
Computers & Geosciences 90 (2016) 152–161
Contents lists available at ScienceDirect
Computers & Geosciences
http://d
0098-30

n Corr
E-m
journal homepage: www.elsevier.com/locate/cageo
Case study
Towards uncertainty quantification and parameter estimation for Earth
system models in a component-based modeling framework

Scott D. Peckham a,n, Anna Kelbert b, Mary C. Hill c, Eric W.H. Hutton a

a INSTAAR, University of Colorado, Boulder, CO 80309, United States
b CEOAS, Oregon State University, Corvallis, OR 97331, United States
c Department of Geology, University of Kansas, Lawrence, KS 66045, United States
a r t i c l e i n f o

Article history:
Received 20 January 2015
Received in revised form
2 March 2016
Accepted 3 March 2016
Available online 4 March 2016

Keywords:
Model uncertainty
Modeling frameworks
Component-based modeling
Optimization
Inverse problems
Nonlinear least squares
Parameter estimation
Longitudinal river elevation profiles
x.doi.org/10.1016/j.cageo.2016.03.005
04/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail address: Scott.Peckham@colorado.edu (S.D
a b s t r a c t

Component-based modeling frameworks make it easier for users to access, configure, couple, run and
test numerical models. However, they do not typically provide tools for uncertainty quantification or
data-based model verification and calibration. To better address these important issues, modeling fra-
meworks should be integrated with existing, general-purpose toolkits for optimization, parameter es-
timation and uncertainty quantification.

This paper identifies and then examines the key issues that must be addressed in order to make a
component-based modeling framework interoperable with general-purpose packages for model analysis.
As a motivating example, one of these packages, DAKOTA, is applied to a representative but nontrivial
surface process problem of comparing two models for the longitudinal elevation profile of a river to
observational data. Results from a new mathematical analysis of the resulting nonlinear least squares
problem are given and then compared to results from several different optimization algorithms in DA-
KOTA.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Many Earth science domains rely on numerical modeling to
gain a better understanding of Earth system processes. Modeling
addresses a wide variety of problems in the realms of climate,
weather, hydrology, land surface dynamics, geodynamics, geo-
physics, hydrogeophysics and structural geology, among others.
Earth system models are based on physical, chemical, biological
and stochastic processes that make it theoretically possible to
predict changes likely to occur at, below, or above a particular
location on Earth in response to various types of forcing. Data-
based model verification and validation – including more formal
data integration through model parameter estimation – and
quantification of ever-present uncertainty are critical in order to
develop reliable numerical models for observed Earth processes.

The Community Surface Dynamics Modeling System, or
CSDMS, is one example of a component-based modeling frame-
work (Peckham et al., 2013; Syvitski et al., 2014), employed in the
realm of Earth surface process dynamics, with capabilities cur-
rently being extended to deep Earth process modeling. Just as
CSDMS provides interoperability and coupling mechanisms for
. Peckham).
process-based models, it could also provide simplified access to
model analysis programs. In this paper, we discuss extensions to
CSDMS that would be required for its component-based frame-
work to interoperate with uncertainty quantification and para-
meter estimation (inverse modeling) toolkits.
2. Background: models and modeling frameworks

2.1. What is a model?

There are many possible definitions of the word model. This
paper is concerned with computational models that predict the
evolution of one or more system state variables over time as a
function of observations at a given start time. These predictions
are made using a set of equations that express laws of physics and
other constraints on the problem of interest. Laws of physics are
often expressed as differential equations that include a time de-
rivative, and computational models use a discretization of space
and time and some combination of numerical methods to solve
these governing equations. Models generally require values for one
or more input variables, often used to describe the initial state of
the system and often specified as spatial scalar or vector fields.
These may be measured or estimated and are distinct from the
model's design parameters (also called control, model or

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2016.03.005
http://dx.doi.org/10.1016/j.cageo.2016.03.005
http://dx.doi.org/10.1016/j.cageo.2016.03.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.03.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.03.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.03.005&domain=pdf
mailto:Scott.Peckham@colorado.edu
http://dx.doi.org/10.1016/j.cageo.2016.03.005

S.D. Peckham et al. / Computers & Geosciences 90 (2016) 152–161 153
configuration parameters), that must be specified in the equations
that define the model itself. A model run generates numerical
values for output variables (i.e. simulated observations or predic-
tions) that can be compared to observations. A very simple ex-
ample is given by =y c xp, where x and y are input and output
variables, respectively, and c and p are design parameters.

2.2. What is a modeling framework?

Over the last decade, a number of different modeling frame-
works have emerged, both within academia and at several differ-
ent federal agencies. An example from the academic modeling
community is the NSF-funded CSDMS project (cited in the In-
troduction) which primarily serves the Earth surface process
modeling community. Other examples from the federal or opera-
tional modeling community include

� ESMF (Earth System Modeling Framework), which primarily
serves the atmosphere and ocean modeling community,

� OMS (Object Modeling System), developed by the USDA (US
Department of Agriculture) primarily for agricultural modeling
and

� FRAMES (Framework for Risk Analysis in Multimedia Environ-
mental Systems), developed by the US EPA (Environmental
Protection Agency), primarily for environmental modeling.

(Hill et al., 2004; David et al., 2002; Whelan et al., 1997). A project
called Earth System Bridge, funded as a building block in NSF's
EarthCube initiative, is developing adapters that make it easy for
any given model to be prepared as a plug-and-play component
that can be used in (or moved between) multiple modeling
frameworks, including those above.

The intent of all such modeling frameworks is to provide a
software environment in which users can choose models from a
collection and easily couple them to create customized, composite
models in a plug-and-play manner. This facilitates code re-use and
interoperability. The models in the collection may span a wide
variety of different physical processes and are often written by
many different authors, typically experts in their field. In many
cases, the input variables required by one model can be provided
by another model in the collection, so there is strong motivation to
couple them. However, the models typically differ in many ways,
such as their programming language, computational grid, time-
stepping scheme, variable names and units. In addition to pro-
viding a simple mechanism for coupling models, modeling fra-
meworks typically contain service components or mediators that
automatically reconcile differences between the models that
would otherwise prevent them from sharing variables. Examples
of mediators include spatial regridders, time interpolators, unit
converters and semantic mediators. These mediators and other
capabilities of the framework – such as the ability to write com-
posite model output to different file formats with standardized
metadata, or to provide a graphical user interface (GUI) and help
system – provide both model users and developers with sig-
nificant added value.

