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In Earth-surface science, numerical models are used for a range of purposes, from making quantitatively
accurate predictions for practical or scientific purposes (‘simulation’ models) to testing hypotheses about
the essential causes of poorly understood phenomena (‘exploratory’ models). We argue in this con-
tribution that whereas established methods for uncertainty quantification (UQ) are appropriate (and
crucial) for simulation models, their application to exploratory models are less straightforward, and in
some contexts not relevant. Because most models fall between the end members of simulation and
exploratory models, examining the model contexts under which UQ is most and least appropriate is
needed. Challenges to applying state-of-the-art UQ to Earth-surface science models center on quantifying
‘model-form’ uncertainty—the uncertainty in model predictions related to model imperfections. These
challenges include: 1) the difficulty in deterministically comparing model predictions to observations
when positive feedbacks and associated autogenic dynamics (a.k.a. ‘free’ morphodynamics) determine
system behavior over the timescales of interest (a difficulty which could be mitigated in a UQ approach
involving statistical comparisons); 2) the lack of available data sets at sufficiently large space and/or time
scales; 3) the inability to disentangle uncertainties arising from model parameter values and model form
in some cases; and 4) the inappropriateness of model ‘validation’ in the UQ sense for models toward the
exploratory end member of the modeling spectrum.

Published by Elsevier Ltd.
1. Introduction

Earth-surface science addresses a vast array of different pro-
cesses, in different environments, and at different scales. Phe-
nomena of interest include specific applications of fluid dynamics,
in which the essential physics are relatively well understood.
Models addressing fluid dynamics are typically applied over rela-
tively small domains (meter to ten-kilometer scales) and relatively
short periods (minutes to days). On the other end of the spectrum
is landscape evolution, covering hundreds of square kilometers
over time scales upwards of millions of years. Determining which
interactions, over what spatial and temporal scales, are most cri-
tical in shaping a landscape and its associated ecosystem are often
open questions. This range of scientific contexts in Earth-surface
science gives rise to a range of different types of modeling
).
endeavors, serving a range of purposes and employing a range of
strategies.

In the end member of ‘simulation models’, modelers strive to
explicitly represent all of the processes and interactions that
quantitatively affect the way the system of interest behaves, and to
represent those processes and interactions with maximal realism.
In contrast, in the ‘exploratory model’ end member, modelers
strive to leave out most of the processes and interactions occurring
in the system of interest, in an effort to identify the essential
causes of poorly understood phenomena. Simulation models are
often used to make quantitative forecasts for practical purposes, or
to provide quantitatively accurate information needed to address
scientific questions (e.g., to provide input to other models). In ei-
ther case, quantifying model uncertainty (‘uncertainty quantifica-
tion’, or UQ) is essential. In contrast, when an exploratory model is
used for hypothesis testing, questions about model uncertainties
typically do not arise.

While the range of model types and how the appropriate
model-evaluation approaches vary across the model spectrum

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2016.02.008
http://dx.doi.org/10.1016/j.cageo.2016.02.008
http://dx.doi.org/10.1016/j.cageo.2016.02.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.02.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.02.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.02.008&domain=pdf
mailto:abmurray@duke.edu
http://dx.doi.org/10.1016/j.cageo.2016.02.008


A.B. Murray et al. / Computers & Geosciences 90 (2016) 6–16 7
have been discussed (e.g. Dietrich et al., 2003; Murray, 2002, 2007,
2013), an articulation of which modeling contexts UQ is appro-
priate for, and which contexts it is not, is currently missing. Even if
the question of whether to employ UQ is clear for the end mem-
bers of the simulation-exploratory model axis, most models fall
between the ends of the spectrum, having some aspects of both
simulation and exploratory modeling goals and strategies. Thus, a
strong potential exists for confusion about when UQ makes sense,
and when it does not. Here we analyze some modeling circum-
stances that make UQ more appropriate than might have been
expected, and we analyze what limits the application of UQ in
other modeling contexts, in the hopes of spurring further discus-
sion and consideration of these issues.

Numerical models of all types involve uncertainty arising from
multiple potential sources – model inputs, parameter values, and
model form (e.g., Roy and Oberkampf, 2011). There are established
methods for identifying and quantifying uncertainty, including
model ‘validation’ to assess model-form uncertainty (e.g., Roy and
Oberkampf, 2011; Oberkampf et al., 2002; Ferson et al., 2008).
However, these methods are often only partly implemented in the
Earth-surface-science modeling community. One reason for this
may be that many modeling studies are used primarily for ex-
ploring emergent behavior of generic systems. The modeling is
often motivated by specific field areas or observed phenomenon
but the model outcomes are not meant to recreate the observa-
tions exactly (e.g., Attal et al., 2008; Cohen et al., 2015; Collins
et al., 2004; Davy and Lague, 2009; Howard, 1997, 1999; Huang
and Niemann, 2014; Pelletier et al., 2012; Roering, 2008; Saco and
Moreno‐de las Heras, 2013; Tucker and Bras, 1998; Yetemen et al.,
2015). In many cases, data appropriate for strict validation does
not even exist. In addition, strict model ‘validation’, as envisioned
in the context of uncertainty quantification (UQ) may not be
consistent with modeling goals in some cases.

