheron, 1963; Isaaks and
Srivastava, 1990; Journel and Huijbreghts, 1978) is a best linear unbi-
ased estimator for spatial data (Clark, 1979; Clark and Harper, 2007)
Fig. 6.Maps showing the location of Au and Cu singularities determined by piecewise linear fitti
Province, China.
that uses a moving average approach to interpolate between individual
points. Although this approach leads to smoothing of the data, ordinary
Kriging can effectively determine the spatial variability within a data set
ngmethods and amaximumwindow size of 60 km, NW Junggar area of northern Xinjiang



Fig. 7. Logarithmic Q–Q plot showing the distribution of As, Cu and Au data points within
the soil geochemical data set used in this study; blue points indicate the outliers that were
removed prior to interpolation.

Fig. 8.Maps showing the spatial distribution of As, Cu andAu in the study area; thesemapswere
ince, China.
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using variogrammodels to extract the necessary kriging parameters for
plotting a raster map (Zhang, 2005).

Amore advanced approach is offered bymultifractal kriging, ameth-
od that integrates both kriging and multifractal interpolation methods.
This approach analyses the multifractal characteristics of the data set
being considered, meaning that the data can be rectified using singular-
ity values and, therefore, combines the advantages of both kriging and
multifractal interpolation methods (Li, 2005).

4.3. Spectrum–area fractal modelling

Spectrum–area (S–A) fractal modelling is based on generalised self-
similarity theory (Cheng, 2006a); this approach determines the fractal
characteristics of a data set by converting spatial data to frequency
domain data. This fractal modelling approach is an extension of
the frequency domain-based Concentration–Area (C–A) modelling
(Cheng et al., 1994; Zuo et al., 2013). This generalised self-similarity
modelling approach determines the relationship between spectral
energy density values greater than S (spectral energy density), and the
area covered by sets of data that have wave number attributes greater
than S [A(NS)] within a 2D frequency domain, using the following for-
mula (Cheng et al., 2000; Cheng, 2001b, 2006b):

A ≥ Sð Þ∝S−2d=β

where β is the anisotropic scaling exponent, d is a parameter
representing the degree of overall concentration, and ∝ denotes
produced by lognormal kriging interpolation, NW Junggar area of northern Xinjiang Prov-
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proportionality (Zuo et al., 2013). Rearranging this formula for use with
2D data gives the following:

A ≥ Sð Þ∝S−2d
:

The differing self-similarity characteristics within the frequency do-
main means that two different filters can be used to separate back-
ground and anomalous concentrations, here termed the background
and anomaly filters.

Most recent research has used S–A fractalmodelling to separate geo-
chemical anomalies from background concentrations (e.g. Cheng et al.,
2010; Zuo, 2011a, 2011b; Zuo et al., 2012, 2013). This approach uses
several steps (Zuo et al., 2013), which are outlined below:

(1) Multifractal interpolation to interpolate geochemical data to gen-
erate a raster map;

(2) Fourier transformation to convert the raster map into frequency
domain data;

(3) Plotting of spectral energy density (S) against the areas of sets of
data with wave number values N S on a log–log graph, and using
the least squares method to fit (N ≥ 2) straight lines to these
data.

(4) Estimation of cut-off values by calculating the intersection be-
tween the (N ≥ 2) straight lines, with the lower cut-off value
used to define the anomaly filter, and the higher cut-off value
used to define the background filter;

(5) The anomaly and background filters defined in step 4 are then
used to filter the frequency domain data before inverse Fourier
transformation to convert these frequency domain data back to
Fig. 9.Maps constructed by multifractal kriging interpolation of As, Cu and A
spatial domain data. A geochemical distribution map showing
the location of areaswith background and anomalous concentra-
tions is then constructed.

5. Results of analysis and discussion

5.1. Singularity mapping

Singularities can be identified using both raw and gridded data that
are interpolated from the raw data. Gridding of raw data can enable
more detailed visualisation of the spatial characteristics of the data
and can improve singularity identification, especially in areas with in-
frequent sampling orwith large sample spacing. However, interpolation
generally uses a moving average method, meaning that areas with
anomalously high concentrations are smoothed, potentially occluding
anomalous areas and making anomaly identification difficult.