There is a strong interest in adding a new capability to mod-
eling frameworks, namely the ability to track and analyze un-
certainty either for a single (stand-alone) model or for a coupled
set of models. For example, this is one of the major goals of the
second funding cycle of the CSDMS project. Since several powerful,
integrated packages for uncertainty analysis already exist (Section
4), integrating one or more of them into a modeling framework
seems like the best way to achieve this goal. One such package,
called DAKOTA (Adams et al., 2013b, 2013a) is of particular interest
because it provides a unified interface to a large collection of open-
source packages for optimization and uncertainty quantification.
DAKOTA and similar packages offer an impressive suite of un-
certainty analysis tools, including tools for model sensitivity ana-
lysis (e.g. sampling methods to explore the design parameter
space) as well as inverse modeling (or parameter estimation).
However, the sensitivity analysis tools are easier to integrate
within a modeling framework because they do not usually require
capabilities beyond what a typical model (or composite model)
already provides. By contrast, inverse modeling requires con-
struction of a suitable objective function and computation of de-
rivatives and is also affected by how models are coupled. So al-
though we are interested in bringing all of the capabilities of
packages like DAKOTA into modeling frameworks like CSDMS, this
paper will focus on what a modeling framework must do to ac-
commodate inverse modeling. To set the stage, the next section
provides a very brief, self-contained overview of inverse modeling.
For a more extensive treatment, see Tarantola (2005), Caers (2011)
or Aster et al. (2013).
3. Background: inverse modeling methods

Forward modeling simply refers to running a computational
model for a given set of input variables and design parameters to
generate output variables. Inverse modeling refers to efforts to in-
vert this process, that is, to determine what a model's input vari-
ables and/or design parameters would need to be set to in order to
generate a given set of output variables. In most cases, this inverse
problem is ill-posed, meaning that there is not a unique set of input
variables and design parameters that can produce a given output,
but rather multiple sets. However, regularization methods can be
used to introduce additional criteria that discriminate between
and preferentially select from these multiple sets.

A forward model's performance can be quantified by defining a
metric that measures the “distance” between its output variables
(or predictions or simulated data) and independent measurements
(or observations). Differences between corresponding observed
and predicted values are known as residuals, and this metric –

known as the penalty, cost or objective function (Section 3.1) – is
typically a function of the residuals, input variables and design
parameters. Inverse modeling is concerned with how to make
forward models perform as well as possible (model calibration), or
with seeking the optimal input variables to predict observations to
within measurement error. They therefore make use of optimiza-
tion methods that seek to minimize an objective function, often
subject to additional constraints.

Earth system modelers range widely in their familiarity with
and adoption of inverse modeling methodology. For example,
groundwater modelers have a long history of using inverse mod-
els, while sediment transport modelers do not. Inclusion of these
methods in modeling frameworks should encourage broader use
of these methods.

3.1. Constructing an objective function

The objective function must be a metric that measures a forward
model's performance, or the abstract “distance” between observed
and model-predicted or simulated values. There are many differ-
ent metrics that can be used, such as those based on the one-
parameter family of Lp norms, given by

∑∥ − ∥ = −
()

() ()

=

() ()
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟y yy y

1
obs sim

k

n

k
obs

k
sim p

p

1

1/

where y is a vector with components yk and >p 0 is a scalar. The
case where p¼2, or the L2 norm, is the basis of the popular least
squares metric. While this metric gives disproportionate weight to

Fig. 1. The Rosenbrock function, a classic test problem in optimization.

S.D. Peckham et al. / Computers & Geosciences 90 (2016) 152–161154
outliers, it ensures that the derivative of the objective function is
continuous where the error is zero.

While (1) provides a simple measure of model performance, it
is well known in statistics that model fit can be too good. In in-
version, we are therefore only interested in optimizing the ob-
jective function to within the data errors, and seek to avoid over-
fitting the data. To that effect, the general penalty function (1) is
usually modified to scale the residuals by a data covariance. For
examples, see Doherty and Welter (2010) and Foglia et al. (2013).

As mentioned previously, many inverse problems are ill-posed,
meaning that not one or several, but sometimes a subspace in the
model parameter space will satisfy the measured data to within
the measurement errors. In some domains, including hydrology
(Beven and Binley, 1992; Beven and Freer, 2001; Beven, 2006), this
problem is known as equifinality. We are thus typically interested
in obtaining not just any solutions, but the smoothest among those
that are satisfactory. We may also want the solution to be as close
to our a priori knowledge about the model (or design) parameters,
as possible, while still fitting the measured data. Many of these
objectives are obtained with a set of methods called regularization.
Details of these methods are provided by Tikhonov (1963), Parker
(1984), Hill and Tiedeman (2007) and Renard et al. (2011).

3.2. Optimization methods

Given an objective function, there are a variety of optimization
methods for finding either its minima or maxima, as required.
Most of these can be classified as local or global (the others are
hybrid). Local methods start somewhere in the design parameter
space and then search in that vicinity for a local extrema — the
“closest” one to the starting point, in some sense. Some local
methods are gradient-based and some are gradient-free. Global
methods seek global extrema, and therefore have some way of
looking (or sampling) everywhere, not just near a starting point.

A classic optimization test problem is to find the (single) global
minimum of the Rosenbrock function (Rosenbrock, 1960):

() = (−) + (−) ()f p p a p b p p, . 21 2 1
2

2 1
2 2

The second, quartic term is a valley-shaped surface that achieves
its minimum value of zero along the parabola =p p2 1

2. Increasing
the value of b gives steeper valley walls and increases the difficulty
of this optimization problem (Lampton, 1997). The addition of the
first term results in a function, f, with a single global minimum at
the point () = ()p p a a, ,1 2

2 , where () =f p p, 01 2 . Typically one sets
the constants to a¼1 and b¼100. Here, p1 and p2 are the model
design parameters that are varied to improve the design of the
model.

This problem provides a good test of an optimization algorithm
because the global minimum lies along the bottom of a narrow
valley with steep walls and a very flat bottom. While it is easy for
algorithms to find the valley, it is difficult to converge to the lo-
cation of the global minimum within this valley. The Rosenbrock
function, shown in Fig. 1, is used as an example in the DAKOTA
package and provides context for our example problem to be ex-
amined in (5).

3.2.1. Derivative-based optimization
Derivative-based optimization algorithms require computing

the gradient and/or Hessian of an objective function. The gradient
is the vector of first derivatives of the objective function with re-
spect to each of the continuous design parameters, while the Hes-
sian is a square matrix of the mixed second derivatives. A Jacobian
is a matrix of gradient vectors for multiple functions. If (…)f x x, , n1

is the objective function of the design parameters, the gradient
and Hessian matrix are
∇ =

∂
∂
∂
∂
⋮
∂
∂

() =

∂
∂

∂
∂ ∂

⋯ ∂
∂ ∂

∂
∂ ∂

∂
∂

⋯ ∂
∂ ∂

⋮ ⋮ ⋱ ⋮
∂

∂ ∂
∂

∂ ∂
⋯ ∂

∂ ()

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

f

f
x

f
x

f
x

H f

f
x

f
x x

f
x x

f
x x

f
x

f
x x

f
x x

f
x x

f
x

, .