This is not to say that Earth-surface-science modeling ignores
the issue of uncertainty. For example, studies have sought to
constrain parameter values for a given setting (e.g. Pelletier et al.,
2011; van der Beek and Braun, 1998; Hancock et al., 2002) and
have explored the impacts of variable model parameters, both
absolute values and heterogeneity of values, (e.g. Moglen and Bras,
1995; Tucker and Whipple, 2002; van der Wegen and Jaffe, 2013)
and model resolution (e.g., Pelletier, 2010; Schoorl et al., 2000), but
these studies follow the structured framework of UQ (Roy and
Oberkampf, 2011) only to a limited extent.

In this paper we first briefly overview an approach to UQ. We
then describe the spectrum of models that are used in Earth-sur-
face-science. We provide three examples that illustrate the chal-
lenges in applying UQ in some types of Earth-surface modeling.
Finally, we discuss ways in which uncertainty can and should be
addressed in Earth-surface modeling.
2. Uncertainty quantification approach

Here we briefly review the state-of-the-art approach to un-
certainty quantification (UQ), as described in the review by Roy
and Oberkampf (2011). In the following procedure, the situation
envisioned is that a model is to be applied to make predictions
about certain variables in a specific application. First, identify all
uncertain model inputs and model parameters. Next, quantify the
distributions of the possible values for those inputs and para-
meters, in the context of the specific application of interest, in
ways appropriate for the nature of those uncertainties (unavoid-
able stochastic variations, “aleatory uncertainty”, vs a lack of
knowledge, “epistemic uncertainty”, or a mixture). Then, propa-
gate these distributions through the model, in an ensemble of
model runs each involving different choices from the distributions
(using a statistical method such as a Monte Carlo technique), to
produce a distribution of results.

A separate but crucial set of steps quantifies the uncertainty in
the model predictions arising from inevitable model imperfec-
tions, termed ‘model form uncertainty.’ Constituting a form of
model ‘validation’, this step compares the distribution of values in
an observational data set to the distribution of the modeled/pre-
dicted values (generated in an ensemble of runs using distribu-
tions of input and parameter values appropriate to the observed
experiment or field situation). Model-form uncertainty is then
based on the difference between observed values and the spread
of predictions (e.g. Roy and Oberkampf, 2011).
3. A range of model types and modeling goals in earth-surface
science

In the end-member limit, the ultimate goal of a simulation
model is to mimic the natural or engineered system they are
meant to represent—at least to produce the same output for a
given set of inputs, and ideally to produce it for the same (usually
physical) reasons. Model output can be used for practical purposes,
providing an ability to make quantitative predictions or forecasts
useful for planners, decision makers, and society more broadly. For
example, forecasting the locations and depths of storm surge
flooding from a range of possible storm scenarios provides crucial
information for coastal managers and planners (e.g. Peng et al.,
2004). In the simulation modeling end member context, when
additional processes, additional detail, or additional resolution is
believed to increase the quantitative reliability of model predic-
tions, the additional processes, detail or resolution should be ad-
ded (computing resource limitations aside). Because no model is
perfect, and because inputs (and parameter values) are never
known exactly, UQ is an essential part of the modeling endeavor.
UQ provides the context for interpreting model predictions, and
the model validation step in the UQ procedure outlined above, is
completely appropriate.

In contrast, exploratory models are generally not used to make
predictions for which quantitative accuracy is paramount. When
designing an exploratory model, a modeler strives to include only
processes hypothesized to be responsible for poorly understood
phenomena and these processes are represented in simplified
ways. Reducing the detail maximizes the clarity of the potential
insights that can result. If such a highly simplified model produces,
qualitatively, the phenomena of interest, the interactions in the
model become a potential explanation. Of course, in an essential
next step, the model behaviors need to be compared to observa-
tions in some way, to determine whether, or to what degree, the
interactions in the model correspond to those in natural or an-
thropogenic systems (called ‘natural’ systems hereafter).

However, for models near the exploratory end member of the
spectrum, simply comparing the value of model-output variables
to values observed in a specific location and time may not be the
most appropriate way of addressing the question of whether the
interactions in the model captures the essence of the interactions
in the natural system. First, such a model was constructed not to
maximize quantitative accuracy, but rather to test hypotheses as
clearly as possible. Directly comparing the magnitudes of modeled
and observed variables does not necessarily help evaluate the
model's success. Quantitative mismatches could be the result of
either (intentional) model simplifications, or because the model
interactions do not correspond to those in the prototype system.
Conversely, if the model quantitatively reproduces the observa-
tions, the match could be coincidental—or could in many cases be
achieved by tuning model parameters. For an exploratory end
member, model success is directly evaluated by testing model



Fig. 1. Measured and predicted erosion and sedimentation patterns in San Pablo Bay, California, USA (from: van der Wegen and Jaffe (2013)).
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predictions that are more robust (Murray, 2007; Tucker, 2009). For
example, if a model always predicts that the value of output
variable X increases as input variable Y increases, and the quali-
tative trend in nature does not match, then the interactions in the
model must not correspond to the ones important in the natural
system, and the model can be rejected and discarded.

