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A B S T R A C T

Recognition of significant ore-forming processes, which control mineralization, improves the efficiency of mi-
neral prospectivity modeling. In this study, controlling processes of skarn copper mineralization in Varzaghan
district, northwestern Iran, were distinguished by a series of spatial and numerical analyses comprising point
pattern, fractal, fry and distance distribution methods. The recognized processes were then translated to a set of
exploration criteria of the deposits in the area. Based on the accomplished exploration criteria, two data-driven
models of skarn copper prospectivity were generated using logistic regression and random forest techniques. The
comparison of two generated models demonstrated that the targets derived by the latter technique were more
reliable for further exploration than those created by the former one.

1. Introduction

Mineral prospectivity mapping (MPM) endeavors to ascertain reli-
able exploration targets where undiscovered mineralization might be
found (cf. Bonham-Carter et al., 1990; Carranza, 2008). Defining
competent exploration criteria of the deposit-type sought is a funda-
mental task in MPM. This is achieved by weeding out inefficient criteria
through inspecting the previously-discovered mineral deposits of the
targeted type (e.g., Cox and Singer, 1986; Roberts et al., 1988; Pirajno,
1992). Translation of ore-forming processes of a given type of mineral
deposits to a set of exploration evidence layers is another critical task in
MPM (Nykänen et al., 2015; Lindsay et al., 2016). This is because mi-
neral deposits of the same type do not form under identical geological
settings (Andrada de Palomera et al., 2015; Parsa et al., 2016a,b).
Therefore, the application of imprecisely-defined deposit models and
the ensuing exploration evidence layers propagate systematic un-
certainties to MPM (Carranza et al., 2008; Yousefi and Carranza,
2015a,b; Parsa et al., 2017a). To modulate the foregoing caveat, the
exploration criteria, which were elicited from the descriptive deposit
models, should be tuned to the characteristics of known mineral de-
posits (KMDs) of the targeted type in a given study area (Kreuzer et al.,
2007; Carranza, 2008, 2009a; Lisitsin, 2015; Haddad-Martim et al.,
2017).

Recognition of significant geological factors controlling miner-
alization of the targeted type is a critical issue for defining adjusted
exploration criteria (Cox and Singer, 1986; Carlson, 1991; Pirajno,

1992; Vearncombe and Vearncombe, 1999; McCuaig et al., 2010;
Kreuzer et al., 2007; Lisitsin, 2015). Analyses of the spatial distribution
of mineral deposits and modeling their spatial association with ex-
ploration evidence data (e.g., geological features and geochemical in-
dicators) provide insights to the controls on ore deposition. The former
case infers the quantity and the quality of plausible controls on mi-
neralization and the latter case identifies the exploration features which
have significant spatial associations with mineralization (Carranza,
2008). Point pattern (Diggle, 1983; Boots and Getis, 1988), fractal
(Mandelbrot, 1983) and fry (Fry, 1979) analyses have been applied
(e.g., Carranza, 2008, 2009a; Haddad-Martim et al., 2017) for the
analysis of the spatial distribution of mineral deposits. Distance dis-
tribution (Berman, 1977, 1986) and t-student spatial-statistic (Bonham-
Carter et al., 1990) analyses are two widely-used methods for mea-
suring the spatial association of mineral deposits with exploration data
sets (e.g., Carranza and Sadeghi, 2010; Parsa et al., 2017a).

The main aims of this study are to (a) adjust the exploration criteria
of skarn Cu deposits (SCDs) in the Varzaghan district, northwestern Iran
and (b) generate an efficient data-driven mineral prospectivity model of
the SCDs based on the adjusted criteria. To reach these goals, the pre-
ceding spatial analyses were conducted to infer geological controls on
the deposit-type sought. Besides, multivariate geochemical analyses
were applied in conjunction with the spatial analysis to recognize sig-
nificant multi-element geochemical signatures of the deposit-type
sought (e.g., Parsa et al., 2016a). Following the resultant consequences,
a set of efficient evidence layers were generated and two data-driven
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MPM procedures (e.g., Rodriguez-Galiano et al., 2015; Asadi et al.,
2015, 2016; Carranza and Laborte, 2016; Fatehi and Asadi, 2017a,b) of
logistic regression (Hosmer and Lemeshow, 2000) and random forest
(Breiman, 2001) were conducted. The prospectivity models were then
compared, and exploration targets were generated according to the
superior prospectivity model.