3n

n

n

n n n

1

2

2

1
2

2

1 2

2

1

2

2 1

2

2
2

2

2

2

1

2

2

2

2

Derivative-based methods include Gradient Descent, Conjugate Gra-
dient, Sequential Quadratic Programming (SQP) Newton Methods and
Method of Feasible Directions (MFD) (DAKOTA includes multiple var-
iants of these and more). All derivative-based methods require re-
peated derivative evaluations at (typically) at least several dozens to
several hundreds of points in the model parameter space. They are
best suited to finding local minima near initial guesses.

Many models of physical processes are based on mathematical
functions that have continuous first and second derivatives with
respect to their parameters. In addition, many optimization pro-
blems can be formulated in terms of cost (or penalty) functions
that have continuous first and second derivatives. For these types
of models, it is often possible to find local extrema (stationary
points) of the function using standard methods of calculus, i.e. by
determining locations where derivatives are equal to zero. (See
Section 5.) A second derivative test can then be used to determine
whether a minimum or maximum occurs at that location. For
these analytic models, the derivative can be computed by symbolic
differentiation and model code can be written to return the re-
sulting functions evaluated at required points in the parameter
space. However, this situation is less common in practical
geoscience applications.

For the typical case where computational models do not pro-
vide analytic derivatives of their output variables with respect to
the design parameters, brute force numerical differentiation is ty-
pically required. To compute the derivative of the objective func-
tion by numerical differentiation, each of the model design para-
meters, xi, is, in turn, slightly perturbed around its local value. The
objective function is evaluated for the unperturbed and the per-
turbed parameter, and the difference is taken to estimate one
entry in the gradient vector. The number of forward model runs to
compute the gradient vector at a point with this method is thus
(+)N 1m , where Nm is the number of design parameters and be-
comes impractical for large parameter spaces.

The third type of differentiation is distinct from the first two
classical types and is usually called automatic differentiation. It
exploits the fact that every computer program, no matter how

S.D. Peckham et al. / Computers & Geosciences 90 (2016) 152–161 155
complicated, performs calculations by combining elementary ar-
ithmetic operations (addition, subtraction, multiplication, division,
powers, etc.) with evaluations of elementary functions (exp, log,
sin, cos, etc.). By applying the chain rule to this sequence of op-
erations it is possible to automatically compute derivatives of ar-
bitrary order that are accurate to the machine's working precision
while using only several times more operations than the original
program. Many such tools have now reached maturity (e.g.,
OpenAD, Utke et al., 2014; see http://www.autodiff.org/ for a
comprehensive list). With automatic differentiation, the cost of
computing the gradient vector varies, but typically takes as much
time as several (e.g. 2–12) forward model runs, which could be a
great improvement over numerical differentiation for large model
parameter spaces.

Finally, the adjoint state method is available for computing the
gradients at the cost of 2 model runs, by making clever use of certain
symmetries in computational model formulations. Errico (1997)
provides an accessible introduction to this method. It requires writ-
ing an alternative adjoint model, which is similar to the forward
model and typically has very similar or identical physics, except for
certain sign conventions. However, various convergence complica-
tions may arise making the writing of the adjoint code a somewhat
nontrivial task. Once the adjoint code exists, it may be used for re-
peated, extremely efficient, and accurate derivative calculations.

3.2.2. Derivative-free optimization
Derivative-free methods do not require computing derivatives of

the objective function and can therefore be used for a larger class of
optimization problems where continuous derivatives may not exist
(including problems with discrete parameters). These methods can be
classified as either local or global. Local methods use a variety of dif-
ferent algorithms for searching the parameter space for optimal so-
lutions and for refining or focusing the search in the vicinity of good
solutions to find better solutions. Examples include Pattern Search
methods (e.g. Asynchronous Parallel Pattern Search, COLINY Pattern
Search and Mesh Adaptive Search), Simplex methods (e.g. Parallel
Direct Search, COBYLA and Nelder–Mead) and Greedy Search Heuristic
(e.g. Solis–Wets method). Global methods simultaneously search across
the entire parameter space. Examples include Division of RECTangles
(DIRECT) and Evolutionary Algorithms (EA), which are based on con-
cepts from Darwin's Theory of Evolution and concepts from genetics
(e.g. natural selection, reproduction, mutation, crossover, inheritance
and recombination). Implementations of these and other derivative-
free methods are also available and documented within the powerful
DAKOTA toolkit.

Population-based optimization is another important class of gra-
dient-free optimization methods. Examples include Genetic Algo-
rithms (e.g. from the larger class of Evolutionary Algorithms), Memetic
Algorithms (based on the concept of memes, which combine an evo-
lutionary or population-based algorithm with individual learning or
local improvement procedures), Swarm Algorithms (e.g. Ant Colony
Optimization, Particle Swarm Optimization, Intelligent Water Drops),
Harmony Search, Cuckoo Search and Differential Evolution.
Fig. 2. Flowchart showing how an inverse modeling or uncertainty analysis ap-
plication such as DAKOTA or UCODE (represented by blue and white boxes) typi-
cally interacts with a process model, such as those in CSDMS (red boxes). Modified
from Banta et al. (2008). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
4. General-purpose software packages for inverse modeling
and uncertainty quantification

There is a rich foundation in the area of inverse modeling and
uncertainty quantification that could potentially be incorporated
into a component-based modeling framework. Each of the soft-
ware packages listed here is easy to obtain (many are open-source)
and provide a rich collection of methods.

� DAKOTA, 2015 (Design Analysis Kit for Optimization and Ter-
ascale Applications) http://dakota.sandia.gov/software.html
� UCODE/Jupiter API, 2015 (Joint Universal Parameter IdenTifica-
tion and Evaluation of Reliability, Poeter et al., 2014) http://
igwmc.mines.edu/freeware/ucode/

� PSUADE, 2014 (Problem Solving environment for Uncertainty
Analysis and Design Exploration, PSUADE, 2014) http://computa
tion.llnl.gov/casc/uncertainty_quantification/

� PEST, 2015 (Model-Independent Parameter Estimation and Un-
certainty Analysis) http://www.pesthomepage.org/Home.php

� Ostrich, 2008 (Optimization Software Toolkit) http://www.civil.
uwaterloo.ca/lsmatott/Ostrich/OstrichMain.html

� TAO, 2014 (Toolkit for Advanced Optimization), with a focus on
gradient-based search methods http://www.mcs.anl.gov/re
search/projects/tao/

� QUESO, 2014 (Quantification of Uncertainty for Estimation, Si-
mulation and Optimization) https://red.ices.utexas.edu/pro
jects/software/wiki/QUESO

� STEPS, 2012 (Stochastic Engine for Pathway Simulation) http://
steps.sourceforge.net/STEPS/default.php

Fortunately, there is a fairly standard mechanism that inverse
modeling or uncertainty analysis applications use to interact with
process models, such as those in CSDMS, as illustrated in Fig. 2.
After the user selects and configures an analysis method, the ap-
plication generates the input data needed for that method, saves it
to the model's configuration file (using a blank template), and runs
the model repeatedly with different inputs. After each model run,
a post-processing script scrapes results from the model's output
files, which may include evaluation of a cost function or its deri-
vatives, and uses these results to perform the analysis. In a mod-
eling framework, the model to be analyzed may be a composition
of many separate but connected component models.

