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A B S T R A C T

There are a number of well established methods in the literature describing how to assess and analyze measured
wind wave data. However, obtaining reliable results from these methods requires adequate knowledge on their
behavior, strengths and weaknesses. A proper implementation of these methods requires a series of procedures
including a pretreatment of the raw measurements, and adjustment and refinement of the processed data to
provide quality assurance of the outcomes, otherwise it can lead to untrustworthy results.

This paper discusses potential issues in these procedures, explains what parameters are influential for the
outcomes and suggests practical solutions to avoid and minimize the errors in the wave results. The procedure
of converting the water pressure data into the water surface elevation data, treating the high frequency data with
a low signal-to-noise ratio, partitioning swell energy from wind sea, and estimating the peak wave frequency
from the weighted integral of the wave power spectrum are described. Conversion and recovery of the data
acquired by a pressure transducer, particularly in depth-limited water like estuaries and lakes, are explained in
detail.

To provide researchers with tools for a reliable estimation of wind wave parameters, the Ocean Wave
Analyzing toolbox, OCEANLYZ, is introduced. The toolbox contains a number of MATLAB functions for
estimation of the wave properties in time and frequency domains. The toolbox has been developed and
examined during a number of the field study projects in Louisiana’s estuaries.

1. Introduction

Wind wave measurements and analysis in depth-limited water
bodies, like estuaries and lakes, are of general interest for coastal
researchers. There are a number of methods in the literature to assess
the measured wave data and estimate the wave parameters. In depth-
limited environments, additional steps are needed to properly imple-
ment these methods and to acquire reliable results. This requires the
knowledge on how each of these methods behaves and how they
influence the outcomes.

Pressure transducers are common instruments used for wave
measurements in a depth-limited environment. Low cost, simple
operation, acceptable accuracy and being submersible promote their
popularity (e.g. Cavaleri, 1980; Jones and Monismith, 2007). Being
submersible provides convenient deployment and enhanced protection,
particularly in areas with considerable marine traffic. However, it can
cause alteration in wave data as the underwater recorded data are

affected by phenomena such as the presence of currents resulting in a
Doppler-shift effect, and wave energy attenuation in water depth
causing information loss (e.g. Cavaleri, 1980). A combination of the
shallow environment and under water measurements adds potential
issues to the data analysis, requiring additional steps such as convert-
ing the water pressure data into the water surface elevation data,
treating the high frequency data with a low signal-to-noise ratio, and
partitioning swell energy from wind sea to get proper outcomes (e.g.
Cavaleri, 1980; Tsai et al., 2001; Smith, 2002).

The adequacy of the linear wave theory to analyze pressure
transducer data in deep water has been well established in the
literature. Although, higher order non-linear terms (e.g., Lee and
Wang, 1984; Hashimoto et al., 1997) and experimental relationships
(e.g. Wang et al., 1986; Kuo and Chiu, 1994) were proposed to improve
the quality of wave properties calculated from pressure transducer
data, it has been shown that for many practical applications, the linear
wave theory is sufficiently accurate for analyzing data measured by a
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pressure transducer (e.g. Bishop and Donelan, 1987; Van Rijn et al.,
2000; Tsai et al., 2001; Tsai, et al., 2005; Jones and Monismith, 2007).
Still, as the wave travels to depth-limited water, like estuaries and
lakes, implementing the linear wave theory requires additional steps to
acquire accurate results.

The main goal of this paper is to present and discuss the steps that
are required to attain a reliable estimation of wave parameters,
particularly in shallow and intermediate water depth. A brief theore-
tical background is presented to describe the common methods for
wave analysis, followed by explanation of their behaviors and the effect
of influential parameters on their outcomes. Then, the sensitivity of
each method is discussed and the reliability of the estimated wave
parameters is explained. Next, the Ocean Wave Analyzing toolbox,
OCEANLYZ, is presented. This toolbox contains a number of MATLAB
functions for wave properties estimation in the time or frequency
domain. It has been developed and used to analyze a number of field
data sets measured in the depth-limited estuaries of Louisiana. As a
result, the OCEANLYZ has evolved over time to address the data
analysis issues encountered in these shallow environments. These types
of toolboxes are developed in the literature to provide analysis tools for
researchers (e.g., Landry et al., 2012). With a similar goal, OCEANLYZ

provides researchers a reliable tool for estimation of the wave para-
meters, particularly in shallow and intermediate water.

2. Theoretical background

Commonly, wave data are recorded as a time series of data points
with an equal spacing in time. Data sampling is briefly explained in
Supplementary material A. The wave parameters can be calculated
directly from the recorded data in the time domain, or the temporal
signal can be transformed and assessed in the frequency domain.