2. Varzaghan district

2.1. Geological setting

The northwestern-trending Urumieh-Dokhtar Magmatic ARC
(UDMA) extends over a length of 1800 km (Jamali et al., 2010;
Zarasvandi et al., 2015), in which the Varzaghan district is situated
(Fig. 1). Porphyry and skarn copper mineralizations dominantly oc-
curred in the UDMA (Jamali and Mehrabi, 2015; Aghazadeh et al.,
2015), making this arc favorable for prospecting further copper de-
posits (Hezarkhani and Williams-Jones, 1998; Richards et al., 2012).

The study area comprises about 1000 km2 of the northern UDMA,
which is underlain mainly by the Cretaceous limestones and Cretaceous
volcano-sedimentary succession comprising intermediate lava flow,
sandstone and marl (Fig. 2). In the Varzaghan district, the magmatism
commenced in Eocene with the emplacement of intermediate to felsic
volcanic rocks and nepheline-syenitic to monzo-syenitic plutonic rocks
and continued in late Oligocene with the intrusion of coarse-grained
quartz-monzonitic and granodioritic plutons (Mehrpartou et al., 1992;
Mehrpartou and Nazer, 1999). The magmatic-related ore deposits (e.g.,
porphyry and skarn deposits) in the study area are associated with the
Oligocene-Miocene intrusions whereas the Eocene intrusive rocks do
not host any significant mineralization (Karimzadeh Somarin and
Moayyed, 2002; Hassanpour, 2013; Jamali and Mehrabi, 2015;
Aghazadeh et al., 2015). Ascending ore-bearing fluids with magmatic
origin in the study area were structurally controlled, and thus fault
systems were vital for the development of magmatic-related mineral
systems (Aghazadeh et al., 2015). The emplacement of water-saturated
Oligocene-Miocene plutons in the study area and its adjacent terrains
followed a general NW-SE trend (Alavi, 1994; Mollai et al., 2009;
Jamali et al., 2010), running parallel to the orientation of the UDMA.
The Quaternary volcanic rocks that unconformably overlie the older

geological units of the Varzaghan district are the consequence of the
latest magmatic activities in the area (Mehrpartou et al., 1992).

2.2. Geodynamic setting

The geodynamic settings of the Cenozoic magmatism and the en-
suing skarn mineralization in the study area are still subjects of debates.
Different models have been proposed for the tectonomagmatic evolu-
tion of the study area, some of which envisage a terminated subduction-
related magmatism (e.g., Alavi, 1994, 2007; Glennie, 2000). However,
the results of recent studies suggest ongoing post-collisional tectonic
regimes for the magmatism of the study area (e.g., Jamali et al., 2010;
Maghsoudi et al., 2014; Aghazadeh et al., 2015). In this regard, ac-
cording to Aghazadeh et al. (2015), the magmatic activities in the study
area were commenced by the subduction of Neo-Tethys oceanic litho-
sphere beneath the Central Iranian plate in late Mesozoic. This stage
was yielded in the extensive emplacement of the Eocene volcanic and
plutonic rocks and was succeeded by the closure of Neo-Tethys and
subsequent collision between the Arabian plate and Central Iranian
plate in the late Eocene. Following the termination of Eocene magma-
tism, the Central Iranian crust thickened which led to the detachment of
the lithospheric mantle from the upper lithosphere and subsequent
sinking into the asthenosphere. The remaining lithosphere then trig-
gered the development of the fertile Oligocene-Miocene intrusions and
the subsequent mineralization of the study area.