Setting aside questions about the appropriateness of model
‘validation’ for models toward the exploratory end of the spec-
trum, other considerations can limit the ability to assess model-
form uncertainty, as we discuss in the next two sections.
4. Free morphodynamics versus boundary conditions

Fluid dynamics can produce stunning examples of emergent
structures and phenomena, such as turbulent eddies. However,
many modeling contexts involve the mean flow, averaged over
scales greater than those of the turbulence. In those cases, de-
terministic predictions are possible, and the accuracy of those
predictions is limited not by the nature of the phenomena, but by
modeling limitations (inputs, model approximations and para-
meterizations, solution procedures, and boundary conditions).
When modeling changes in Earth-surface morphology, not only
fluid flow but sediment transport is involved. When fluid flow and
mobile sediment interact, especially if the sediment is transported
as bed load, morphodynamic feedbacks typically lead to emergent
structures and behaviors, such as bedforms of various sorts.
Parameterizations for bulk sediment flux represent averages over
the time and space scales of those structures—analogous to the
way the effects of turbulence on mean flow are parameterized.
Parameterizations representing the effects sub-grid-scale emer-
gent morphodynamic feedbacks may be as quantitatively reliable
as turbulence closure schemes. However, feedbacks between flow
and sediment transport often also lead to autogenic behaviors at
the scales of interest in Earth-surface science (e.g., Werner, 1999;
Murray et al., 2008; Murray et al., 2014) that are not determinis-
tically predictable.

For example, we can hope to predict, using a simulation model,
how channels and shoals in an ebb tidal delta will change over
short timescales (e.g. van Leeuwen et al., 2003; Coco et al., 2013).
However channel and shoal location over longer timescales likely
cannot be predicted deterministically (e.g. Cayocca, 2001; Elias
and van der Spek, 2006; Coco et al., 2013)—just as the precise
location of turbulent eddies cannot be deterministically predicted
over timescales that are long compare to eddy lifetimes. Statistical
forecasts are justified when such ‘free’ morphodynamic behaviors
dominate the system's behavior. And when statistical predictions
are desired, an appropriately modified approach to UQ would be
required to judge the reliability of those predictions. However, the
model validation stage should in that case not involve determi-
nistic predictions. Mismatches between model predictions and
observations could arise either from model imperfections or the
effects of positive feedbacks—or a combination of the two that
presents a challenge to disentangle.

In contrast to free and stochastic morphodynamic behavior the
following example motivates the suggestion that boundary
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conditions can provide sufficiently strong constraints that pre-
vailing patterns in the fluid dynamics largely dictate changes in
the sediment bed. Ganju et al. (2009), van der Wegen et al. (2011)
and van der Wegen and Jaffe (2013) report model efforts to
hindcast measured decadal time scale morphodynamic develop-
ments observed in sub-embayments of San Francisco Estuary
(using historical bathymetry from the beginning of the time per-
iods as initial conditions). Remarkably (given the large amount of
uncertain model input and process descriptions), model results
had significant skill (quantified by the Briar Skill Score; van der
Wegen and Jaffe, 2013) in reproducing the measured bathymetric
developments over 30 year time frames (see also Fig. 1). In a
classical UQ, van der Wegen and Jaffe (2013) showed that model
results were mainly sensitive to boundary condition variations (i.e.
sediment supply and wind wave forcing) and only to a limited
extend to process-descriptions of the model itself (i.e. roughness,
sediment transport characteristics). For example, for different 30
year time intervals, about 60–90% of the erosion and deposition
volume was modeled with confidence given uncertainty levels in
model input and process description. van der Wegen and Jaffe
(2013) also explored a methodology to derive the model para-
meter leading to highest outcome uncertainty.

A probable explanation for the high skill scores was that the
model included enough process description (the model was de-
tailed enough) and that the estuaries' initial geometry (i.e.
bathymetry and rocky plan form) played a governing role in ero-
sion and deposition patterns. van der Wegen and Roelvink (2012)
and Dam et al. (2013) also use this explanation in their skillful 110
year hindcast of morphodynamics in the Dutch Western Scheldt
estuary. In other words, the interaction between the geometry and
the modeled fluid dynamics and sediment transports captured a
leading morphodynamic process. It would be questionable (or
better: worth an upcoming modeling exercise) whether a similar
type of modeling exercise could lead to comparable results in non-
confined systems such as an ebb-tidal delta, where feedbacks and
morphodynamic ‘free’ behavior steer system evolution.