The data used in this studywere obtained at a high sampling density,
meaning that it is possible to use the raw data to identify singularities,
and in turn avoid the smoothing effect of interpolation. Here, the con-
centrations of As in samples from the study area are used as an example
to examine the differences between the global linear fit and piecewise
linear fit methods of singularity estimation.

Zuo et al. (2013) determined that smaller window size intervals
should be used for the local analysis of fractal characteristics and
anomaly identification, whereas larger window sizes are ideal for use
in identifying regional characteristics, but are not ideal for anomaly
identification. Hence, in order to reflect and highlight the local and
weak anomalies better, this study uses 3 km as the interval of window
size to estimate the singularity. In addition, the maximum window
size used during this analysis can impact the global linear fitting; as
u concentrations, NW Junggar area of northern Xinjiang Province, China.



Fig. 10. Log–log plot showing variations in power spectrum (S) versus areas NS (A N S) for
As, Cu and Au concentration data within the study area.
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such, themodelling discussed here compares the singularities identified
using two different maximum window sizes (30 and 60 km). Two sets
of windows (rmin = 3 km, 6 km, 9 km,…, rmax = 30 km), (rmin =
3 km, 6 km, 9 km,…, rmax = 60 km) were used for the global linear
fitting and, as the piecewise linear fit method is not greatly influenced
by the maximum window size used during the modelling, a maximum
window size of 60 km to estimate singularities is used.

The As singularities identified using global linear and piecewise lin-
earfittingmethodswith differentmaximumwindow sizes are shown in
Fig. 5. The maximum window size strongly affects the results obtained
during linear fitting and, therefore, the location of identified singulari-
ties (Fig. 5a, b). The singularities identified using larger maximum
window sizes expand the size of the areas that contain elevated
concentrations of As,meaning that the data processed using these larger
window sizes reflects to some extent regional rather than local
geochemical characteristics. In comparison smaller window sizes are
more sensitive to local anomalies, and can identify more readily areas
with anomalously high As concentrations, supporting the effects ofwin-
dow size variation documented by Zuo et al. (2013).

These data also show that the piecewise linear fitting method
(Fig. 5c) can identify more readily local and weak anomalies than the
global linear fittingmethod (Fig. 5a, b). This piecewise approach readily
identifies anomalies nearby the Xiemisitai copper and Tasite gold de-
posits (Fig. 5c), whereas these deposits are not as clearly associated
with anomalies within the global linear fit modelling shown in Fig. 5a
and b. Given this, the piecewise linear fitting method is used, therefore,
with multifractal interpolation to determine the location of Cu and Au
singularities; the results of this mapping are shown in Fig. 6.

Fig. 5c shows a good correlation betweenAs singularities and known
gold and copper deposits, with all of the known deposits located in the
centre or at the edge of areas of As enrichment; there is also high As en-
richment approximately along the E–W trending faults within the area.
This suggests that faults may be controlling As enrichment. In addition,
thismodelling approach clearly identifies the Cu singularities associated
with known copper deposits in the study area (Fig. 6a). Furthermore,
the presence of several areas of anomalously high Au concentration,
whichmeans that the wider range in singularity values forms relatively
localised areas and singularities with high Au enrichment. Despite this,
the anomalies associated with the Kuoerzhenkuola and Buerkesidai
gold deposits are still clearly evident within the modelling (Fig. 6a).

5.2. Multifractal kriging interpolation

Ordinary kriging is a linear geostatistical method that is based on a
second-order stationary hypothesis (Matheron, 1963). The presence of
non-normally distributed data and outliers will decrease the station-
arity of the data, whilst increasing fluctuations within variograms,
meaning that the presence of real structures within the data may be oc-
cluded. The most commonly used method of determining the statistical
frequency characteristics of a data set is the Q–Q plot; this approach can
determine whether the distribution of the data is normal, lognormal, or
neither (Cheng, 2000).