2.3. Skarn copper mineralization

Skarn deposits are among the crucial resources of Cu, Fe, Zn and W
commodities (Burt, 1977). These types of mineralization have been
emplaced in orogenic belts with high-temperature hydrothermal ac-
tivities (Meinert, 1992; Meinert et al., 2005). In these deposits, mass
and heat have been transported from cooling magmas to the calcareous
sedimentary wall rocks by the interaction of shallow magmatic systems
(Meinert et al., 2003, 2005). Skarn mineralization is the end product of
the subduction-related magmatic activities (Burt, 1977; Meinert et al.,
2005). The presence of several SCDs (Table 1) and favorable geological
setting sweeten the Varzaghan district for further prospecting of skarn
Cu mineralization (Karimzadeh Somarin and Moayyed, 2002;

Fig. 1. Shaded relief map showing the Urumieh-Dokhtar Magmatic Arc (UDMA) and the location of study area (from Alavi, 2004). Yellow polygon depicts the territorial boundaries of
Iran. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

M. Parsa et al. Ore Geology Reviews 92 (2018) 97–112

98



Karimzadeh Somarin, 2004a,b).
The calc-alkaline to alkaline magmatism in late Oligocene caused

the development of the SCDs in the study area (Mollai et al., 2009,
2014; Jamali et al., 2010). The emplacement of skarn deposits in the
area is restricted to fault zones (Jamali and Mehrabi, 2015) and is
spatially associated with the NW-trending faults (Meshkani et al.,
2013). The SCDs of the Varzaghan district have been developed at the
contacts of the Oligocene-Miocene intrusions and the Cretaceous
limestones, and are characterized by the dominant mineral assemblages
of chalcopyrite, pyrite, magnetite, sphalerite, galena and epidote
(Mollai et al., 2009; Hassanpour, 2013). The Anjerd, Mazraeh and
Gowdal deposits are the most important SCDs in the area (Fig. 2 and
Table 1). In these deposits, skarnification is developed within or ad-
jacent to the contact of the granitoid intrusions (i.e., endoskarn) and
impure carbonates (i.e., exoskarn).

3. Structural controls on skarn Cu mineralization

Structural features, as well as fault systems, control the spatial
distribution of the magmatic-related mineral deposits (Cox et al., 1987;
Pirajno, 1992). Therefore, the study of the spatial distribution of mi-
neral deposits could provide necessary information for the recognition
of structural features controlling the emplacement of mineralization
(Kreuzer et al., 2007; Carranza, 2008, 2009a; Carranza et al., 2009;
Carranza and Sadeghi, 2010; Lisitsin, 2015). Spatial analyses are ben-
eficial to understand the distribution pattern of mineral deposits. These
analyses comprise (1) modeling the spatial distribution of KMDs and (2)
measuring the spatial correlation of KMDs with geological features. The
former has been performed by the application of the point pattern
(Diggle, 1983; Boots and Getis, 1988), fractal (Mandelbrot, 1983) and
fry (Fry, 1979) analyses. The above-mentioned analyses could deduce

Fig. 2. Generalized geological map of study area and the locations of porphyry and skarn copper deposits (modified after Mehrpartou et al., 1992 and Mehrpartou and Nazer, 1999).
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the quantities and the orientations of structural controls on miner-
alization (e.g., Carranza, 2009a; Haddad-Martim et al., 2017). The
latter has been implemented by the distance distribution analysis
(Berman, 1977, 1986) to recognize geological features that are sig-
nificantly associated with mineral deposits (e.g., Carranza, 2009a; Parsa
et al., 2017a). In the following subsections, the implementation of
aforementioned spatial analyses is explained.

3.1. Point pattern analysis

In a two-dimensional situation, points can reveal three types of
spatial distributions, namely random, clustered and regular (Boots and
Getis, 1988). In a random pattern, points lack significant spatial asso-
ciations and are chaotically distributed. A clustered spatial distribution
pattern of mineral deposits, in which the deposits are closer compared
with a random pattern, can be representative of the processes that
centralize mineralization in certain locations. A regular spatial pattern
of mineral deposits in an area, in which the deposits are farther apart
compared to a random pattern, indicates the separation of two pro-
cesses comprising the release of energy and the emplacement of mi-
neralization over the area (Carranza, 2008).