Many of these general-purpose toolkits are implemented as Py-
thon packages, or Cþþ/Fortran libraries, to streamline integration
with computational models; some others would be harder to in-
tegrate. Each has unique features. Python packages for uncertainty
quantification include uncertainty, soerp and mcerp. (See http://py
thonhosted.org/uncertainties/ for more information.)
5. Example problem: finding best fits to longitudinal elevation
profiles

We now illustrate a small part of what a toolkit such as DA-
KOTA has to offer, using a type of problem that will be familiar to

http://www.autodiff.org/
http://dakota.sandia.gov/software.html
http://igwmc.mines.edu/freeware/ucode/
http://igwmc.mines.edu/freeware/ucode/
http://computation.llnl.gov/casc/uncertainty_quantification/
http://computation.llnl.gov/casc/uncertainty_quantification/
http://www.pesthomepage.org/Home.php
http://www.civil.uwaterloo.ca/lsmatott/Ostrich/OstrichMain.html
http://www.civil.uwaterloo.ca/lsmatott/Ostrich/OstrichMain.html
http://www.mcs.anl.gov/research/projects/tao/
http://www.mcs.anl.gov/research/projects/tao/
https://red.ices.utexas.edu/projects/software/wiki/QUESO
https://red.ices.utexas.edu/projects/software/wiki/QUESO
http://steps.sourceforge.net/STEPS/default.php
http://steps.sourceforge.net/STEPS/default.php
http://pythonhosted.org/uncertainties/
http://pythonhosted.org/uncertainties/

Table 1
Best-fit parameters for the Whipple–Tucker (1999) model to the Beaver Creek main
profile data.

Optimization method (DAKOTA or theory) p0 c0 R2

Method in Appendix A 0.133 14.68 0.90
NL2SOL (analytic gradients) 0.133 14.68 0.90
NL2SOL (numeric gradients) 0.133 14.68 0.90
OPTþþ Gauss–Newton (analytic gradients) 0.133 14.68 0.90
OPTþþ Gauss–Newton (numeric gradients) 0.133 14.68 0.90
Pattern search (no gradients) 0.133 14.68 0.90
Evolutionary algorithm (no gradients) 0.130 14.82 0.90

Table 2
Best-fit parameters for the Peckham (2015) model to the Beaver Creek main profile
data.

Optimization method (DAKOTA) γ ⋆R R2

LMFIT in IDL (analytic gradients) �0.701 0.0035 0.99
NL2SOL (analytic gradients) �0.701 0.0035 0.99
NL2SOL (numeric gradients) �0.702 0.0035 0.99
OPTþþ Gauss–Newton (analytic gradients) �0.701 0.0035 0.99
OPTþþ Gauss–Newton (numeric gradients) �0.702 0.0035 0.99
Pattern search (no gradients) �0.741 0.0041 0.99
Evolutionary algorithm (no gradients) �0.678 0.0031 0.99

Fig. 3. Best fit of Whipple–Tucker (1999) model to Beaver Creek main channel
profile, using NL2SOL algorithm in DAKOTA.

S.D. Peckham et al. / Computers & Geosciences 90 (2016) 152–161156
many earth surface process modelers. This particular problem —

which at first glance appears to be quite simple — actually re-
presents a nontrivial optimization problem (similar to the Rosen-
brock problem in Section 3.2) that requires more sophisticated
optimization algorithms.

Peckham (2015) reviews three different physics-based deriva-
tions that predict a particular functional form for the longitudinal
elevation profiles of rivers (i.e. elevation as a function of distance
downstream from a drainage divide). These are concave-up func-
tions that are steep near the drainage divide or ridgetop, but
which rapidly flatten out with increasing distance downstream.
The functions contain parameters that relate to the physics of the
problem, but which are not easily measured. For this example, two
different models will be considered. The first, derived by Whipple
and Tucker (1999), can be written as

() = − ()(−) ≠ ()z x z c p x x p/ , 0. 4p p
0 0

While this looks simple, the parameters p and c are actually
functions of eight other physical and geometric parameters. The
design or fitting parameters for this model are c and p, and

() =z x z0 0 for any values of c and p. Here, z0 is the elevation at a
distance x0 from the ridgetop, and we typically take =x 00 .
However, this model has an unrealistic and infinite slope at =x x0

when =x 00 . A second model, derived by Peckham (2015), predicts
that

()() = + − + −
()γ

γ γ
⋆

+ ⋆ γ
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡⎣ ⎤⎦
⎫
⎬
⎭

z x z
p R

S S R x x
1

.
5

p
0 0

1
0 0

Here, γ γ= (+)γp 1 / , and the design parameters are γ (an exponent
in a slope-discharge formula) and ⋆R (a rescaled, geomorphically
effective rainrate). This function includes S0, the measured, finite
slope at x0, and has | ′() | =z x S0 0. The theoretical value of γ typically
lies between �1 and 0. If we treat S0 as given by direct observa-
tion, then both models have two design parameters.

For this example, both models are compared to observational
data for the main channel of Beaver Creek, Kentucky, as measured
by RiverTools (Peckham, 2009) from a digital elevation model with
a grid-spacing of 10 m. This data set consists of 2426 ()x z,k k pairs,
with =x 0.00 , =z 668.330 (m), and =S 0.4610 . A nonlinear, least-
squares cost function was constructed from the residuals using the
L2 norm; see (1) and Appendix A. While most optimization algo-
rithms can find the best-fit parameters for the second model, the
first model leads to a nontrivial optimization problem. For ex-
ample, we tried the well-known Levenberg–Marquardt (LM) al-
gorithm (Moré, 1977) — a robust and adaptive algorithm which
combines the benefits of the gradient descent and Gauss–Newton
methods, and which is able to solve the Rosenbrock problem. We
tried the implementation of the LM algorithm in IDL (Interactive
Data Language) called LMFIT, and the one in MatLab, provided as
an option for lsqnonlin. Both could get close but failed to converge
for this model, even after 5000 double-precision iterations with a
tolerance of 10�4, and even when starting near the best-fit values.
The LM algorithm is used by or available in many other curve-
fitting packages, including Microsoft Excel.