2.1. Time domain analysis (zero-crossing method)

Wave properties can be calculated in the time domain using the
zero-crossing method to analyze the data. In the zero-crossing method,
data should initially be de-trended by removing the mean value of each
burst from the data points captured within that burst. Note that if there
is a moving average trend within the burst, then the data in that burst
are not stationary (see Supplementary material A). After the data are
de-trended, each wave can be defined by two successive points where
data cross up the horizontal axis (upward zero-crossing) or cross down

Nomenclature

an amplitudes (Fourier series coefficient)
bn amplitudes (Fourier series coefficient)
cn amplitudes (Fourier series coefficient)
C wave celerity
ds pressure measurement distance (pressure sensor location)

from the bed
D time series duration
Ew wave energy
f frequency
fcmax high-cutoff frequency (low-pass filter)
fcmin low-cutoff frequency (high-pass filter)
fl lower limit of spectrum for sea wave and swell partition-

ing
fm mean wave frequency
fmaxpcorr high-cutoff frequency associated with Kpmin
fmaxpcorr L− the fmaxpcorr estimated by linear wave theory
fmPM mean wave frequency of the Pierson-Moskowitz spectrum
fp peak wave frequency
fs sampling frequency
fsep frequency that separates wind sea and swell wave energies
ftail high-cutoff frequency for replacing noise with an empiri-

cal spectrum tail
fu upper limit of spectrum for sea wave and swell partition-

ing
f∆ frequency interval
fΔ tr frequency range for Kpmin transition before and after

fmaxpcorr
g gravitational acceleration
h local water depth
hs sensor depth
H wave height
Hm0 zero-moment wave height
Hrms root mean square (rms) wave height
Hs significant wave height
Hz zero-crossing mean wave height
k wave number
k0 deep-water wave number
kmax L− wave number associated with Kpmin L−
Kp dynamic pressure to the surface elevation conversion

factor (pressure response factor)

Kpmin minimum value of Kp to prevent the over-estimation of the
wave energy

Kpmin L− the Kpmin estimated by linear wave theory
L wave length
Lmin L− wave length associated with the smallest linear wave can

be sensed by pressure sensor
Lp wave length associated with fp (peak wave length)
m0 zero-moment of the wave energy spectrum
mn the nth moment of the wave energy spectrum
N total number of waves in the dataset
NCor correction factor
P static pressure
P0 total pressure
q dynamic pressure
RMSE root-mean-square error
SPP dynamic pressure power spectral density
Sηη water surface elevation power spectral density
t time
tbr burst duration

t∆ bl interval between measured blocks of data
t∆ s time interval between two sequential data points

T wave period
Tm01 mean wave period
Tm02 mean zero-crossing period
Tp peak wave period
Ts significant wave period
Tz zero-crossing mean wave period
U10 wind velocity at 10 m above the surface
X expected value
Y estimated value
z upward vertical axis with zero at water surface
η water surface elevation
η t( ) Fourier series of the water surface elevation
ηrms root mean square (rms) of the surface elevation
ρ water density
ση standard deviation of the surface elevation
∅n phase
Φ transformation function from JONSWAP spectrum into

TMA spectrum
ω wave angular frequency
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the horizontal axis (downward zero-crossing). Next, assuming the wave
heights follow the Rayleigh distribution, the wave properties can be
defined as (e.g. Dean and Dalrymple, 1991; Holthuijsen, 2007;
McCormick, 2009):
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where, N is a total number of the waves in the dataset, H and T are
wave height and wave period, respectively, both sorted in a descending
order, Hz is a zero-crossing mean wave height, Hrms is a root mean
square (rms) wave height, ηrms is a root mean square of the water surface
elevation, Hs is a significant wave height, Tz is a zero-crossing mean
wave period, and Ts is a significant wave period.

2.2. Frequency domain analysis (spectral analysis method)

Another method to assess the data is to transform and analyze the
dataset in the frequency domain. In this method, the measured data are
transformed from the time domain to the frequency domain by using
the Fast Fourier Transform (FFT ) algorithm. Then, a wave energy
spectrum is calculated as (e.g. Chakrabarti, 1987; Holthuijsen, 2007;
Reeve et al., 2012):

∑η t a πf t b πf t( ) = ( cos(2 ) + sin(2 ))
n
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where, η is a surface elevation, t is time, η t( ) is the Fourier series of the
surface elevation, an, bn and cn are amplitudes (i.e. Fourier series
coefficients, where c a b= +n n n

2 2 2), ∅n is a phase (where b atan ∅ = − /n n n),
f n D= /n is a frequency, Sηη is a water surface elevation power spectral
density, f D∆ = 1/ is a frequency interval, and D is the time series
duration. Then, the wave properties are defined as:
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where mn is the nth moment of the wave energy spectrum, m0 is a zero-
moment of the wave energy spectrum, ση is a standard deviation of the
water surface elevation, Hm0 is a zero-moment wave height, Tp is a peak

wave period, fp is a peak wave frequency which is the frequency
associated with the maximum value of the Sηη, Tm01 is a mean wave
period, and Tm02 is a mean zero-crossing period. Relationships between
the time and frequency domains are presented in Supplementary
material B.

