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Editorial
Uncertainty and Sensitivity in Surface Dynamics Modeling
1. Introduction

Papers for this special issue on ‘Uncertainty and Sensitivity in
Surface Dynamics Modeling’ heralds from papers submitted after
the 2014 annual meeting of the Community Surface Dynamics
Modeling System or CSDMS. CSDMS facilitates a diverse commu-
nity of experts (now in 68 countries) that collectively investigate
the Earth’s surface-the dynamic interface between lithosphere,
hydrosphere, cryosphere, and atmosphere, by promoting, devel-
oping, supporting and disseminating integrated open source
software modules. By organizing more than 1500 researchers,
CSDMS has the privilege of identifying community strengths and
weaknesses in the practice of software development. We re-
cognize, for example, that progress has been slow on identifying
and quantifying uncertainty and sensitivity in numerical modeling
of earth’s surface dynamics. This special issue is meant to raise
awareness for these important subjects and highlight state-of-the-
art progress.

Numerical models of earth’s surface dynamics typically consist
of algorithms that describe complex real-world phenomena. In-
evitably these algorithms are a simplification. Geoscience has not
evolved to the point were we can or even want to fully describe all
natural processes from first-principles. For practical reasons we
often include just key processes that capture the essence of natural
phenomena. Simplification might be for reasons of model skill,
computing skill, or limits of knowledge. Model uncertainty is in-
troduced when complex natural processes are simplified (Heuve-
link, 1998), and uncertainly can be both amplified or dampened
when multiple algorithms are joined in a coupled or complex
model (Fig. 1). Uncertainty can also be introduced at the model
input parameter level, as it is only in rare cases that all input
parameters are known with certainty (Oreskes et al., 1994; Kur-
owicka and Cooke, 2006). More often, accurate model input data is
either not available or too expensive to obtain (Fig. 1). Sensitivity
analyses can help determining the importance of model input
parameters. Sensitivity analyses can also help determine if a model
is suitable for a particular study site, thus identifying if another
model might be a better alternative to provide model estimates.

This special issue provides examples of how uncertainty can be
quantified and parameter sensitivity derived. Below we provide a
brief overview of the special issue, and identify some of the
challenges our community still faces when it comes to sensitivity
and uncertainty analyzes in numerical modeling.
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2. Special issue overview

Each of the 14 special issue papers discuss progress made in-or
applications of-uncertainty and /or sensitivity analyses in a broad
field of earth-surface dynamics modeling. Five papers focus on
model sensitivity, five papers discuss uncertainties in modeling,
and four papers discuss both model sensitivity analysis and
uncertainties.

Earth science numerical models are developed and applied to
explain and predict the behavior of the earth. This fulfills a central
role within the geosciences. However, as Halpern (1998) indicates:
‘Uncertainty is a fundamental – well unavoidable – feature of daily
life’. Mathematical methods can identify the degree of uncertainty
and sensitivity analyses can identify how uncertainty in model
output can be attributed to different sources of uncertainty in the
model input (Saltelli et al., 2008). Being able to quantify un-
certainty in model outcome adds towards the degree of confidence
we have in simulation results. There is no such thing as quanti-
fying the uncertainty of an earth science model without having a
particular decision question or practical application in mind
(Caers, 2011). Along these lines, Murray et al. (2016) propose that
quantifying uncertainty may only be justifiable for simulating
models as these models are almost always process-based and have
societal relevance. Some earth surface models are only partly
process-based. Uncertainty studies would therefore only reveal
model precision, not how well simulations match observations.

2.1. Sensitivity and uncertainty studies applied to the coastal zone

Nearly half (44%) of the world population lives within 150 km
of the ocean (UN atlas). Higher growth rates are found in the
coastal zone often due to migration away from the hinterland and
there is no sign that this will change in the 21st century (Neuman
et al., 2015). With current sea-level rise rates, low-land coastal
zones are more vulnerable to flooding. Storm surges set up by
tropical cyclones will increase due to sea-level rise (Woodruff
et al., 2013). This increasing flood risk promotes an interest in
developing operational early warning-systems for extreme coastal
conditions. Baart et al. (2016) discuss morphological storm impact
forecasts, i.e. spatially distributed erosion and deposition along the
coastal zone, and argues that these are only relevant when accu-
rate, timely and with known confidence. Confidence decreases
with an increasing model forecasting horizon, even though longer
forecasting times are desired to implement proper measures like
e.g. evacuating people. A set of statistical measures: anomaly
correlation, mean squared error, root mean squared error and
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Fig. 1. Uncertainties and how they propagate through a modeling simulation workflow.
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forecast skill score, are applied to analyze and discuss how well
state-of-the-art coupled coastal modules perform in forecasting
morphological changes due to storms.