The spatial distribution of mineral deposits is considered to be non-
random because they have been distributed as a result of underlying
geological phenomena (Carranza, 2009a). If a point pattern is non-
random, it could be resulted as the contribution of either centralizing or
spreading processes, both of which could be associated with specific
mineralization-related geological settings (Carranza, 2008). Point pat-
tern analysis seeks to prove that the spatial distribution of KMDs is non-
random. Therefore, the spatial distribution of n KMDs in an under-in-
vestigating area should be compared with the spatial distribution of the
same number of randomly-distributed points in that area. Therefore,
the distances between KMDs are compared with the distances between
the randomly-distributed points (Carranza, 2008).

For n points, measured distances from one point to each of the other
points are referred to as the 1st-, 2nd-, 3rd- or (n−1)th-order neighbor
distances; where the 1st-order neighbor distance is the nearest neighbor
distance. Likewise, for n points, there are n−1 means of ordered
neighbor distances among individual points; where the mean of the 1st-
order neighbor distances is the mean of the nearest neighbor distances
among points. If the means of ordered neighbor distances in KMDs are
smaller than those in the randomly-distributed points, the spatial dis-
tribution of KMDs can be considered as a clustered distribution. On the
contrary, if the means of ordered neighbor distances in KMDs are larger
than those in the randomly-distributed points, the spatial distribution of
KMDs can be considered as a regular distribution. If the means of the
ordered neighbor distances in KMDs are similar to those in the ran-
domly-distributed points, the distribution of KMDs can be regarded as
random. Consequently, the existence of geological controls of miner-
alization can be refuted (Carranza, 2009a).

There are 17 SCDs in the study area, for which 16 means of ordered
neighbor distances were measured. Likewise, a set of 17 randomly
distributed points was generated using the Poisson process (Diggle,
2003; Isham, 2010) within the study area and 16 means of the ordered
neighbor distances among these points were calculated as well. The
means of the ordered neighbor distances among SCDs are smaller than
those of the randomly distributed points (Table 2). Therefore, it could
be deduced that the SCDs of the study area tend to have a clustered
distribution. Hence, the distribution of the SCDs is not random, and
specific processes have contributed in the deposition of SCDs in the
study area (cf. Carranza, 2009a).

3.2. Fractal analyses

The box-counting fractal analysis (Mandelbrot, 1983) of mineral
deposits has been previously carried out by several researchers (e.g.,
Kreuzer et al., 2007; Ford and Blenkinsop, 2008; Raines, 2008;

Carranza, 2008, 2009a). Using this analytical technique, it has been
inferred that how many fractal dimensions as the proxies of specific
orientations exist in the distribution of mineral deposits. The box-
counting fractal analysis involves with the superimposition of grids of
different square box sizes (σ) on the map of the spatial distribution of
KMDs and counting the number of boxes containing one or more KMDs
as n (σ). By changing the box sizes (σ), the number of cells containing
KMDs, n (σ), would change. The relationship between the σ and n (σ) is
a power-law relationship (e.g., Carranza, 2009a,b), or:

= −n σ Cσ( ) Db (1)

where, the Db and C are the box-counting fractal dimension and a
constant, respectively. In a log–log plot the power-law relationship of
the Eq. (1) is a linear relationship, or:

= −Logn σ LogC D Log σ( ) . ( )b (2)

Hence, the box-counting fractal dimension, Db, could be estimated
from the slopes of straight lines to be fitted to the log–log plot of n (σ)
versus σ. Whether the spatial distribution of points is random, the box-
counting fractal dimension is equal to −2, otherwise it fluctuates
within a (−2, 0) range. The number of lines to be fitted to the log–log
plot of n (σ) versus σ, determines the number of spatial trends in the
distribution of mineral deposits and the number of plausible structural
controls of mineralization (Carranza, 2009a,b).

The radial-density fractal analysis (Mandelbrot, 1983) of mineral
deposits has also been carried out to characterize the spatial distribu-
tion of mineralization (Carranza, 2008, 2009a). According to this
method, the density of KMDs, d, defined by the number of cells con-
taining KMDs divided by the total number of cells limited by the circles
of radius r from KMDs, and the radius, r, have a power-law relationship
according to the below equation:

= −d Cr D 2R (3)

In the above equation, DR and C are the radial-density fractal di-
mension of the KMDs and a constant, respectively. The DR could be
assumed as the slopes of straight lines to be fitted to the log–log plot of
density, d, versus the radius, r, or:

= + −Logd LogC D Log r( 2). ( )R (4)

Carlson (1991) pointed out that the distribution of mineral deposits
over an area typically shows two fractal dimensions indicating district-
and local-scale controls of mineralization. In this study, similar to
several researches (e.g., Carlson, 1991; Cheng and Agterberg, 1995;

Table 2
Means of different orders of neighbor distances among skarn Cu deposits in the study
area.