3. Data analysis and evaluation of effective factors on wave
results

After the quality of the recorded data are evaluated and confirmed,
additional steps are required to prepare the measured data for wave
data analysis. In this section, the details of these steps and the effect of
influential parameters within each step on the wave analysis outcomes
are discussed.

3.1. Pressure data correction for dynamic pressure attenuation in
depth

Pressure transducers are common instruments used for surface
wave measurements. Recorded data from a pressure transducer con-
tain two sets of signals. The first one is a hydrostatic pressure signal,
which represents the sensor’s depth and is used to define the water
depth. The second one is a dynamic pressure signal, which is a result of
the wave motion, i.e. water surface fluctuations, and is used to estimate
wave properties. However, the dynamic pressure resulting from the
water surface fluctuations begins to attenuate in the water column as a
depth increases from the water surface towards the sea bed. As a result,
dynamic pressure signals recorded by a pressure sensor are weaker
compared to the original values at the water surface. The deeper the
pressure sensor is located, the greater the pressure signal attenuates.
Therefore, a dynamic pressure signal from a pressure transducer
cannot be used directly for wave analysis, and requires the proper
correction and preparation prior to analysis, otherwise it leads to an
underestimation of the wave height and energy.

To account for the dynamic pressure loss at the sensor depth, at
first the recorded pressure data are split into hydrostatic and dynamic
pressures, and then, the dynamic pressure data are divided by a
pressure response factor. The hydrostatic pressure is calculated by
averaging the data over each burst. The dynamic pressure is acquired
by de-trending the pressure signal, which is done by subtracting the
hydrostatic pressure, i.e. the mean water depth, from the pressure
signal. In other words, the mean pressure in each burst is the
hydrostatic pressure, and the remaining values after the mean is
subtracted from data in that burst are the dynamic pressures, given
the fact that the data are stationary. Then, the original water surface
elevation, which is accounting for dynamic pressure loss, is calculated
as:

P z h P q ρgh ρgηK( = − ) = + = +s s p0 (4-a)

h P
ρg

=s
(4-b)

K f z h k h z
kh

kd
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( , = − ) = cosh ( + )
cosh( )

= cosh( )
cosh( )p s

s

(4-c)

η
K

q
ρg

= 1 ×
p (4-d)

where P0 is total pressure, P is static pressure and is equal to the mean
water pressure, and q is dynamic pressure which represents the
pressure due to water surface fluctuations. The z is an upward vertical
axis with zero at the water surface. Considering a sensor depth to be
equal to hs, then the sensor location is z h= − s. The ρ is water density,
Kp is dynamic pressure to the surface elevation conversion factor, also
called pressure response factor, h is local water depth, f T= 1/ is a wave
frequency, and ds is pressure measurement distance (pressure sensor
location) from the bed. k is a wave number which is a function of the
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wave frequency, f , and local water depth, h (e.g. Hunt, 1979; Beji,
2013, see Supplementary material C for details). η is the original water
surface elevation, accounting for the dynamic pressure loss.

3.1.1. Pressure data correction in the time domain
In practice, an original water surface elevation can be obtained from

the recorded data by using Eq. (4-d) in either the time or frequency
domains. If pressure data are analyzed in the time domain, initially, the
dynamic pressure data are converted to water surface elevation without
applying Kp as η q ρg= /ini . By using the zero-crossing method, ηini time
series is split into a series of single waves. Next, given the fact that the
wave period is not affected by pressure attenuation in the water
column, wave period, wave number and Kp are calculated for each
wave. Afterward, recorded data corresponding to each of the isolated
waves are converted to the original water level, η, by using the
associated Kp calculated for that wave in Eq. (4-d). Next, the entire
time series of the original water level is reassembled by putting the
corrected water level associated with each wave period together.
Finally, the wave heights are obtained from corrected data by using
the zero-crossing method.

3.1.2. Pressure data correction in the frequency domain
If the pressure data are analyzed in the frequency domain, initially,

unreliable and noisy data associated with the low and high frequency
ranges are removed from the dataset. For that purpose, a low-cutoff
frequency, fcmin, a so-called high-pass filter, and a high-cutoff fre-
quency, fcmax, a so-called low-pass filter, are implemented to remove the
data with f f< cmin or f f> cmax from the dataset (Fig. 10). Then the water
surface elevation power spectral density, Sηη, is estimated from the
dynamic pressure power spectral density, SPP, measured by the
pressure sensor as:

S
K

S
K

S
ρ g

= 1 × = 1 ×ηη
p

η η
p

PP
2 2 2 2ini ini

(5)

Then, the wave properties are obtained from Sηη by using the
spectral analysis method (e.g. Karimpour et al., 2016, 2017; Karimpour
and Chen, 2016).