This case study shows a model that is realistic enough to si-
mulate changes at a particular field site, allowing for a skillful
hindcast and prediction of morphodynamic developments. How-
ever, these modeling exercises also had exploratory elements. It
was unknown beforehand whether or not the model would lead to
acceptable results. The set of processes and input parameters acted
as a hypothesis to explain observed behavior. In addition, the skill
of the model is to some extent subjective, since its prediction is
not perfect. It is very well possible that adding other processes
would improve model results or that process formulations cur-
rently included capture the effects of more subtle processes that
were not included. These are characteristics of exploratory models.
5. Scaling limitations on available parameterizations

Other challenges in applying UQ to some models of Earth sur-
face processes and landscape change involve a lack of available
parameterizations appropriate for the scales of interest, and for
the range of processes involved. Often, the most well established
and well calibrated parameterizations derive from studies on the
scale of laboratory experiments or experimental plots in the field.
As the examples below illustrate, when attempting to apply those
parameterizations to model much larger scale phenomena, their
interpretations are not straightforward. When the physical (or
biological or ecological) meaning of the variables in a para-
meterization are not clear, finding the ‘best’ values for model
parameters can become an exercise in model tuning, rather than
an attempt to find the most physically (or biologically) realistic
values. In these situations, the model ‘validation’ stage of the
approach to UQ discussed above (Section 2) becomes entangled
with the effort to identify uncertainties in model parameter
values.

5.1. Sediment transport and evolution of continental shelves

Models representing sediment transport of mixed grain sizes
on continental shelf systems highlight what we mean by model
uncertainty in exploratory models. A series of models describing
mixed grain size transport and bedform development on the inner
continental shelf illuminates the uncertainty in process descrip-
tions in heterogeneous non-idealized field environments. Murray
and Thieler (2004) initially developed the first exploratory model
of inner shelf ‘sorted bedforms’ using process-based rules. Coco
et al. (2007a, 2007b) extended this model using accepted para-
meterizations of fluid mechanics and sediment transport pro-
cesses that attempt to explicitly represent processes occurring on
much smaller and faster scales than those of the phenomena of
interest. Goldstein et al. (2014) further extended the model by
replacing older empirical expressions with novel parameteriza-
tions built directly from data (using machine learning techniques).

Even with three generations of models over 10 years, sig-
nificant gaps in knowledge remain when scaling up lab or theo-
retical fast- and small-scale fluid and sediment transport para-
meterizations to the field setting. For instance seabed ripples,
whose size depends on grain size of the bed (Cummings et al.,
2009; Goldstein et al., 2013) present roughness elements on the
bed (1–10 s cm scale). Ripples control fluid flow, turbulence gen-
eration and, as a result, sediment suspension (e.g., Bolaños et al.,
2012; Green et al., 2004; Green and Black, 1999). However it re-
mains unclear how to parameterize the suspended sediment
above large ripples in a model addressing spatial scales much
larger than the ripples. Specifically, since the seabed elevation
varies considerably in both space and time, it is unclear at what
height reference concentration should be applied. Additionally the
vertical suspended sediment concentration profile varies in space
and time (it is different above the crest of a ripple vs. the trough of
a ripple and different during different wave phases; Davies and
Thorne, 2005; van der Werf et al., 2007; O’Hara Murray et al.,
2011).

As another example, it remains unclear where the bottom
current profile begins when roughness elements (ripples) with
relief considerably greater than theoretical boundary layers are
present and vary in size through the model domain (Coco et al.,
2007a). Adjusting the location of the current profile relative to the
suspended sediment profile (the location of the reference con-
centration) leads to dramatic changes in suspended sediment flux
and bedform development (Coco et al., 2007a; Fig. 2).

These decisions highlight difficulties in accurately connecting
the components of suspended sediment flux in models meant to
capture large-scale pattern development where significant het-
erogeneity can occur at a sub-grid scale. One method to circum-
vent ambiguity in parameter values is to treat these parameters as
tunable and adjusting reference concentration height, vertical
concentration profile shape, and current profile height until model
results match observations. (Note: this is only tenable when re-
levant observational datasets exist and they do not for inner shelf
‘sorted bedforms’). This model calibration procedure may lead to
the tuning of parameters to potentially nonphysical values, or
values that are not prescribed by experimentation. These values do
not necessarily compare favorably to observable values, and reflect
a spatial average suggesting that reference concentration height,
suspended sediment vertical shape, and current profile height are
model parameters lacking a direct physical interpretation, and
which might depend on model scale. After this calibration process,
any adjustment in parameter values for UQ purposes ultimately