A new mathematical treatment of this nonlinear least squares
problem is given in Appendix A, for a class of models that includes
(4) as a special case. It allows the best-fit c and p to be computed
quickly and reliably and provides a way to evaluate the results
from the various algorithms. Tables 1 and 2 show the best-fit
parameters to the Beaver Creek data set for the two profile models
as computed by the method in Appendix A and by several opti-
mization algorithms in DAKOTA. The corresponding input files and
DAKOTA configuration files are available on GitHub (github.com/
mcflugen/peckham_et_al_2016). The NL2SOL routine uses a gen-
eralization of the Levenberg–Marquardt algorithm, but converges
for both models.
For the Whipple–Tucker model, the analytic gradient with re-

spect to p contains terms with ()x xlnp , which approach 0 as x goes
to zero for >p 0. These initially caused problems until the analytic
gradient functions were modified accordingly. It was also found
that all methods were sensitive to the value of x0 — perturbing x0
from 0 to a small value such 0.01 resulted in significantly different
best-fit parameters. Fig. 3 shows the best fit of (4) to the Beaver
Creek profile data, obtained with the NL2SOL method in DAKOTA.
Fig. 4 shows the best fit of (5) to the same profile data, obtained
with the NL2SOL method in DAKOTA.
6. Sources of model error and how modeling frameworks can
help reduce them

In addition to helping quantify model uncertainty, modeling
frameworks can also be augmented to help reduce some, but not
all sources of model error. To see how, it is helpful to consider
various sources of error in some detail. Sources of error can be
classified into four main categories, namely (1) model inadequacy,
(2) input data inadequacy, (3) model parameter and input data

Fig. 4. Best fit of Peckham (2015) model to Beaver Creek main channel profile,
using NL2SOL algorithm in DAKOTA.

S.D. Peckham et al. / Computers & Geosciences 90 (2016) 152–161 157
uncertainty and (4) developer and user errors.

6.1. Model inadequacy

Models may be inadequate for their intended purpose for a
variety of reasons, such as

� lack of knowledge of the true, underlying physics. For example,
it was impossible to explain the observed precession of the
planet Mercury using classical (Newtonian) mechanics, but it
was finally explained in 1916 by Einstein's more complete the-
ory of general relativity (curvature of space-time near the Sun.)
This lack of knowledge was responsible for what has been called
an unknown unknown;

� neglected effects or simplifying assumptions (e.g. air
resistance);

� numerical method and approximation problems (convergence,
stability, consistency, fidelity, etc.);

� model coupling problems (e.g. feedbacks, conservation problems).

The main ways to reduce uncertainty due to model inadequacy
are (1) scientific research to better understand physical processes
and systems that are poorly understood, (2) careful selection of
numerical methods and (3) various forms of testing. As for testing,
there are five main things that models can be tested or evaluated
against, namely:

� analytic solutions and test problems;
� measured data (i.e. observed vs. predicted);
� valid range or reasonableness (e.g. sanity tests);
� other models (especially for complex models, e.g. climate

models);
� their former selves (e.g. regression and unit tests, often auto-

mated).

It is straightforward to build this type of testing into a modeling
framework, and CSDMS has already started to build a collection of
analytic solutions and test data sets for this purpose. In addition,
modeling frameworks result in models being used by large groups
of people, which leads to them becoming more reliable and robust,
particularly when their source code is open.

6.2. Input data inadequacy

Inadequate input data is another key source of model error.
Note that even if the mathematics and physics of a model were
perfect, perfect predictions would not be possible because input
data (e.g. initial conditions over the model domain) will always be
imperfectly known and incomplete. For example, for spatial
models, surrogates for actual measurements across the model
domain based on remotely sensed imagery are often the best
available data for initial conditions (e.g. soil moisture or rainfall
rates). Issues include

� poor spatial or temporal resolution;
� poor quality;
� storage or transfer errors (e.g. byte order, data type, truncated

files, formatting, etc.)

Themainways to reduce this type of uncertainty are (1) better data
collection methodologies and (2) careful data preparation and doc-
umentation (with provenance metadata). Modeling frameworks pro-
vide an ideal platform for guiding users through input data prepara-
tion steps, checking data for errors, displaying documentation and
managing metadata. As with models, data sets become more reliable
and robust when they are used by large groups of people.

6.3. Model parameter and input data uncertainties

This category includes model calibration problems, which arise
when the model design parameters are not set to their optimal (or
even reasonable) values. Measurement or observation error in
input data can also result in biased or incorrect simulated data or
model predictions (a phenomenon known as aleatoric uncertainty).
DAKOTA and similar toolkits can provide modeling frameworks
with powerful tools for assessing and quantifying this source of
uncertainty.

6.4. Developer and user errors
• incorrect implementation or developer error (e.g. bugs)
○ regressions (bugs due to updates or improvements);
○ bugs may be in software dependencies or in the model itself;
○ coordinate projection, sign convention, or units mismatch

(and failure to convert);
○ problems at domain boundaries;

• preparation of input data (model setup);
• incorrect or unintended use (e.g. unawareness of limitations).

Developer error can be reduced through a variety of best soft-
ware development practices, such as various types of testing (see
above), version control, use of design principles such as separation
of concerns, use of standards and frequent use. User errors can be
addressed in a variety of ways, including:

� documentation (e.g. tech tips, FAQs, manuals, tutorials, context
help);

� GUIs (that can restrict possible inputs based on context);
� software to check inputs, conditions, compatibility, etc.;
� training (and certification);
� supervision by an expert.

Most of these strategies would be straightforward to implement
within a modeling framework.
7. Towards including inverse modeling and uncertainty
quantification in a component-based modeling framework

Inclusion of uncertainly quantification, parameter estimation and
inversion tools in a modeling framework inevitably requires a certain

Fig. 5. Model coupling configurations in a component-based framework.

S.D. Peckham et al. / Computers & Geosciences 90 (2016) 152–161158
compromise on efficiency, but has the potential to democratize these
techniques, providing Earth system modelers with fingertip access to
model validation approaches, without the typically steep learning
curve and software development requirements. Here however, we
aim to show that in a smart framework, this efficiency compromise
may not be a significant drawback. For this, we consider several
common use case scenarios, illustrated in (5).
7.1. Stand-alone models

In a modeling framework with access to “uncertainty tools”, a
stand-alone computational model could immediately make use of
external parameter estimation tools based on derivative-free op-
timization (Section 3.3.2). Derivative-based optimization methods
(Section 3.3.1) could also be directly employed, using numerical
differentiation to iteratively compute derivatives of the penalty

S.D. Peckham et al. / Computers & Geosciences 90 (2016) 152–161 159
function. However, both types of methods are only applicable for
models that have relatively few significant input model para-
meters that are free to vary. For models with a large model para-
meter space, adjoint techniques must be employed to compute
penalty function derivatives for derivative-based optimization (see
more details on the adjoints in Section 3.3.1), and to compute the
data sensitivities (or the full Jacobian) needed by the uncertainly
quantification techniques. These adjoint codes are most efficient if
hand-coded, and the model developer could provide an adjoint for
the system to use, if such a tool already exists. Users would then
immediately enjoy the full variety of techniques available in the
framework, while sacrificing little on the efficiency. For models
that do not have an adjoint, the use of automatic differentiation
could be considered. (It should be noted that an adjoint version of
every generic interpolation routine supported by the framework
would also need to be provided to enable this functionality.) Thus,
the methods described here could be beneficial to modelers who
are interested in using and/or testing out a variety of inversion
techniques with minimal additional development investment.
However, the true value of the framework-based approach to in-
version becomes evident when inversion and/or parameter esti-
mation for coupled models is considered. We now discuss two
distinct use cases.