Large events like cyclones or hurricanes affect morphological
changes of the subaerial coastal zone and typically induce sig-
nificant sediment transport of reworked material on shelves re-
sulting in erosional and depositional areas. Modeling the mor-
phological impact of these large events is a common strategy be-
cause observational records are sparse as instruments can easily
be hampered or displaced by these events. Xu et al. (2016) applies
the Regional Ocean Modeling System (ROMS) to investigate mor-
phological changes for the Louisiana shelf as a result of Hurricanes
Katrina and Rita. Model uncertainty and sensitivity are utilized to
investigate how well ROMS is capable of capturing realistic mor-
phological changes on the shelf. The study indicates that the
magnitude of morphological change is especially sensitive to
model input parameters, where spatial changes in the morphology
is mostly affected by the location of the hurricane tracks, bed shear
stresses, grain size and shelf bathymetry.

Given certain wave conditions, fine sediments, mainly re-
suspended from the shelf, can be transported by the wave bottom
boundary layer offshore to continental margins. Better under-
standing of this mechanism improves insight in offshore carbon
storage mechanisms, as organic matter concentrations correlate
positively with fine sediment concentrations. Upward flow motion
induced by particle interaction causes a hindered settling effect,
making it possible to keep fine sediments in resuspension for a
long time. Parameterization of the hindered effect in numerical
models is not well constrained due to variability in floc structures.
Particle inertia is often ignored in turbulence-resolving studies.
Cheng et al. (2016) evaluates uncertainty of fine sediment trans-
port in the wave boundary layer associated with this para-
meterization applying a highly accurate turbulence-resolving
model. Results reveal that particle inertia is negligible under cer-
tain conditions of fine sediment transport. However Cheng et al.
(2016) nicely show that flocculated particles impact the hindered
settling effect, keeping particles in resuspension and therefore
impacting seafloor sediment mobility. Floc properties must be
taken into account to reduce uncertainty when studying sediment
transport in wave bottom boundary layers, and ultimately any
associated carbon removal.

Cheng et al. (2016) provide a good example of how important
wave events can be. Being able to simulate wave dynamics accu-
rately will reduce uncertainties in for example the resuspension of
sediments. Siadatmousavi et al. (2016) analyzed model sensitivity
of the third generation wave model SWAN to changing boundary
conditions as simulated by different modules that capture the
white capping dissipation process. Results indicate that the quality
of input parameters (high temporal and spatial resolution wind
data) correlates positively with the accuracy of simulated waves.
The nonlinear saturation-based white capping module gave the
best model performance compared to inshore buoy observations.
Further offshore, the WAM white capping dissipation modules
seem to perform better when comparing to remote sensed wave
data.

2.2. Sensitivity and uncertainty studies applied to hydrological
processes

The Earth’s water surface is more than twice as large as the
land surface, but only 2.5% of that water is actual freshwater, of
which almost 69% is not direct accessible as it is stored as icecaps,
glaciers and permanent snowfields (Shiklomanov, 1993). The rate
at which the global hydrologic cycle replenishes freshwater re-
sources that determines the freshwater availability for human use
(Engelman and LeRoy, 1993). Pressure on quantity and quality of
freshwater is most likely to rise as demands increase with a
growing global population to fulfill agricultural, industrial, and
domestic needs. Already 4 billion people experience or live in
areas of severe water scarcity for at least 1 month of the year, of
which half a billion face severe water scarcity all year round
(Mekonnen and Hoekstra, 2016). A better spatial and temporal
understanding of hydrological processes is needed to serve society,
however there are limitations of hydrological measurement tech-
niques as well as available temporal and spatial coverage (Beven,
2001). Being able to accurately simulate surface and groundwater
flows helps us better assess freshwater resources. Mockler et al.
(2016) presents a parameter sensitivity analysis applying three
conceptual hydrological flow models to 31 catchments in Ireland.
Their findings reveal that freshwater quality is most accurately
assessed when all aspects of flow (i.e. overland flow, interflow,
upper and lower groundwater flow) are considered in any model
configuration.