Statistical treatment of the concentrations of As, Cu, and Au within
the soil geochemical data set used in this study indicates that none of
these elements have normal distributions. In addition, Q–Q plots for
log-transformed As, Cu and Au concentrations (Fig. 7) indicate that
these data have approximately lognormal distributions, with the excep-
tion of a few outliers at high and low concentrations; this type of distri-
bution indicates that these mixed concentrations are controlled by
multiple geological events or processes (Zuo et al., 2009). Lognormal
kriging is a better approach to the interpolation of lognormally distrib-
uted data than ordinary kriging, and is more robust against outliers
(Armstrong and Boufassa, 1988); consequently, lognormal kriging was
used to plot raster maps for the As, Cu, and Au geochemical data. The
structure of the variograms calculated, using these data, was stabilised
by deletion of some outliers within the data set, as identified by blue
points within Q–Q plots (Fig. 7); this procedure enabled themore accu-
rate identification of spatial variations within the data.

Experimental variograms calculated using the log-transformed data
without the excluded outliers shown in Fig. 7 have stable structures and
have shapes representative of the spherical model theory. Given this,
the spherical variogram model was used to fit the experimental
variograms of As, Cu and Au, and the final raster map was produced
by lognormal kriging interpolation (Fig. 8).

The concentrations of As within the study area spatially correlate
with faults, especially segments of nearly E–W trending faults, and the
overall concentration of As is higher in the Taerbahatai area than in
the Ximisitai and Sawuer areas (Fig. 8a), indicating also the occurrence
of a higher background concentration of As within the Taerbahatai area.
In addition, the lognormal kriging interpolation of Cu concentrations
(Fig. 8b) indicates a spatial relationship between the Bayinkulake and
Hongguleleng faults and areas of anomalously high Cu concentrations;
in contrast, the Taerbahatai area is characterised by generally low back-
ground concentrations of Cu. The Au kriging map (Fig. 8c) shows that
Au concentrations are strongly depleted in the Taerbahatai area, with el-
evated concentrations localised in the east of the study area and spatial-
ly related to locations containing felsic intrusions.

The lognormal kriging interpolation shown in Fig. 8 generally re-
flects the regional distribution of elements rather than the localised
anomalies delineated using singularity identification (Figs. 5 and 6).
The large size of the study area means that there may be several differ-
ing magmatic and mineralisation-hosting units in this area; the differ-
ent characteristics of these units mean that they will yield differing
soil geochemical background concentrations during weathering. In
addition, kriging-based interpolation will also smooth the data, further
occluding the presence of both localised and weak anomalies. This



Fig. 11.Maps showing the location of As, Au and Cu geochemical anomalies in the study area determined by S–A fractal modelling compared to the location of known Au and Cu deposits
and recently identified Cu prospects, NW Junggar area of northern Xinjiang Province, China.
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observation suggests that a combined approach using both kriging
interpolation and singularity mapping within a multifractal kriging
interpolation method is the best approach to raster mapping of the
concentrations of As, Cu and Au in the study area (Fig. 9).

Figs. 8 and 9 indicate that interpolation by multifractal kriging can
both enhance localised and weak geochemical anomalies, as well as
providing more information on the controls on the regional spatial dis-
tribution of the elements of interest than by singularity mapping alone.
Fig. 12. Photographs from the Bahan copper occurrence: (a) Malachite mineralisation with
5.3. Anomaly separation using S–A fractal modelling

The rastermaps produced by interpolation usingmultifractal kriging
(Fig. 9) were transformed to frequency domain data using a Fourier
transformation based on a S–A fractal model (Cheng et al., 1994, 2000;
Cheng, 2001b, 2006b; Zuo et al., 2013). The fractal characteristics that
represent the relationship between the spectral energy density S and
the areas NS were then analysed on a log–log plot (Fig. 10).
in volcanic breccias; (b) Malachite mineralisation from the Bahan copper occurrence.