Some studies suggested that an implementation of the correction
factor NCor in Eq. (4-d) as η N K q ρg= ( / ) × /( )Cor p and in Eq. (5) as
S N K S ρ g= ( / ) × /( )ηη Cor p PP

2 2 2 is required to account for a deviation of the
measured wave profile from the linear wave theory (see Bishop and
Donelan, 1987 for detail). Many studies have shown that an imple-
mentation of the linear wave theory, i.e. N ≈1Cor , is adequately accurate
(within 5%) if the wave data are analyzed in the frequency domain (e.g.
Bishop and Donelan, 1987; Kuo and Chiu, 1994; Townsend and
Fenton, 1996; Tsai et al., 2005; Jones and Monismith, 2007).

3.1.3. Lower limit for Kp

Using the aforementioned method to account for pressure attenua-
tion can lead to a potential error in wave data outcomes due to an
unrealistic amplification of the short waves by Kp. Because of that, this
method should be implemented with caution for shorter waves with
large frequencies (small wave periods), in both the time and frequency
domains. This is attributed to the fact that Kp is a function of the wave
frequency (wave period) with a range of K0 ≤ ≤1p , where K = 1p at
f Hz= 0 (Fig. 1). As frequency increases, the Kp values start to decrease,
resulting in small values for Kp in the higher frequencies. These small
values can unrealistically magnify the associated water level fluctuation
or wave energy obtained from Eqs. (4-d) and (5) (Figs. 2 and 10). To
prevent that, a high-cutoff frequency, fmaxpcorr , should be selected to
limit the minimum value of Kp to Kpmin, where K K=p pmin for f f≥ maxpcorr .
This does not allow an amplification of the small waves in the time
domain or an inflation of the high-frequency energies or even noises in
the frequency domain. Therefore, it helps to prevent an over-estimation
of the water surface oscillation or wave energy.

3.1.4. Theoretical approach to define lower limit for Kp

The values of fmaxpcorr and the associated Kpmin depend on para-
meters such as a sensor depth, water depth and wave length. As it was
noted above, the wave dynamic pressure attenuates in the water
column from the water surface toward the bed. The free surface
fluctuation effects, i.e. wave motion effects, nearly diminish in the
water column as a depth becomes larger than half of the wave length,
i.e. at h L≥ /2, where L is a wave length (Fig. 3). Therefore, if a pressure
sensor depth is equal to hs, then waves with L h/2≤ s cannot be detected
by the sensor as their oscillation effects are almost damped before
reaching the sensor depth. In other words, short waves with large wave
frequencies (small wave periods) are less likely to be detected by a
pressure transducer compared to long waves with small wave frequen-
cies (large wave periods). This means that high frequency readings in a
dataset, which are representing waves with L h/2≤ s, are likely noise.
Therefore, to avoid an amplification of the noise, the fmaxpcorr or Kpmin
should be selected to ensure that Kp is only being applied to waves
whose effects reach the sensor’s location.

The linear wave theory can be used to estimate the maximum wave
frequency, fmaxpcorr , that Kp should be applied to. The linear wave theory
indicates that the dynamic pressure from the wave oscillation decreases
to near zero at a depth equal to half of the wavelength. Therefore, to
estimate fmaxpcorr and Kpmin, at first the wave length of the shortest linear
wave, Lmin L− , that can be detected by a pressure sensor at depth hs is
defined by h L= /2s min L− , where, the subscript L denotes that a value is
estimated by the linear wave theory. It is equivalent to a wave with
k h π=max L s− , where kmax L− is the maximum linear wave number
associated with Lmin L− . Considering sensor setup as described in
Fig. 3, these can be re-written as h h d L= − = /2s s min L− and
k h d π( − ) =max L s− , which results in k π h d= /( − )max L s− . Then the mini-
mum value for the pressure response factor estimated from the linear
wave theory, Kpmin L− , is defined as:

⎛
⎝⎜

⎞
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then, the fmaxpcorr L− which is a maximum frequency associated with
Kpmin L− is:

ω πf gk kh= (2 ) = tanh( )2 2 (7-a)

f
π

gk kh= 1
2

tanh( )
(7-b)

Fig. 1. Schematic trend of Kp versus f for different d h/s .
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where ω πf= 2 is a wave angular frequency. Fig. 4 shows the maximum
frequency estimated by the linear wave theory, fmaxpcorr L− , indicating the
frequency beyond which Kp should not be applied. For the case that a
pressure sensor sits on a sea bed, i.e. d = 0s , z h h= − = − s and
k h k h π= =max L s max L− − , then Kpmin L− is:

K f z h
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( , = − ) = cosh (0)
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≈ 0. 0862pmin L maxpcorr L− − (8-a)

f
π

g π
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2
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−0.5
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3.1.5. Practical approach to define lower limit for Kp

Theoretical values derived from the linear wave theory are only
applicable to sinusoidal waves. In such conditions, considering
f f≈maxpcorr maxpcorr L− and K K≈pmin pmin L− leads to acceptable results from
the data analysis. However, when a wave profile deviates from a
sinusoidal form, as when waves propagate into an intermediate and
shallow water depth where their wave forms become skewed, using
fmaxpcorr L− and Kpmin L− for the data analysis are not reasonable anymore.
In these conditions, f f>maxpcorr L maxpcorr− and K K<pmin L pmin− (Fig. 5),
which leads to an over-estimation of the water surface oscillation and
wave energy.