7.2. Models coupled in series

This happens when the output of a numerical model A provides
input to a different numerical model B. The output of model B may
then be directly compared with measured data. The user may be
interested in calibrating the input parameters of model A to better
match observations. For example, a lithospheric deformation code
could be coupled to a landscape evolution code, which could in
turn be validated by surface topography.

In this scenario, the model coupling framework will essentially
bundle the sequence of models into one for the purposes of an
external model calibration or inversion tool. For derivative-based
optimization techniques, the derivative of the penalty function
with respect to the input parameters to the model sequence would
be obtained by chain rule, specifically applying the adjoint of
model B to the data residuals, and the adjoint of model A to the
results of the adjoint on model B to obtain the complete derivative
of the penalty function. For simpler models, brute-force derivative
multiplication would be performed. All of these options would be
handled at the framework level, making it possible to streamline
complicated model validation and calibration scenarios.

7.3. Models coupled in parallel

A very different model coupling setup occurs when a single set
of parameters is input to more than one computational model. In
this case, models A and B have the same inputs, but they predict
different variables, and are validated by different data. The goal is
then to use all data jointly to obtain the best matching set of input
parameters. Such is, for example, the problem of joint inversion in
geophysics: parameters such as temperature, pressure, presence of
melt, chemical impurities, and water content are the true para-
meters of interest. These may be used to compute the indirectly
observed Earth parameters, such as seismic velocities or electrical
conductivity, which are in turn used to compute the predicted
observables at the Earth's surface. A joint inversion would use both
seismic and electromagnetic measurements to constrain the
Earth's structure. In general, this problem involves both series and
parallel model coupling.

In the parallel model coupling scenario, the adjoint would be
obtained by applying the two model adjoints, separately, to their
respective data residuals, and the resultant variations in the input
model parameters would be summed up to obtain the complete
penalty function derivative. Again, this would be handled at the
framework level, allowing the complicated model coupling sce-
nario to be wrapped up for direct use in an external inversion
routine.

7.4. New modeling framework functionality

Brute-force penalty function derivative computations for cou-
pled models require computing, storing and multiplying the Ja-
cobian matrices. This becomes prohibitive for models that are
nonlinear, with more than a few design parameters, and/or long
run times. If Nd is the dimension of the output vector field or the
number of data points, and Nm is the number of model design
parameters for one model, its Jacobian has ×N Nd m entries and
requires at least (+ +)N Nmin 1, 1d m model runs if the adjoint is
available, and (+)N 1m model runs otherwise. The matrix would
need to be computed for each model in the coupling sequence, and
for nonlinear models these computations need to be performed
repeatedly while the optimization algorithm iteratively converges
to a solution.

Fortunately, as discussed in Section 3.3.1, a derivative of the
penalty function may be obtained in +N 1m coupled model runs by
numerical differentiation, and in as few as 2 coupled model runs
by an adjoint method. The latter entails a call to apply the adjoint
code to the weighted data residuals, which in essence implements
multiplication by transposed Jacobian to obtain a perturbation of
the model design parameters, without a direct computation or
storage of the Jacobian matrix. These methods come at no addi-
tional storage cost except for that of the intermediate solutions,
needed to evaluate the total penalty function derivative, and
therefore make arbitrarily complex coupling problems potentially
tractable.

To summarize, several new capabilities must be added to a
model framework in order to support user-friendly inverse mod-
eling. Specifically, it must be able to: (1) store and perform ar-
ithmetic operations with the parameters and data for each model,
(2) interpolate in space and time to provide predictions at ob-
servation locations, (3) read data in various formats and compute
data residuals, (4) provide a range of penalty functions to work
with, (5) numerically compute the derivative of the penalty
function, or run the adjoint if provided, and (6) make use of nu-
merical efficiencies to compute and manipulate Jacobian matrices
and higher order derivatives.
8. Summary and recommendations

Computational models are a powerful means of understanding
the Earth system, making predictions and guiding decisions. Too
often, however, models are used without any analysis of their
uncertainty. The integration of toolkits such as DAKOTA into
component-based modeling frameworks will help to resolve this
by drawing attention to the problem and providing easy access to
powerful methods, thereby making it much easier for users to
quantify, assess and understand the uncertainty in models. Back-
ground information on modeling frameworks and inverse mod-
eling were provided in Sections 2 and 3 and a list of major soft-
ware toolkits for uncertainty quantification and inverse modeling
was given in Section 4. Since most of these toolkits use the same
approach to interacting with models, it appears feasible for a
modeling framework to provide access to more than one such
package. Section 5 used an example surface process problem to
illustrate some of the issues that are encountered in real applica-
tions and to give a taste of what toolkits like DAKOTA have to offer
modelers. In Section 6 it was argued that the primary sources of

S.D. Peckham et al. / Computers & Geosciences 90 (2016) 152–161160
error in computational models can be usefully organized into four
groups — model inadequacy, input data inadequacy, model para-
meter and input data uncertainty and developer and user errors —
and that modeling frameworks could address many of them. Fi-
nally, several technical issues regarding the inclusion of inverse
modeling in a model coupling framework were discussed in Sec-
tion 7.

Key design criteria for including inverse modeling in a com-
ponent-based modeling framework are (1) minimal changes to
models, (2) minimal loss of performance and (3) minimal effort for
developers and users. Optimization methods that are derivative-
free or that work well with numerical derivatives will be easiest to
provide, but will still require tools for defining cost functions and
the ability to ingest observational data in different formats.
Methods that use analytic or automatic differentiation, as well as
adjoint methods, will require service components to be added to
the modeling framework that compute, store and manipulate Ja-
cobians and Hessians. Separate methods will be required for
models coupled in series or in parallel and changes to component
model interfaces, such as the CSDMS Basic Model Interface (BMI),
may also be required.
Fig. 6. Contour plot for a typical cost function when () = ()f x p p x, 1/ p, with extreme
vertical exaggeration to show global minimum. For this example, =c 250 and

=p 0.1660 .
Acknowledgments

The authors gratefully acknowledge funding through a co-
operative agreement with the National Science Foundation
(CSDMS, EAR-0621695) and NSF grant number (EarthCube, ICER-
1343811).
Appendix A. Best-fit parameters for a class of profile models

Peckham (2015) reviews several physics-based derivations that
predict functional forms for the longitudinal elevation profiles of
rivers (i.e. elevation as a function of distance downstream from a
drainage divide). Several of these profiles can be expressed in the
form

() = − () ()z x z c H p x x, , , 60 0

where () =H p x x, , 00 0 . The results of this section apply to an
otherwise arbitrary function, H. The Whipple–Tucker profile is in a
special subclass where () = () − ()H p x x f p x f p x, , , ,0 0 , with

() = ()f p x p x, 1/ p. Note that ≥x x0 and the profile is pinned at the
upper end to measured values since () =z x z0 0. Since real elevation
profiles are decreasing, upward-concave functions of downstream
distance, x, we require z(x) to have these features. This can occur
with >c 0 and ()H p x x, , 0 an increasing function of x, or with <c 0
and ()H p x x, , 0 a decreasing function of x. It is also desirable for the
slope at x0, = | ′()|S z x0 0 , to be finite, and for some models this only
occurs if >x 00 .