Fig. 13. Photographs from theWulanhaote copper occurrence: (a) Altered basaltic andesite host of theWulanhaote occurrence; (b)Malachitemineralisation from theWulanhaote copper
occurrence.
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The As, Cu and Au data points shown in Fig. 10 can all be modelled
using two straight lines. These lines were fitted using least squares
modelling to estimate the parameters of both sections of these straight
lines. The cut-off value between these two straight lines was identified,
and used to determine anomaly filters for each element. The final stage
of this modelling was to use the anomaly filter to separate anomalies
and areas with background concentrations before translating these
anomalies into spatial domain data (Fig. 11).

The maps produced by S–A fractal modelling shown in Fig. 10
aremore useful than themaps produced bymultifractal kriging interpo-
lation (Fig. 9) for anomaly identification. The S–A modelling maps
especially suppress the influence of the complex background concentra-
tions within the study area, and effectively highlight local anomalies in-
dependent of the underlying geology. In addition, the anomalous areas,
identified using the S–A fractal model, havemore detailed outlines than
those delineated by singularity mapping (Figs. 5c and 6), meaning that
S–A fractal model derived maps can more accurately target areas for
more detailed exploration.

All of the known gold and copper deposits in the study area have co-
incident As anomalies, identified using the S–A fractal model (Fig. 11a).
In comparison, both singularity mapping (Fig. 5c) and kriging and
multifractal kriging interpolated raster maps (Figs. 8a and 9a) do not
identify highAs anomalies associatedwith the Tasite gold andXiemisitai
copper deposits. Similarly, Cu anomalies detected by using the S–A
fractal model have more detailed outlines than those derived by the
other methods discussed here, resulting in the identification of a
number of local anomalies. These anomalies include the areas around
all the known copper deposits in the study area, with the Xiemisitai
and Aermutong deposits clearly associated with local Cu anomalies
Fig. 14. Photographs of the Xibo copper occurrence: (a) The syenite porphyry host rock for th
(Fig. 11c). Although there are a number of Au outliers with high concen-
tration, the Au anomaly map produced by S–A fractal modelling can
also identify a number of local anomalies. This is exemplified by the
weak anomalies in the east of the study area associated with the
Kuoerzhenkuola and Buerkesidai gold deposits (Fig. 11b).

The geochemical anomalies shown in Fig. 11 were subsequently
ground-truthed by field-based examination and validation, as discussed
in Section 6. This ground-truthing directly led to the discovery of a
number of mineralised occurrences, indicating that this fractal and
multifractal modelling is a highly useful approach to mineral explora-
tion in the study area, and suggests that it could prove useful if applied
to other areas.
6. Anomaly ground-truthing and discovery of new
mineralised occurrences

The ground-truthing of the S–A fractalmodelling-defined As, Cu and
Au anomalies shown in Fig. 11 directly led to the discovery of Cu
mineralisation in the Bahan and Wulanhaote areas. The Bahan copper
occurrence is hosted by mafic volcanic rocks located north of the
Aermuqiang copper deposit, and consists of chalcopyrite, malachite,
covellite, pyrite, magnetite and haematite mineralisation within a
quartz, epidote, chlorite and calcite gangue (Fig. 12). The Wulanhaote
copper occurrence is located in the centre of the research area, and is
hosted by a basaltic andesite that is cross-cut by a small quartz-
bearing syenite intrusion. The mineralisation in the Wulanhaote area
includes chalcopyrite, malachite, and pyrite in a quartz, K-feldspar,
epidote, chlorite and calcite gangue (Fig. 13).
e mineralisation at Xibo; (b) Malachite mineralisation from the Xibo copper occurrence.