In practice, different approaches are applied in both time and
frequency domains to define fmaxpcorr and Kpmin in order to avoid signal
inflation where f f> maxpcorr. In the time domain analysis, a maximum

value between Kpmin L− and a predefined Kpmin, i.e. max K K( , )pmin L pmin− , is
applied across the board. A constant predefined K = 0.15pmin would be
an acceptable choice to avoid amplification of the recorded data greater
than 6 times, although this value should be selected based on the waves
and water body condition.

In the frequency domain analysis, there are two approaches for
defining fmaxpcorr and Kpmin and preventing signal inflation where
f f> maxpcorr . In the first approach, a white noise or a noise floor is
subtracted from the pressure spectrum before applying Kp into that. In
this approach, a uniformly distributed wide band noise for all
frequencies is assumed (Bishop and Donelan, 1987; Trowbridge and
Elgar, 2001; Smith, 2002; Jones and Monismith, 2007). Subtracting a
uniform noise level from a spectrum reflects an assumption that the
value of the fmaxpcorr is associated with a frequency that a noise floor
emerges at the tail of the spectrum (Figs. 6 and 10). In other words, the
frequency that a noise floor starts at a tail of the spectrum is associated
with the shortest wave that a pressure transducer can detect, and the
effects of the shorter waves with larger wave frequencies diminish
before reaching the sensor depth. Note that, subtracting a non-uniform
noise floor from the spectrum can result in an under-estimation of the
results (Jones and Monismith, 2007).

In the second approach, which is the most common one, a high-
cutoff frequency is selected to filter out a high frequency section of the
spectrum associated with a low signal-to-noise ratio (Bishop and
Donelan, 1987; Smith, 2002; Jones and Monismith, 2007). In this
method, the high-cutoff frequency can be constant, i.e.
f f= = Constantmaxpcorr cmax for all situations, or it can be adaptively
selected for each burst, i.e. f f= = Adaptivemaxpcorr cmax . Selecting a
constant cutoff frequency as f f= = Constantmaxpcorr cmax is not a straight
forward procedure and requires that a series of criteria are met (Jones
and Monismith, 2007), and can still result in an incorrect wave
calculation (e.g. Van Rijn et al., 2000). Note that, an adaptive cutoff
frequency, i.e. f f= = Adaptivemaxpcorr cmax , for each burst, can lead to
dissimilar conditions from burst to burst and is not recommended.

To overcome the issues associated with the previous approaches, we
introduce a modified form of the second approach for defining fmaxpcorr
and Kpmin. In the frequency domain analysis, using a constant high-
cutoff frequency, i.e. f = Constantcmax , is an acceptable practice in most
cases. However, considering a constant value for fmaxpcorr is rarely
acceptable and can lead to either over or under-estimation of the wave
energy. Therefore, we recommend to use a constant value for fcmax
along with adaptive values for fmaxpcorr and Kpmin, which these adaptive
ones are defined for each burst individually. In other words,
f = Constantcmax for the entire data series and f = Adaptivemaxpcorr for
each burst.

Fig. 2. Effect of Kp on Sηη, where f Hz= 0. 05cmin and f Hz= 0. 6cmax .

Fig. 3. Schematic sensor deployment setup.

Fig. 4. Maximum frequency estimated by the linear wave theory, fmaxpcorr L− , beyond

which Kp should not be applied.
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An adaptive value of fmaxpcorr can be defined by searching for an
exact location of fmaxpcorr in the power spectrum. We suggest two
methods to find these adaptive fmaxpcorr and Kpmin. In the first method,
adaptive values are found from the power spectral density of the
measured water surface elevation before any correction is applied to
that, i.e. from S S ρ g= /( )ηη PP

2 2 . The fmaxpcorr can be located on Sηη by
considering that fmaxpcorr is the frequency of the shortest wave that the
pressure transducer can detect, and typically it is a frequency that a
noise floor starts at a tail of the spectrum (Figs. 6 and 10). In the
second method, adaptive values are found from a power spectral
density of the measured water surface elevation by applying Kp without
limiting it to Kpmin, i.e. from S K S ρ g= (1/ ) × /( )ηη p PP

2 2 2 where K0 ≤ ≤1p .
This causes the tail of the spectrum, after the peak frequency, to drop to
a minimum value before it starts to rise toward infinity. The location of
this minimum value in the spectrum tail, which is after fp, is associated
with the fmaxpcorr (Figs. 6 and 10). After fmaxpcorr is defined by either of

these methods, the Sηη can be calculated from S K S ρ g= (1/ )× /( )ηη p PP
2 2 2

where K K 1≤ ≤pmin p . Note that in this approach, the adaptive fmaxpcorr
and Kpmin should always follow f f≤maxpcorr maxpcorr L− and K K≥pmin pmin L− .