For elevation profiles predicted by theory, the design para-
meters c and p are functions of both physical-process and em-
pirical parameters, such as those that model a steady-state fluvial
landscape where rainfall-induced erosion is exactly balanced by a
steady and spatially uniform tectonic uplift rate. Theory may
constrain the signs of c and p.

A nonlinear least squares fit of the model (6) to a measured
profile of elevations, ()x z,k k , ∈ { … }k n0, , seeks a parameter pair
()c p,0 0 that minimizes the following cost function:

()∑ ∑() = − () = − + ()
()= =

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦E c p z z x z z c H p x x, , ,
7k

n

k k
k

n

k k
1

2

1
0 0

2

Fig. 6 shows a contour plot for this cost function over the (c,p) plane
for a particular set of measured elevation profile values, ()x z,k k and
the special subclass mentioned above with () = ()f p x p x, 1/ p. Note
that the global minimum lies in a broad, flat valley, very similar to
what happens for the well-known Rosenbrock function (see Fig. 1).
This similarity appears to explain why many curve-fitting algorithms
struggle or fail to converge to the minimum, at least when

() = ()f p x p x, 1/ p. As with the Rosenbrock function, it is easy for
optimization algorithms to find the valley but remains difficult for
them to find the global minimum.

The nature of this broad, flat valley can be understood geo-
metrically. First, notice that for n¼1, ()E c p, plots as a valley in the
(c,p) plane that attains its minimum value (zero in this case) along
the entire curve given by = (−) (−)c p z z x x1 / p p

0 1 0 . This curve di-
verges at p¼0 and rapidly decreases with increasing p. The posi-
tion of the valley depends on ()x z,0 0 and ()x z,1 1 , but there is no
global minimum. The cost function (7) may be viewed as a sum of
such valley surfaces, all offset somewhat from one another, which
results in a surface with a global minimum that lies in a broad
valley.

If the cost function (7) has a minimum, it must occur where all
components of its gradient vector (i.e. the partial derivatives with
respect to c and p) are equal to zero. Computing the derivative of
(7) with respect to c, setting it to zero and solving for c, gives

()
()() =

∑ − ()

∑ ()

=

=

c p
z z H p x x

H p x x

, ,

, ,
.

8

k
n

k k

k
n

k
1

1 0 0

1
2

0

This is a curve in the (c,p) plane along which ∂ ∂ =E c/ 0. Computing
the derivative of (7) with respect to p, setting it to zero and again
solving for c, gives

()
()() =

∑ − ∂ () ∂

∑ ∂ () ∂ ()

=

=

c p
z z H p x x p

H p x x H p x x p

, , /

, , , , /
.

9

k
n

k k

k
n

k k
2

1 0 0

1 0 0

This is a curve in the (c,p) plane along which ∂ ∂ =E p/ 0. As shown
in Fig. 7, the curves ()c p1 and ()c p2 are very close to one another,
and close to the bottom of the valley, but they cross at a single
point which gives the best-fit (c,p) pair. Since the best-fit pair lies
on the curve ()c p1 , we can insert = ()c c p1 into the cost function (7)

Fig. 7. The (difficult to distinguish) curves ()c p1 (yellow) and ()c p2 (blue) that cross
at the best-fit (c,p). For this example, they cross at c¼28.2491, p¼0.14075. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

S.D. Peckham et al. / Computers & Geosciences 90 (2016) 152–161 161
to get a new cost function that depends only on p, namely
() = (())E p E c p p,1 . After simplification, we find that

()
∑() = (−) −

∑ − ()

∑ () ()=

=

=

⎡⎣ ⎤⎦
E p z z

z z H p x x

H p x x

, ,

, ,
.

10k

n

k
k
n

k k

k
n

k1
0

2 1 0 0
2

1
2

0

Notice the power of 2 in the numerator of the last term, not pre-
sent in (8). For both () = ()f p x p x, 1/ p and () =f p x x, p, this sim-
plifies further to

()()
()

∑() = (−) −
∑ − −

∑ − ()=

=

=

⎡⎣ ⎤⎦
E p z z

z z x x

x x
.

11k

n

k
k
n

k k
p p

k
n

k
p p

1
0

2 1 0 0
2

1 0
2

The best-fit p-value, p0, minimizes E(p) for a given set of measured
values ()x z,k k . We can therefore find p0 by computing the deri-
vative of (11) with respect to p, setting the result to zero and
solving for p. While there is not a closed form expression for p0, a
numerical root finder can be used. Another simple approach is to
evaluate (11) at 1000 equally-spaced p-values in the interval []0, 1
and then find the =p p0 for which E(p) is smallest. This rapidly
yields the best-fit value, p0, to three significant digits. Once p0 has
been found, c0 can be computed as = ()c c p0 1 0 .
References

Adams, B., Ebeida, M., Eldred, M., Jakeman, J., Swiler, L., Bohnhoff, W., Dalbey, K.,
Eddy, J., Hu, K., Vigil, D., Bauman, L., 2013a. DAKOTA: a multilevel parallel ob-
ject-oriented framework for design optimization, parameter estimation, un-
certainty quantification, and sensitivity analysis, version 5.3.1 reference man-
ual. Technical Report, U.S. Department of Energy.

Adams, B., Ebeida, M., Eldred, M., Jakeman, J., Swiler, L., Dalbey, K., Eddy, J., Hu, K.,
Vigil, D., Bauman, L., Hough, P., 2013b. DAKOTA: a multilevel parallel object-
oriented framework for design optimization, parameter estimation, uncertainty
quantification, and sensitivity analysis, version 5.3.1 user's manual. Technical
Report, U.S. Department of Energy.

Aster, R.C., Borchers, B., Thurber, C.H., 2013. Parameter Estimation and Inverse
Problems. Academic Press, Amsterdam.

Banta, E.R., Hill, M.C., Poeter, E., Doherty, J.E., Babendreier, J., 2008. Building model
analysis applications with the Joint Universal Parameter IdenTification and
Evaluation of Reliability (JUPITER) API. Comput. Geosci. 34 (4), 310–319.
Beven, K., 2006. A manifesto for the equifinality thesis. J. Hydrol. 320 (1), 18–36.
Beven, K., Binley, A., 1992. The future of distributed models: model calibration and

uncertainty prediction. Hydrol. Process. 6 (3), 279–298.
Beven, K., Freer, J., 2001. Equifinality, data assimilation, and uncertainty estimation

in mechanistic modelling of complex environmental systems using the GLUE
methodology. J. Hydrol. 249 (1), 11–29.

Caers, J., 2011. Modeling Uncertainty in the Earth Sciences. Wiley-Blackwell, Ho-
boken, NJ.