Models become more complex when studying multiple flow
fluxes in both the unsaturated and saturated zones of the sub-
surface, and require subsurface characterization input parameters
that can never be fully resolved. Model input uncertainty is
introduced when establishing input layers for these integrated
hydrological models. To determine the impact of such para-
meterizations, traditional sensitivity analysis requires a large
number of simulations given the many input parameters. Jefferson
et al. (2016) successfully apply a novel method, ‘the active sub-
space method’ to analyze parameter sensitivity of integrated hy-
drological models. The method identifies dominant input para-
meters contributing to uncertainty and how combined inputs re-
late to model output. The method requires less compute time
compared to more traditional sensitivity analyzes methods, such
as a Monte Carlo approach.

An important part of the hydrologic cycle consists of evapo-
transpiration. Therefore accurate quantification of evapo-
transpiration provides a greater understanding of the water cycle
in a region (Long et al., 2014). Here, Yu et al. (2016) present a
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method to quantify uncertainty of evapotranspiration for hydro-
logical models for forest ecosystems. Long-term evapotranspira-
tion measurements are sparse so simulated hydrological para-
meters are compared with observations – assuming that un-
certainty in evapotranspiration will affect the water balance.
Findings demonstrate that coupling vegetation models (e.g.
Biome-BGC) with hydrological catchment models (e.g. PIHM) re-
duces the uncertainty in overall hydrologic variability.

2.3. Sensitivity and uncertainty studies applied to the terrestrial
processes

In the early 1970s, Ahnert (1976) among others developed a
three-dimensional model to simulated hill slope forms. A linkage
between tectonics and topography was therefore adapted and
explored in the 1990s when the first Landscape Evolution nu-
merical Models (LEMs) were developed (Bishop, 2007; Tucker and
Hancock, 2010). It is now well accepted that the interaction of
fluvial and tectonic processes are key processes forming the earth
surface (e.g. Wobus et al., 2006; Tucker, 2009; Tucker and Han-
cock, 2010). To investigate the impact of each of the two processes
to the earth surface evolution separately, Roy et al. (2016) devel-
oped a cutting edge method, quantifying orientation and scale
dependence of topographic anisotropy. Findings show that at the
orogenic scale, tectonic processes are the dominant factor in
controlling topography where fluvial networks typically emphases
the underlying tectonic structures by increasing erosion rates at
for example faults.

Once catchment scale topography emerges, it has significant
impact on hydrological and geomorphological processes (Moore
et al., 1991). Unlike legacy digital representations of topography,
most DEMs are produced from detailed remotely sensed mea-
surements. These measurements are usually subject to error
(Gallant, 2011) and may contain random perturbations (Fig. 1; raw
data). Uncertainties in sediment transport and landscape evolu-
tion, caused by these DEM perturbations are investigated by
Hancock et al. (2016). Changes in DEM perturbation patterns and
magnitudes result in statistically similar morphological landscapes
but differences express themselves in the patterns of erosion and
deposition.

Landscape Evolution Models typically under-recognize the role
of soils (Minasny et al., 2015). As landscape erodes, LEMs simply
redistribute weathered material, not considering soil properties
that could interact with the erosion and transport processes.
Temme and Vanwalleghem (2016) make a compelling case that
soils and landscapes are closely intertwined and therefore soil
processes should be included in LEMs. By performing parameter
sensitivity analyzes for a new soil-landscape model LORICA,
Temme and Vanwalleghem (2016) show that soil formation para-
meters, such as variables controlling the amount and position of
fine clay, have more impact on the geomorphic evolution of
landscapes than geomorphological parameters, like erosion and
deposition.

LEMs are rarely applied as ‘operational models’ or used in the
engineering world. This might change in the nearby future, at least
for advanced geomorphological models that mimic short-time-
scale processes like riverbed evolution or debris flow models.
Morphodynamic models are more commonly applied, but these
models still use simi-empirical sediment transport, and therefore
offer less accurate results. To reduce inaccuracy, calibration of the
most sensitive model input parameters is inevitable (Villaret et al.,
2016). By applying a first-order second moment method using
Algorithmic Differentiation, Villaret et al. (2016) show that para-
meters that describe settling velocity and grain size are the most
sensitive input parameters for the Telemac-2D/Sisyphe Morpho-
dynamic model when studying the evolution of a riverbed.
2.4. Numerical or computational advances in sensitivity and
uncertainty