If an adaptive fmaxpcorr becomes equal or larger than a constant value
chosen for fcmax, then it will be limited to f f=maxpcorr cmax, but if an
adaptive fmaxpcorr is smaller than fcmax, then additional attention is
required for applying Kp between fmaxpcorr and fcmax. For cases with
f f<maxpcorr cmax, two approaches can be followed to apply Kp to the data

within a frequency range of f f f≤ ≤maxpcorr cmax . In the first approach, the
Kp is gradually increased from K K=p pmin at f f f= −Δmaxpcorr tr to K 1=p
at f f f= + Δmaxpcorr tr and then it remains 1, i.e. K 1=p for
f f f f+ Δ ≤ ≤maxpcorr tr cmax. The f± Δ tr defines a frequency range for this
transition before and after fmaxpcorr , and should be selected based on the
spectrum’s conditions. In the second approach, the Kp values are kept
constant as K K=p pmin for f f f≤ ≤maxpcorr cmax (Huang and Tsai, 2008). In
the second approach, the spectrum tail holds its original slope, while
following the first approach leads to a different slope for the spectrum
tail compared to the spectrum tail of the measured data.

Note that if there are multiple energy peaks in the spectrum that are
associated with higher harmonics of the dominant frequency, particu-
larly with the 2nd harmonic, they should not be mistaken for an
amplification effect caused by the application of the small Kp values
to the high-frequency section of the spectrum. Therefore, in such cases,
an adaptive fmaxpcorr should be selected cautiously to reflect the higher
harmonic effects without amplifying the noise.

3.2. Wave spectrum diagnostic tail

As was pointed out, a portion of the shorter wave energies within a
higher frequency range may completely damp out and diminish in a
water column before reaching the pressure sensor depth. In that case,
the sensor cannot detect the pressure effect of those high-frequency
waves (short waves). Therefore, recorded data within that high
frequency range are mostly noise, with an insignificant signal-to-noise
ratio. To compensate for the energy that cannot be detected by the
sensor, and to prevent an under-estimation of the wave energy from a
spectrum, the lost energy of the high-frequency waves needs to be
replaced (e.g. Smith et al., 2001; Smith, 2002; Jones and Monismith,
2007). To do that in the frequency domain, at first a simple high-cutoff
frequency, ftail, or a low-pass filter, is used to remove a part of the
spectrum with a low signal-to-noise ratio. After screening out noise, the
lost high-frequency energies are replaced by using an empirical
spectrum tail, a so-called diagnostic tail (e.g. Smith, 2002; Jones and
Monismith, 2007; Siadatmousavi et al., 2012). For this purpose, the
noisy section of the spectrum tail is replaced with the JONSWAP
spectrum tail in deep water (Hasselmann et al., 1973), or with the TMA
spectrum tail in intermediate and shallow water (Bouws et al., 1985),
as illustrated in Figs. 6 and 10. A high-frequency section of the
spectrum can be replaced by the JONSWAP diagnostic tail proportional
to f n− (Siadatmousavi et al., 2012) as:

⎛
⎝⎜

⎞
⎠⎟S f S f f

f
f f( ) = ( ) × for >ηη ηη tail

tail

n

tail

−

(9)

Similarly, the TMA spectrum tail proportional to f n− can be used to
replace a high-frequency section of the spectrum as:

⎛
⎝⎜

⎞
⎠⎟S f S f f h

f h
f

f
f f( ) = ( ) × Φ( , )

Φ( , )
× for >ηη ηη tail

tail tail

n

tail

−

(10)

where ftail is the frequency after which the diagnostic tail is applied, and
S f( )ηη tail is the value of the spectrum at ftail. In the literature, it is
suggested that ftail be set as f f= 2.5tail m (Ardhuin et al., 2010) or
f max f f= (2.5 ,4 )tail m mPM (Siadatmousavi et al., 2012), where f T= 1/m m01
is the mean wave frequency and fmPM is the mean wave frequency of the
Pierson-Moskowitz spectrum (Pierson and Moskowitz, 1964). These
recommendations might be too high for the data collected in depth-
limited conditions. For these conditions, it is recommended to use
f f f< <1.75p tail m. If data are collected by a pressure sensor, ftail should
be set as f f=tail maxpcorr , as data with f f f< ≤maxpcorr cmax might not be
reliable. The n is the tail power coefficient, which defines the tail’s
slope. The value of n depends on deployment conditions, but typically it
is 5 for deep and 3 for shallow water (e.g. Phillips, 1958; Thornton,
1977; Kitaigorodskii, 1983; Miller and Vincent, 1990; Smith, 2002;
Jones and Monismith, 2007; Holthuijsen, 2007; Kaihatu et al., 2007;

Fig. 5. Relationship between the ratio of f f/maxpcorr maxpcorr L− and relative depth, h L/ p,

where Lp is the peak wave length. Color-bar represents fp . All presented data in this

paper are measured in Breton Sound, LA, USA (for detail see Karimpour and Chen,
2016).