Fig. 15. Photographs of the Kayinde copper occurrence: (a) the basaltic andesite host rock for mineralisation at Kayinde; (b) Malachite mineralisation within a mafic volcanic rock.
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Ground-truthing of As and Cu anomalies shown in Fig. 11 also led to
the discovery of the Xibo copper and Kayinde copper occurrences. The
Xibo copper occurrence is hosted by a basaltic andesite and contains
chalcopyrite, pyrite, malachite and magnetite mineralisation associated
with quartz and calcite veining and chlorite, epidote and kaolinite alter-
ation (Fig. 14). The Kayinde copper occurrence is similar to the Xibo
copper occurrence, and is hosted by a basaltic andesite with a paragen-
esis of chalcopyrite, pyrite, malachite and magnetite, associated with
quartz, epidote, chlorite and calcite gangue minerals (Fig. 15).

In addition to the occurrences outlined above, the investigation of a
coincident Cu and Au anomaly (Fig. 11) led to the discovery of the
Wutubulake copper occurrence within the Devonian Taerbahatai
Fig. 16. Photographs of the Wutubulake copper occurrence: (a) The basaltic andesite host

Fig. 17. Photographs of the Tasuke copper mineral occurrence: (a) The granodiorite that ho
Group. The copper mineralisation atWutubulake is hosted by a basaltic
andesite and consists of a paragenesis of chalcopyrite,malachite andpy-
rite, within a quartz, chlorite, epidote and kaolinite gangue (Fig. 16).

The last mineralised occurrence, identified during ground-truthing
of the S–A fractal modelling-defined anomalies shown in Fig. 11, is de-
lineated by an As-only anomaly (Fig. 11a). This particular anomaly,
surrounded by an areawith high background concentrations of As, is as-
sociated with the newly discovered Tasuke copper occurrence, which is
located within the Tahabahatai area. This area has undergone intense
magmatism associated with the intrusion of a series of intermediate to
felsic magmas that formed porphyritic pyroxene diorite, granodiorite
and granite intrusions and a series of minor mafic dykes. The
rock for mineralisation at Wutubulake; (b) Malachite mineralisation at Wutubulake.

sts the mineralisation at Tasuke; (b) Chalcopyrite mineralisation within granodiorite.
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mineralisation at Tasuke is hosted by a granodiorite and consists of chal-
copyrite, malachite, magnetite and pyrite, within a quartz, pyroxene,
hornblende, plagioclase, K-feldspar, epidote, biotite and calcite gangue
(Fig. 17).

This positive ground-truthing and the direct discovery of several
new mineralised occurrences is a clear indication of the effectiveness
and usefulness of the fractal andmultifractalmodelling of soil geochem-
ical data during mineral exploration in the study area. These data also
indicate that copper mineralisation can be identified by either single
or coincident As, Au and Cu anomalies. However, no goldmineralisation
was discovered during this ground-truthing, suggesting that further in-
vestigation and an improved understanding of the Au anomalies in the
study area are needed to ensure the effectiveness of future mineral
exploration.

7. Conclusions

The following conclusions were reached about the effective use of
fractal and multifractal modelling of soil geochemical data for mineral
exploration purposes in the NW Junggar area of northern Xinjiang
Province, China:

(1) Improved singularity mapping for identification of soil geochem-
ical anomalies duringmineral exploration can be achieved using a
piecewise linear fit method; thismethod also allows localised and
weak anomalies, both of which may be related to mineralisation,
to be clearly delineated.

(2) An integrated approach that incorporated singularity mapping,
interpolation by multifractal kriging and S–A fractal modelling
identified a number of distinct anomalies within the NW Junggar
area of northern Xinjiang Province, China. All known mineral de-
posits in this area are associatedwith distinct geochemical anom-
alies, and subsequent ground-truthing of anomalies, associated
with no known mineralisation, directly led to the identification
of a number of previously unknown areas of Cu mineralisation.
Further ground-truthing of the anomalies, delineated during this
study, may also lead to the identification of additional unidenti-
fied mineralised Cu and Au prospects. This suggests that the
study area should be considered highly prospective for Cu and
Au mineralisation, and in conclusion the use of fractal and
multifractalmodelling of soil geochemical formineral exploration
proved to be very effective in the study area in the delineation po-
tential Cu and Au mineralization, and the methodology used is
considered to be applicable to other areas around the globe.
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