Fig. 2. Numerical experiments of ‘sorted bedforms’ using the model of Goldstein et al. (2014), showing changes in bedform pattern as the vertical location of the reference
concentration is adjusted. Map-view and profile-view patterns after 200 model days are shown; black and white pixels represent fine and coarse sediment respectively (gray
is well mixed). Profile view is taken along the diagonal from lower-left to top-right. The model domain has a vertical resolution of 0.05 m, a horizontal resolution of 5 m, and
periodic boundary conditions in the horizontal direction. Initial conditions are a flat bed (with perturbations below 0.01 m) with well-mixed coarse (0.0005 m) and fine sand
(0.0002 m) and 9 m of water depth. Forcing conditions are 2 m waves with 10 s period and a 0.2 m/s mean current along the diagonal (from bottom left to upper right) that
reverses every 10 days. Each panel represents a different height at which the reference concentration is applied: Top left (ripple crest); Top right (half of the ripple crest);
Bottom left (a quarter of the ripple crest); Bottom right (at the grain scale). Changes in sorted bedform pattern as a result of changes in reference concentration height is a
robust observation, and has been seen in previous versions of the model (Murray et al., 2005; Coco et al., 2007a).
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informs users about the model (i.e., what model behaviors are
seen in specific regions of multidimensional parameter space), but
does not necessarily yield insight into the range of variability in
the natural system (i.e., variability in field examples).

5.2. Landscape evolution modeling of bedrock river systems

Landscape evolution models (LEMs) are generally applied as
exploratory models. For example, landscape evolution studies are
often focused on long time scales (e.g., implied or stated scales of
thousands to millions of years) and large spatial scales (e.g., set-
tings stated or suggested as mountain ranges or watersheds that
are multiple to hundreds of square kilometers in area) (e.g., Anders
et al., 2008; Attal et al., 2011, 2008; Braun et al., 2001; Colberg and
Anders, 2014; Ellis et al., 1999; Gasparini and Whipple, 2014;
Howard, 1994, 1997; Roe et al., 2003; Roering, 2008; Rosenbloom
and Anderson, 1994; Tucker and Slingerland, 1997, 1996; Will-
goose, 1994; Yanites and Ehlers, 2012). Over such scales, it is im-
possible to know exact initial conditions and the details of all the
processes shaping the landscape, including the boundary condi-
tions, such as climate and tectonics, which drive landscape evo-
lution. However LEMs are a useful aid for quantitatively inter-
preting observed trends in real landscapes that are generally
evolving at rates too slow to be observable over a human lifetime,
leading to their increased use in the past two decades.

Geomorphic transport laws control topographic change in
LEMs, and many of these laws fall into the category of “essential
realism” as described by Dietrich et al. (2003) to mean laws, or
equations, that can explain the “essential morphodynamic features
of a landscape”. These simplified laws are rooted in first principles
and empirical relationships, yet they are highly simplified so that
they can be applied over large spatial and temporal scales. LEMs
run with such laws present a number of challenges for quantifying
uncertainty, as will be illustrated with the stream power law or
model (SPM).

A SPM is applied when the detachment rate of bedrock from a
river channel controls the evolution of the channel, and the de-
tachment rate can be described as a power law function of the
fluvial shear stress, or similarly, the stream power per unit area of
channel bed (e.g., Howard, 2004; Whipple and Tucker,1999). The
details of the model will not be reiterated here, however for the
unfamiliar, the SPM is based on relationships for conservation of
mass and momentum and empirical relationships for downstream
changes in channel width (hydraulic geometry) and basin hy-
drology. These relationships combine into a power law relation-
ship between the river incision rate (I, L/T), drainage area (A, L2)
and channel slope (S, L/L):

= ( )I KA S , 1m n

where K, m and n are all positive parameter values, and the units
on K depend on the units of A and I and the value of m. The value
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of K varies with both rock strength (harder rocks are thought to
have smaller K values) and climate (more erosive, or wetter cli-
mates are thought to have larger K values). The simplicity of Eq. (1)
has led to its widespread use, despite the fact that it certainly does
not directly include or parameterize all of the variables that affect
fluvial incision into bedrock, such as rain storm variability through
time (e.g., Tucker, 2004), the role that suspended and bed load
sediment may have in increasing bedrock incision (e.g., Lamb et al.,
2008), or the role that bed load sediment may play in inhibiting
bedrock incision (e.g., Sklar and Dietrich, 2004). However, the ef-
fects of the latter may collapse to a power–law function of drai-
nage area and slope (Gasparini and Brandon, 2011), and therefore
can potentially be encapsulated in a form such as Eq. (1) with
slightly different parameter values than one might predict from
the shear stress or unit stream power formulation.

Uncertainty obviously arises in the appropriate values for the
parameter values in the SPM when applied to a particular
C
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that K parameterizes, at the very least, rock strength and climate.
Even if climate could be parameterized in K as the mean upstream
rainfall rate resulting in the effective discharge (as described by
Whipple and Tucker, 1999), there is currently no way to take
measurements of rock strength (such as from the Selby index
(Selby, 1980) or Schmidt Hammer (Aydin and Basu, 2005) and
translate them into a K value for use in Eq. (1).