David, O., Markstrom, S.L., Rojas, K.W., Ahuja, L.R., Schneider, I.W., 2002. The Object
Modeling System. Agricultural System Models in Field Research and Technol-
ogy Transfer, pp. 317–331.

Doherty, J., Welter, D., 2010. A short exploration of structural noise. Water Resour.
Res. 46, 1–14.

Errico, R.M., 1997. What is an adjoint model? Bull. Am. Meteorol. Soc. 78 (11),
2577–2591.

Foglia, L., Mehl, S.W., Hill, M.C., Burlando, P., 2013. Evaluating model structure
adequacy: the case of the Maggia Valley groundwater system, southern Swit-
zerland. Water Resour. Res. 49 (November (2012)), 260–282.

Hill, C., DeLuca, C., Suarez, M., da Silva, A., et al., 2004. The architecture of the Earth
System Modeling Framework. Comput. Sci. Eng. 6 (1), 18–28.

Hill, M.C., Tiedeman, C.R., 2007. Effective Groundwater Model Calibration: With
Analysis of Data, Sensitivities, Predictions, and Uncertainty. John Wiley & Sons,
Hoboken, NJ.

Lampton, M., 1997. Damping–undamping strategies for the Levenberg–Marquardt
nonlinear least-squares problem. Comput. Phys. 11 (1), 110–115.

Moré, J., 1977. The Levenberg–Marquardt algorithm: implementation and theory.
In: Numerical Analysis: Lecture Notes in Mathematics, vol. 630. Springer-Ver-
lag, Berlin, Germany, pp. 105–116.

Parker, R.L., 1984. The inverse problem of resistivity sounding. Geophysics 49,
2143–2158.

Peckham, S.D., 2009. Geomorphometry in RiverTools. In: Hengl, T., Reuter, H. (Eds.),
Geomorphometry: Concepts, Software and Applications, Developments in Soil
Science vol. 33. Elsevier, pp. 411–430 (Chapter 18).

Peckham, S.D., 2015. Longitudinal elevation profiles of rivers: curve fitting with
functions predicted by theory. In: Jasiewicz, J., Zwolinkski, Z., Mitasova, H.,
Hengl, T. (Eds.), Geomorphometry for Geosciences. International Society for
Geomorphometry, Poznan, Poland, pp. 137–140.

Peckham, S.D., Hutton, E.W., Norris, B., 2013. A component-based approach to in-
tegrated modeling in the geosciences: the design of CSDMS. Comput. Geosci.
53, 3–12.

Poeter, E.P., Hill, M.C., Lu, D., Tiedeman, C.R., Mehl, S., 2014. UCODE_2014, with new
capabilities to define parameters unique to predictions, calculate weights using
simulated values, estimate parameters with SVD, evaluate uncertainty with
MCMC, and more. Technical Report, Integrated Groundwater Modeling Center,
Report Number GWMI 2014-02.

PSUADE, 2014. Problem solving environment for uncertainty analysis and design
exploration. 〈https://computation.llnl.gov/casc/uncertainty-quantification/〉
(accessed 16.01.2015).

Renard, B., Kavetski, D., Leblois, E., Thyer, M., Kuczera, G., Franks, S.W., 2011. Toward
a reliable decomposition of predictive uncertainty in hydrological modeling:
characterizing rainfall errors using conditional simulation. Water Resour. Res.
47.

Rosenbrock, H.H., 1960. An automatic method for finding the greatest or least value
of a function. Comput. J. 3, 175–184.

Syvitski, J.P.M., Hutton, E.W.H., Piper, M.D., Overeem, I., Kettner, A.J., Peckham, S.D.,
2014. Plug and play component modeling — the CSDMS 2.0 approach. In: Ames,
D.P., Quinn, N.W.T., Rizzoli, A.E. (Eds.), Proceedings of the 7th International
Congress on Environmental Modelling and Software. International Environ-
mental Modelling and Software Society (iEMSs), San Diego, CA, pp. 431–438.

Tarantola, A., 2005. Inverse Problem Theory and Methods for Model Parameter
Estimation. Society for Industrial and Applied Mathematics, Philadelphia.

Tikhonov, A.N., 1963. Solution of incorrectly formulated problems and the reg-
ularisation method. Sov. Math. Dokl. 4, 1035–1038.

Utke, J., Naumann, U., Lyons, A., 2014. OpenAD/F: user manual. Technical Report, U.
S. Department of Energy, Argonne National Lab.

Whelan, G., Castleton, K., Buck, J., Hoopes, B., Pelton, M., Strenge, D., Gelston, G.,
Kickert, R., 1997. Concepts of a framework for risk analysis in multimedia en-
vironmental systems. Pacific Northwest National Laboratory, Richland, Wash.
(October).

Whipple, K.X., Tucker, G.E., 1999. Dynamics of the stream-power river incision
model: implications for height limits of mountain ranges, landscape response
timescales, and research needs. J. Geophys. Res. 104 (B8), 17661–17674.

http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref3
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref3
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref4
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref4
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref4
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref4
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref5
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref5
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref6
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref6
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref6
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref7
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref7
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref7
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref7
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref8
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref8
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref10
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref10
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref10
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref11
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref11
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref11
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref12
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref12
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref12
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref12
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref13
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref13
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref13
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref14
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref14
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref14
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref14
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref15
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref15
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref15
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref17
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref17
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref17
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref18
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref18
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref18
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref18
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref19
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref19
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref19
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref19
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref19
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref20
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref20
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref20
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref20
https://computation.llnl.gov/casc/uncertainty-quantification/
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref23
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref23
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref23
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref23
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref24
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref24
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref24
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref25
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref25
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref25
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref25
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref25
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref25
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref26
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref26
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref27
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref27
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref27
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref30
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref30
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref30
http://refhub.elsevier.com/S0098-3004(16)30063-2/sbref30

	Towards uncertainty quantification and parameter estimation for Earth system models in a component-based modeling framework
	Introduction
	Background: models and modeling frameworks
	What is a model?
	What is a modeling framework?

	Background: inverse modeling methods
	Constructing an objective function
	Optimization methods
	Derivative-based optimization
	Derivative-free optimization

	General-purpose software packages for inverse modeling and uncertainty quantification
	Example problem: finding best fits to longitudinal elevation profiles
	Sources of model error and how modeling frameworks can help reduce them
	Model inadequacy
	Input data inadequacy
	Model parameter and input data uncertainties
	Developer and user errors

	Towards including inverse modeling and uncertainty quantification in a component-based modeling framework
	Stand-alone models
	Models coupled in series
	Models coupled in parallel
	New modeling framework functionality

	Summary and recommendations
	Acknowledgments
	Best-fit parameters for a class of profile models
	References