Fig. 6. Replacing a spectrum tail with the TMA spectrum diagnostic tail at
f f Hz= = 0.47tail maxpcorr . The cut-off frequencies are f Hz= 0.05cmin and f Hz= 0.835cmax .
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Siadatmousavi et al., 2012). Then, n = 4 might be considered for an
intermediate depth. ω R ω RΦ = R (1+(2 )/(sinh(2 )))ω h ω h ω

−2 2 2 −1
h h h is a trans-

formation function from JONSWAP spectrum in deep water into TMA
spectrum in shallow water, where R ω Rtanh( ) = 1ω h ω

2
h h , and

ω πf h g= 2 /h (Kitaigordskii et al., 1975; Hughes, 1984; Holthuijsen,
2007). The value of Φ can be approximated by f h ωΦ( , )≈ /2h

2 for ω ≤1h ,
and f h ωΦ( , )≈1 − 0.5(2− )h

2 for ω1< <2h , and f hΦ( , ) = 1 for ω ≥2h

(Thompson and Vincent, 1983; Bergdahl, 2009).
In general, an implementation of the diagnostic tail for replacement

of the measured data is not recommended, unless the high-frequency
data are missing due to a low sampling frequency (see Supplementary
material A), or due to a deep deployment of the sensor in the water
column, or in cases where the high-frequency data are contaminated by
noise.

3.3. Sea wave and swell partitioning in a bimodal spectrum

In areas where both wind sea and swell waves are present, the wind
sea and swell wave energies can be separated by using a separation
frequency, fsep, in a wave power spectrum (e.g., Wang and Gilhousen,
1998; Gilhousen and Hervey, 2001; Portilla et al., 2009; Hwang et al.,
2012). The separation frequency, fsep, is a frequency that waves with
frequencies f f< sep are swell waves and with f f> sep are wind waves.
Methods for separation of the wind sea from swell waves are
categorized as an one-dimensional, D1 , or two-dimensional, D2 , wind
or non-wind based, and can result in a constant or dynamic fsep value.
One of the common methods for separation of the wind sea and swell
energies is an D1 dynamic wind based method, described by Gilhousen
and Hervey (2001) as:

ξ f H f
L f

πH f
gT f

πm
g m

( ) = ( )
( )

= 2 ( )
( )

= 8m m

m

0 0

02
2

2

0 (11-a)

⎛
⎝⎜

⎞
⎠⎟f max f

U
= 0. 75 ,0. 9 1. 25

sep x
10 (11-b)

where ξ f( ) is a wave steepness function, L is a wave length,

T m m= /m02 0 2 is a mean wave period, ∫m f S f df= ( )n f

f n
ηη

l

u is the nth

moment of the wave spectrum, fl and f Hz= 0.5u are the lower and
upper limits of the wave spectrum, respectively, and fx is a frequency
associated with a maximum value of ξ f( ). The U10 is a 10-min average
wind velocity observed at 10 m above the surface. A more recent sea-
swell partitioning method is described by Hwang et al. (2012) as:

I f m
m

( ) =1
1

−1 (12-a)

f f f f= 24. 2084 − 9. 2021 + 1. 8906 − 0. 04286sep m m m1
3

1
2

1 (12-b)

Similarly, ∫m f S f df= ( )n f

f n
ηη

l

u is the nth moment of the wave

spectrum with f Hz= 0.5u , and fm1 is a frequency associated with the
maximum value of I1. Figs. 7 and 8 present a separation frequency for
sea-swell partitioning, estimated by Gilhousen and Hervey (2001) and
Hwang et al. (2012), respectively. Note that, in both of these methods,
a fu larger than Hz0.5 might be required for intermediate and shallow
water.

3.4. Peak wave frequency from the weighted integral of wave power
spectrum

Commonly, peak wave frequency, fp, and peak wave period,
T f= 1/p p, are obtained directly from the wave power spectrum by
locating a frequency associated with a maximum value of Sηη.
Additionally, peak wave frequency can also be estimated from a
weighted integral of the wave power spectrum following Young
(1995) as:

∫
∫

f
S f fdf

S f df
=

( ( ))

( ( ))p
ηη

ηη

5

5
(13)

Fig. 9 shows that a peak frequency can be accurately estimated from
Eq. (13). In general, it is recommended to obtain the fp directly from a
spectrum, unless there are fluctuations in Sηη that prevent an accurate
identification of the peak point, in which case Eq. (13) is suggested.