The parameters in Eq. (1) can be calibrated, or tuned, to a given
setting, and studies that have attempted to do so have met with
varied results and successes. Stock and Montgomery (1999) fit K
values through modeling of different landscapes (rivers in USA,
Japan, and Australia) and found that K varied of over five orders of
magnitude (although m and n were not fixed among these land-
scapes, adding to the variability in K). Similarly, Tomkin et al.
(2003) calibrated a version of Eq. (1) to the Clearwater River in
Washington State, USA. They arrived at the physically nonsensical
value of m approximately equal to zero, which does not lead to the
formation of a drainage network, an essential first step for the SPM
to create realistic fluvial landforms. van der Beek and Bishop
(2003) used four rivers in the Upper Lachlan watershed in
southeast Australia to calibrate the SPM model. Although the
parameter values they found were similar to those expected from
standard derivations of the SPM model, the fit of the model to the
observed channel form was not particularly good.

Despite these challenges, the SPM and the ideas behind it have
been extremely useful in the geomorphic community. For ex-
ample, the SPM has formed the basis for successfully interpreting
many tectonically active landscapes to determine which parts of
the landscapes are eroding at a relatively faster rate (e.g., Cyr et al.,
2010; DiBiase et al., 2010; Harkins et al., 2007; Hilley and Arrow-
smith, 2008; Kirby and Whipple, 2001; Ouimet et al., 2009; Safran
et al., 2005; Snyder et al., 2000; Wobus et al., 2006), although it
cannot be used to determine exact erosion rates without knowl-
edge of K, m and n. The SPM has also provided a great deal of
insight into how transient landscapes might evolve (e.g., Attal
et al., 2011; Crosby et al., 2007; Ferrier et al., 2013; Gasparini and
Whipple, 2014; Han et al., 2014; Hoke et al., 2007; Oskin and
Burbank, 2007; Tucker and Whipple, 2002; Whipple and Tucker,
2002; Willenbring et al., 2013a,b).
6. Discussion

In summary, previous sections present examples that, although
UQ is a valuable—even essential—component of an operational-
modeling endeavor, it does not necessarily represent the most
useful way to evaluate an exploratory model, or interpret predic-
tions arising from it. Even models in Earth-surface science that are
exploratory or address large-scale phenomena can make robust
predictions, useful in applied and scientific contexts. Such pre-
dictions may be qualitative, of the form ‘If forcing X increases, the
landscape response will involve an increase (or decrease) in vari-
able Y’. In such context the UQ approach, which is so essential for
simulation/operational modeling contexts, is less relevant.

6.1. Limitations to model validation

The challenges in applying UQ to some models in Earth-surface
science revolve around the steps in the approach related to model
‘validation’, which provide estimates of the model form un-
certainty. When positive feedbacks and consequent autogenic
dynamics and emergent events limit the time horizon over which
deterministic prediction makes sense, a modified UQ approach
could still be useful. Numerical models could be used to make
statistical forecasts of relevant variables (van der Wegen and Jaffe,
2013), and the forecasts could be compared to observed statistical
distributions in experimental or field observations, in an approach
analogous to the deterministic model validation (e.g. Wang et al.,
2011). Such an approach to quantifying model form uncertainty
requires observational data sets that go beyond single snap shots
in time—data sets that extend over spatial or temporal scales that
are large compared to the characteristic timescales of the auto-
genic dynamics.

In cases where models address landscape dynamics over space
and time scales that are large relative to the available observa-
tional data sets, such as the example in Section 5.2, the opportu-
nity to assess model form uncertainty does not exist. In addition,
when models address space and time scales that are large com-
pared to the scales addressed by available parameterizations, as in
the examples in Sections 5.1 and 5.2, parameterizations and
parameter values can lose a direct correspondence to measurable
quantities. In such cases, choosing parameter values typically in-
volves tuning the values to produce reasonable model output. This
empirical parameter tuning leads to underestimates of model-
form uncertainty (e.g. Roy and Oberkampf, 2011).

In principle, uncertainty related to unknown model parameter
values could be separated from model form uncertainty. The dis-
tribution of the possible values of poorly constrained parameters
could be considered equally likely over some wide range (e.g. Roy
and Oberkampf, 2011), and model form uncertainty could then be
evaluated as a separate step. Perhaps the emphasis should shift in
this direction in more modeling endeavors addressing large scale
landscape phenomena. However, the UQ approach described in
Section 2 does not apply directly to the way modeling of large-
scale phenomena is often approached currently.

Exploratory modeling endeavors often arise when addressing
phenomena on scales larger than those for which available para-
meterizations are appropriate (Murray, 2003, 2013; Werner, 1999).
Testing whether the interactions represented by the para-
meterizations in such an exploratory modeling context correspond
to those in the natural system is required. However, the most
appropriate tests to address such questions do not necessarily
correspond to the model validation procedure appropriate for si-
mulation models. When quantitative assessments of model form
uncertainty do not make sense—whether because of the ex-
ploratory goal of a modeling endeavor, or because of a lack of
observations and/or parameterizations appropriate for the scales
of interest—UQ is at best incomplete. When model form un-
certainty is unknown but presumed to be large, assessing the
uncertainty in model predictions arising from uncertainty in
model inputs and parameter values provides information about
model sensitivity, but not about how correct the model or its
predictions might be.