Order Neighbor distance

Mean of measured distances
(km) among the Skarn Cu
deposits

Mean of measured distances (km)
among the randomly-distributed
points

1st 4.888 8.327
2nd 7.750 11.741
3rd 9.043 13.688
4th 10.820 16.516
5th 13.250 18.769
6th 14.744 20.257
7th 17.535 21.929
8th 20.693 23.518
9th 22.988 25.735
10th 25.796 27.739
11th 29.031 29.606
12th 30.691 31.495
13th 31.462 33.784
14th 32.824 36.937
15th 38.050 38.952
16th 43.555 43.042
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Cheng et al., 1996; Raines, 2008; Zuo et al., 2009), two straight lines
have been fitted to the log–log plot of n (σ) versus σ (Fig. 3). The fitted
straight lines (Fig. 3) are optimum because the addition or reduction of
any other straight lines would either lower the regression coefficients or
raise the minimum squared errors of the lines (Cheng et al., 2010).
These results suggest that the distribution of the SCDs in the area is not
random (cf. Raines, 2008; Carranza, 2009a) and specifically is bifractal.
In the Fig. 3, the left straight line with the Db value of−0.399 and the σ
values of ≤7.5 km is responsible for local-scale geological processes of
mineral deposition. The right straight line with the Db value of −1.252
and the σ values of> 7.5 km is related to the district-scale geological
processes of the deposit distribution in the area (cf. Carranza, 2008,
2009a).

To estimate the radial-density fractal dimensions of the spatial
distribution of the SCDs in the Varzaghan district, the distribution map
of the SCDs was converted to a 100m×100m cell size raster-based
map, in which each SCD was located in a single cell. Then, the d values
of the SCDs were calculated based on different circles portrayed by
different radiuses centered at the SCDs. The plot of log (d) versus log (r),
shows two optimum (cf. Cheng et al., 2010) radial-density fractal di-
mensions (Fig. 4). Thus, it could be deduced that the distribution of
SCDs at district-scale is non-random and two geological processes op-
erated in the distribution of the SCDs at different scales (cf. Carranza,
2009a). Similar to the results of the box-counting fractal analysis
(Fig. 3), the left line in Fig. 4 is responsible for the local-scale geological
processes that influenced in the distribution of the SCDs at the distances
of below 7.5 km. Likewise, the right line in this figure is representative
of the district-scale geological processes that operated in the distribu-
tion of the SCDs at distances of beyond 7.5 km (cf. Carranza, 2009a).

The results of two fractal analyses (Figs. 3 and 4) have conformity,
both of which suggest the bi-fractality and non-randomness of the

distribution of the SCDs. Accordingly, as pointed out by Carlson (1991),
Raines (2008) and Carranza (2009a), below and beyond 7.5 km dis-
tances from the deposit locations, two processes have incorporated in
the distribution of the SCDs in the study area. The former and the latter
respectively describe the local- and the district-scale geological pro-
cesses that operated in the skarn mineral deposition.

3.3. Fry analysis

Fry analysis (Fry, 1979) can be applied to characterize the spatial
distribution of mineral deposits, through which the orientations of
plausible controls of mineralization have been investigated (e.g.,
Vearncombe and Vearncombe, 1999; Carranza, 2008, 2009a; Kreuzer
et al., 2007; Lisitsin, 2015; Haddad-Martim et al., 2017). In this
method, for n KMDs that are considered as points, n2− n translated
points are delivered. Therefore, this analysis can enhance the subtle
patterns of the spatial distribution of KMDs. Details of this method
could be found in related publications (e.g., Fry, 1979; Vearncombe and
Vearncombe, 1999; Carranza, 2009a). By measuring the orientations
and distances between the pairs of translated points, rose diagrams
could be constructed from which the inconspicuous controlling pro-
cesses of mineralization could be reflected. Rose diagrams could be
plotted for (a) all of the translated points and (b) the translated points
that are located within specific distances. The former case represents
the orientations and numbers of geological processes that contribute to
the mineral deposition at the district-scale, while the latter case could
be used to provide information on the local-scale mineralization pro-
cesses (Carranza, 2009a; Haddad-Martim et al., 2017).