Modeling Frameworks for Earth surface processes have
emerged since the early 2000s. They tend to offer modularity, such
that a user can couple a set of selected modules in a ‘plug and play’
environment, to build and run a model composite. Modeling Fra-
meworks get more attention because of their capability to: pro-
mote reuse of already existing modules; couple models simulating
different environmental domains, or numerical styles (languages,
grids, time-stepping); and, compare similar domain modules.
Service components like e.g. time stepping, regridding and/or
writing output to a standardized format can be made available to
individual modules or to model composites (Syvitski et al., 2014).
Peckham et al. (2016) discusses a new set of possible framework
functionalities that are becoming integrated in the CSDMS fra-
mework: the ‘model uncertainty components’. This toolkit of un-
certainty components can be called within the framework to de-
rive uncertainty quantifications and parameter estimations for
stand alone and coupled modules. Furthermore, Peckham et al.
(2016) serves as a guide to software toolkits for uncertainty
quantification, inverse modeling and data assimilation.

The capability of coupling modules might also introduce error
or uncertainty as for example module surface boundaries need to
be regridded to being able to exchange information, or adjust-
ments need to be made to spatial and or temperate scales of in-
dividual modules (Fig. 1). Belete and Voinov (2016) discuss spe-
cifically the sensitivity of model characteristics that are related to
model composites by analyzing variations in: a) time stepping, b)
the effect of using different numerical methods and, c) changes in
functional responses between modules that describe the same
processes. This is illustrated by componentizing a simple predator-
prey model into two modules that are coupled through a web
interface. Preliminary outcomes indicate the importance of per-
forming sensitivity analyzes of time stepping and functional syn-
chronization when integrating modules.
3. Accessibility of model uncertainty and parameter sensitivity
toolkits in the geosciences

Sciences that apply computational methods are having, to
various degrees, difficulty handling the concept of numerical
predictability, uncertainty quantification and model validation. As
models become more complex, so does the need to assess their
validity especially when full-scale testing is not possible (Oreskes
et al., 1994; Hemez and Doebling, 2001). Today’s complex models
can access model coupling frameworks, powerful computing
clusters and high spatial and temporal resolution input para-
meters. There is a growing societal demand for more complex
models. For example models that incorporate meteorologic, cli-
matic and tectonic processes to predict future changes in the
earth-surface system, so called ‘Earthcasts’ (Murray et al., 2009).
Complex models require multi-dimensional input parameters,
leading to an increase in model input parameters some of which
need to be estimated and thus pose an ill-conditioned problem
(Pokhrel et al., 2008).

Scientists are also increasingly relying on numerical model
outcomes to replace physical measurements. A better under-
standing and trustworthiness of numerical schemes are needed for
model-based decision support, such as policy analysis, integrated
assessment, risk assessment, and environmental impact assess-
ment. Each requires some integration of uncertainty quantification
(Walker et al., 2003), thus providing for better policies. Re-
cognizing the need to better understand uncertainties in model
results, the U.S. Department of Energy’s (DOE’s) National Nuclear
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Security Administration, the DOE’s Office of Science, and the U.S.
Air Force Office of Scientific Research requested that the U.S. Na-
tional Research Council study the mathematical sciences founda-
tions of verification, validation, and uncertainty quantification
(National Research Council, 2012). Key uncertainty research topics
(NRC 2012) that fit the scope of this special issue include:

– Development of methods for propagating and aggregating un-
certainties and sensitivities across hierarchies of models.

– Development of algorithms and strategies across the spectrum
of uncertainty qualification related tasks that can efficiently use
modern and future massively parallel computer architectures.

There is a growing recognition that model frameworks and
model web services can support scientists in providing easy access
to state of the art toolkits to quantify uncertainty and track un-
certainty propagation through a model chain (Schulz, et al., 2012).
Examples include European efforts to the develop an Uncertainty
Markup Language (UncertML) for GIS platforms by Williams et al.
(2009), or recent efforts in the United States, by the CSDMS In-
tegration Facility, to integrate modules of DAKOTA into model
frameworks. DAKOTA is a multilevel parallel object-oriented fra-
mework useful for design optimization, parameter estimation,
uncertainty quantification, and sensitivity analysis (Adams et al.,
2013), and is available through the CSDMS Web Modeling Tool
(WMT) (Syvitski et al., 2014).

Uncertainty quantification should become standard parts of the
respective core curricula for environmental scientists, engineers,
and statisticians. Future numerical modeling advances will be
determined in part by how well uncertainty quantification is in-
tegrated into computational models and methods and as sup-
ported by computing infrastructure (NRC, 2012).
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