The two examples in Section 5 make clear that applying a UQ
analysis does not necessarily tell us much about how the model
relates to the natural system, when model parameters are not
easily physically interpretable, or when they are part of in-
tentionally simplified representations of hypothesized processes
and interactions. Quantitative predictions arising from such
models need to be evaluated with care. However, both of the
classes of models in these examples have been potentially useful
in understanding the processes and interactions behind wide-
spread, large-scale patterns on the Earth's surface. Evaluating to
what degree the model interactions capture the essential features
of interactions in the natural systems requires testing models in
strategic ways (e.g., Murray, 2007; Tucker, 2009). However, UQ in
the sense discussed here is not necessarily useful in such an eva-
luation of a model positioned toward the exploratory end of the
modeling spectrum.
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6.2. Uncertainty reduction by model inter comparisons

Exploratory model inter-comparisons, however, could be quite
useful in evaluating the relationship between exploratory models
and their prototypes. If different models addressing overlapping
questions feature contrasting processes or interactions, or re-
present those processes or interactions in contrasting ways, testing
which model makes the most accurate predictions can produce
insights about how the natural system really works (e.g., Attal
et al., 2011). The predictions involved may consist of quantitatively
comparing the magnitude of model variables to measured values,
or they may be robust predictions of qualitative trends.

On the other hand, if different models addressing overlapping
questions that feature contrasting interactions or representations
produce similar predictions (either of magnitudes or qualitative
trends), we can also gain insights from model inter-comparisons
(e.g., Kirwan et al., 2010). In such a case, the models may all in-
volve fundamentally similar feedbacks that can then offer the
most basic explanations for observed (or predicted) phenomena.
Landscape evolution models of fluvial incision nicely illustrate this
case. As discussed in Section 5.2, the SPM model results in a
power–law relationship between channel slope and drainage area
under steady, uniform conditions. Whipple and Tucker (2002) il-
lustrated that this steady-state power–law relationship is also
predicted by other, more complicated models of bedrock incision
processes and sediment transport. As such, if steady-state condi-
tions under uniform forcing apply, the details of more complicated
processes may not be necessary to understand trends in the
morphology of the channels.

6.3. Model refinement decreases epistemic uncertainty

Exploratory models often selectively leave out processes to
focus on the feedbacks and processes of interest. In the parlance of
UQ, exploratory models can be thought of as maximizing epis-
temic model uncertainty to gain insight (by isolating key feed-
backs). Strategic testing or evaluation of exploratory models often
yields an increased quantitative understanding of the processes
and interactions responsible for poorly understood phenomena, or
the importance of phenomena that are omitted. This can feed back
into the modeling processes, allowing for the development of
additional or refined parameterizations, and refinement of the
exploratory model as a whole—in essence, a reduction of the
epistemic uncertainty in the original model by making para-
meterizations increasingly empirically constrained (i.e. realistic).
As this progression occurs, a model that was intentionally sim-
plified can become useful for making quantitative predictions (e.g.
Murray, 2007; Werner, 1999).

The progressive refinement of an originally exploratory model
can either involve increasing the quantitative accuracy of para-
meterizations of interactions at relatively large scales (scales
commensurate with the phenomena of interest), or it can involve
the addition of explicit representations of processes at smaller
scales. An example of this latter trend was presented in Section
5.1; The ‘sorted bedform’ model has been refined from its original
exploratory model by replacing the original parameterization that
lumped together the effects of multiple relatively small scale
processes with a suite of the best available representations of
those processes. However even with such refinement of the pro-
cess descriptions, several significant issues hinder the conversion
of the exploratory model into a simulation model. Considerable
epistemic uncertainty still exists regarding: (1) how to para-
meterize sub-grid processes for a context in which available
parameterizations cannot be interpreted literally; and (2) how to
combine process descriptions with mismatched scales. Both of
these issues are soluble based on data at larger scales that does not
currently exist (an epistemic issue). As these epistemic un-
certainties are reduced, UQ can become increasingly relevant.

Whereas strict UQ does not exist in landscape evolution mod-
eling, refinement and/or comparison of process-based para-
meterizations does. LEMs are often used to explore how hy-
pothesized processes may be evident in the landscape, or similarly,
what hypothesized processes are likely dominating the evolution
of a particular landscape. In the former, results from LEMs using
contrasting process models guide exploration of real landscapes.
For example, in contrast to their steady-state observations dis-
cussed above, Whipple and Tucker (2002) identified that non-
steady-state channels, in which the process limiting the evolution
of the bed is the transport of sediment, have a very different
morphology from those in which bed evolution is controlled by
detachment and removal of material according to the stream-
power model. With this knowledge, an Earth scientist can explore
the morphology of real channels in which a known-perturbation
has occurred, and based on the modeling predictions, have a better
understanding of the dominant process controlling long-term
evolution of the channels. Further exploration of process models
has led to predictions of the magnitude of perturbation necessary
for different fluvial processes to be illustrated in the landscape
(e.g., Crosby et al., 2007) or where to look in a landscape for the
signature of particular fluvial processes (e.g., Gasparini et al.,
2007).