4. Toolbox overview

Ocean Wave Analyzing Toolbox, OCEANLYZ, is a MATLAB toolbox
developed for analyzing wave data time series collected in a laboratory
or in water bodies such as oceans, seas, and lakes. This toolbox
contains a number of MATLAB functions aimed at wave analysis in
the time and frequency domains by using the zero-crossing and
spectral analysis methods, respectively. It can output the wave proper-
ties such as a zero-moment wave height, Hm0, significant wave height,
Hs, mean wave height, Hz, peak wave period, Tp, and mean period, Tz.
This toolbox has been under development since 2012, as a part of the
field data collection and analysis program in the depth-limited
estuaries of Louisiana, USA. OCEANLYZ has evolved over time to
address the issues which have arisen associated with the shallow water
data analysis.

This toolbox can apply the pressure response factor, Kp, in both
time and frequency domains to account for pressure attenuation and
energy loss when the data are collected by a pressure sensor. The
fmaxpcorr value, which is a maximum frequency to apply Kp, can be either
predefined by a user or can be calculated adaptively within the code.
The toolbox can replace the high-frequency section of the spectrum
with either the JONSWAP or TMA diagnostic tail. If swell is present,
the wind sea and swell energies can be partitioned and reported by
using the Hwang et al. (2012) method. In this toolbox, a peak wave
period is obtained directly from a power spectrum peak, while a peak
wave frequency is calculated from a weighted integral of the wave
power spectrum, i.e. Eq. (13). Water surface elevation power spectral
density along with the required inputs for spectral analysis in
OCEANLYZ are schematically illustrated in a logarithmic scale in
Fig. 10.

To evaluate the toolbox’s outcomes, in addition to extensive tests
with field data, OCEANLYZ’s performance was tested with a series of
numerically generated linear and random waves. For this purpose, at
first, a time series of the linear waves was used to assess its
performance. Next, a time series of random waves based on the
JONSWAP spectrum was generated and used as a test case to assess

Fig. 7. Evaluating swell and wind sea energy separation using the Gilhousen and Hervey
(2001) method. Color-bar represents h L/ p.
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the accuracy of the wave properties estimation. The root-mean-square
error for N paired samples of X Y( , ), where X and Y are the expected
and estimated values, respectively, can be calculated from
RMSE Y X N= ∑ ( − ) /i i

2 . The RMSE value for 1000 sets of data was
m0.0099 for Hm0 and was Hz6.0585 × 10−4 for f T= 1/p p. The coefficient

of determination,R2, between the expected and estimated values was
0.99 for both Hm0 and f T= 1/p p. Figs. 11 and 12 illustrate the expected
values versus those calculated by the OCEANLYZ.

5. Conclusions

There are a number of well established methods in the literature for
an accurate analysis of measured wave data and a precise estimation of
the wave parameters. However, obtaining reliable results requires
knowledge of the behavior, strengths and weaknesses of those meth-
ods, otherwise the quality of the results might be questionable. More
importantly, an implementation of those methods in depth-limited
water bodies, like estuaries and lakes, requires additional attention in
order to acquire correct wave parameters.

This paper describes potential issues associated with the analysis of
pressure transducer data and provides possible solutions. Wave
measurement and analysis particularly in depth-limited water bodies
are discussed and potential issues for obtaining reliable results in these
environments are explained. The procedure for converting pressure
data into water surface elevation data, treating the high frequency data
with a low signal-to-noise ratio, partitioning swell and wind sea
energies, and estimating the peak wave frequency from a weighted

Fig. 8. Evaluating swell and wind sea energy separation using the Hwang et al. (2012)
method. Color-bar represents h L/ p.

Fig. 9. Evaluating a peak wave frequency estimation from a weighted integral of the
wave power spectrum. Color-bar represents h L/ p.

Fig. 10. Schematic log-log scale plot of Sηη versus f . Here, f f<maxpcorr tail but it can be

set as f f=maxpcorr tail .

Fig. 11. Evaluating the accuracy of OCEANLYZ in the estimation of Hm0. Color-bar

represents h L/ p.

Fig. 12. Evaluating the accuracy of OCEANLYZ in the estimation of fp. Color-bar

represents h L/ p.
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integral of the wave power spectrum are described. Detailed explana-
tions are provided on how to convert pressure data acquired with a
pressure transducer into water surface elevation and on how to recover
energy losses associated with pressure attenuation in depth. Potential
sources of errors during data analysis are discussed. It is shown how an
improper implementation of these methods can lead to incorrect
outcomes, and it is explained how to minimize errors associated with
the influential parameters.

Furthermore, to provide researchers with a tool for a reliable
estimation of the wave parameters, particularly in shallow and inter-
mediate water, the Ocean Wave Analyzing toolbox, OCEANLYZ, is
introduced. The toolbox contains a number of MATLAB functions for
estimation of the wave properties in the time and frequency domains.
The toolbox has been developed and examined during a number of field
studies in Louisiana estuaries.
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