Attal et al. (2011) offered an example of modeling specifically
designed to explore the processes controlling a particular land-
scape. In their example, the real landscape that they were studying
was subject to a well-constrained perturbation (constrained in
both magnitude and timing), and they had, relative to many Earth-
science studies, a large number of observations of the nature and
morphology of the channels that they were modeling. They con-
trasted the behavior of two process models, and within each
model they varied different parameters. However they did not
explore the full distribution of parameters as would be called for
under formal UQ. They quantitatively compared some aspects of
the modeled system with the real system, although the modeled
and real channel profiles (plots of elevation vs. distance) were
compared qualitatively. The criterion for model success did not
involve exactly recreating the currently observed morphology.
Such a goal seems inappropriate when known variables that
cannot be quantified through time are intentionally left out of the
model system. Rather, Attal et al. (2011) sought to reproduce large-
scale trends similar to those observed in the natural system
without recreating it exactly. Despite the somewhat qualitative
nature of the comparison between the modeled and real land-
scapes, in our opinion this study is extremely useful because it
highlights which processes and variables likely play a role in
shaping this landscape, and therefore suggest they may warrant
further exploration.

The example of Attal et al. (2011) illustrates why strict UQ has
probably not been done in many cases with LEMs. Limited data
exist from real landscapes, and how to link the data measured at
small scales in the field with the resolution of the model can be
challenging. The expectation of exactly reproducing a landscape is
unrealistic when, for example, each storm that drove landscape
evolution, or the exact details of the uplift history, can never be
known over the time-scales of landscape evolution. Further, many
process models do not even parameterize variables such as in-
dividual storms. Although UQ has ways to deal with these chal-
lenges, because actually recreating the landscape is not the goal,
this may be why UQ has not caught on in the LEM world. Yet, more
methods for quantitatively comparing real and numerically
evolved landscapes will be developed over time as more tools are
developed from other parts of the Earth-science community that
allow for quantification of many of the unknowns in landscape
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evolution.
For example, over the past few decades, methods were devel-

oped for estimating erosion rates using the concentration of cos-
mogenic radionuclides in quartz, both in situ and in detrital se-
diment (e.g., Lal, 1991; Granger et al., 1996; Von Blanckenburg,
2005). Erosion rate data from numerous locations are now avail-
able (greater than 1000 measurements) (Portenga and Bierman,
2011; Willenbring et al., 2013a,b). These data offer immense po-
tential for more quantitative comparisons between landscape
evolution models and real systems, but as of yet they have been
virtually untapped by the landscape evolution modeling world
(e.g. Schaller and Ehlers, 2006; Willenbring et al., 2013a,b).

6.4. Combining efforts

Exploratory and simulation models start from a different per-
spective. Exploratory models aim to capture dynamics by pre-
scribing hypothesized governing interactions, whereas simulation
models traditionally assume that inclusion of accepted essential
physical processes lead to adequate predictions. Many models
include aspects of both end member model types, striving towards
a description that is simple enough to capture the essential dy-
namics, with a sufficient degree of quantitative accuracy, but not
too complex to lose credibility. Given that computational resources
are available, simulation models may play an important role to test
the validity of exploratory models by systematic sensitivity ana-
lysis (in which processes are systematically included or excluded).

We mention the potentially large value of a comparison be-
tween results of an exploratory model and a simulation model for
the same case. Similar results will provide a physically sound
justification for exploratory models and point to the governing
processes in the range of complicated process interactions of si-
mulation models. In addition, uncertainty levels of the simulation
model can thus be coupled to a more exploratory approach.

Combining simulation models and exploratory models is a re-
cent promising development. This implies that parts of a simula-
tion modeling domain become represented by exploratory models
to limit computational effort while maintaining a certain amount
of reasonable physics. An example is a coastal inlet model covering
the foreshore and inlet at a 100 m grid size, but having an ex-
ploratory model attached to the inlet representing the tidal basin.
Although combining these different types of models will have
advantages it will definitely raise questions related to uncertainty
levels.

6.5. A spectrum of models and uncertainty

Although this discussion has focused on the end members of
exploratory and simulation models, many models in Earth surface
science fall along a spectrum between these end members. Thus,
the limitations in applying UQ procedures to exploratory models
may inhibit UQ application to many models falling between the
end members. The example in Section 5.1 involves a model with
many aspects of a simulation model, including a representation of
processes and interactions using state of the art parameterizations
for the small-scale processes at play. However, applying a UQ
procedure in that case would reveal more about the model than it
would about what to expect for the natural system. The intent of
UQ is to inform us about the range of outcomes to expect for some
natural system. The examples described here suggest that apply-
ing the same UQ approaches that work well for simulation end
members to models along the spectrum may or may not help us
learn about what to expect in nature. Because of the wide range in
model purposes and types, an associated spectrum of uncertainty
evaluation approaches would be useful.
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