Based on the original locations of 17 SCDs in the area, 272 trans-
lated points were delivered. Following Carranza (2009a), the translated
points were centered at the original deposit locations, for better inter-
pretations (Fig. 5a). The rose diagram of all pairs of translated points
was constructed (Fig. 5b), which suggests a major 110°–150° or
290°–330° orientation, manifesting an NW-trending structural control
on mineralization at district-scale (cf. Carranza, 2008, 2009a). The rose
diagram of the pairs of translated points with the distances of below
7.5 km was further constructed (Fig. 5b), suggesting a 150°–180° or
330°–360° (N-S) trending structural control on mineralization at local-
scale (cf. Carranza, 2008, 2009a). These results of the fry analysis not
only cohere with those of fractal analyses but also suggest that the local-
and district-scale structural controls of skarn mineralization have N-S
and NW-SE orientations, respectively.

3.4. Spatial association of structural features with skarn Cu deposits

Different structural features with diverse orientations are the out-
comes of various geological processes (Faulkner et al., 2010), few of
which might be associated with mineralization (Carranza, 2008). Dif-
ferent faults of the study area were grouped according to their specific
orientations. The degree of their spatial association with mineralization
was further assessed by distance distribution analysis (Berman, 1977,
1986). This technique has been applied for measuring the degree of the
spatial association of a set of geological features with mineral deposits
(e.g., Carranza, 2009a; Parsa et al., 2017a). Two curves are simulta-
neously constructed in the distance distribution analysis, namely, the
cumulative relative frequency distribution of the distances from every
location to a set of geological features (Ce) and the cumulative relative
frequency distribution of distances from the locations of KMDs to the
same set of geological features (Cd). The former curve denotes an en-
tirely random pattern, while the latter curve might represent under-
lying geological processes that contribute to the mineral deposition. An
additional curve, which manifests the difference of the above-men-
tioned curves (d= Cd − Ce) denotes the quantity of the spatial asso-
ciation of the mineral deposits with geological features. The values
d > 0 and<0 show positive and negative spatial association between
the KMDs and geological features, respectively. In this regard, the

Fig. 3. Log-log plots of σ versus n (σ) manifesting two spatial patterns of the skarn copper
deposits in the study area.

Fig. 4. Log-log plots of distances from individual skarn copper deposits versus the deposit
densities manifesting two individual spatial patterns.
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maximum value of the d reflects a distance that shows the most sig-
nificant spatial association between geological features and mineral
deposits (Carranza, 2009a).

In the study area, beyond 12 km distances of the northern-trending
faults, there are poor spatial associations with the SCDs (Fig. 6a).
Likewise, beyond 16 km distances of the E-W trending faults, there are
weak positive spatial associations with the SCDs (Fig. 6b). Therefore,
the spatial associations of the N-S and E-W trending faults with the
SCDs are not significant. Similarly, there are no significant spatial
correlations between the NE-trending faults and the SCDs (Fig. 6c).
However, significant positive spatial associations exist between the
NW-trending faults and the SCDs (Fig. 6d). Within 1 km distances of the
NW-trending faults, the most significant spatial correlation with the
SCDs is observed (Fig. 6d). Around 80% of the SCDs are distributed
within the areas of below 1 km distances to the NW-trending faults
(Fig. 6d).

3.5. Eliciting the structural controls on mineralization

According to the results of point pattern analysis, the distribution of
SCDs in the study area is nonrandom and specifically shows a clustered
pattern (Table 2). This is reasonable because these deposits are confined
to the boundaries of Oligocene-Miocene intrusive rocks (Karimzadeh
Somarin and Moayyed, 2002; Mollai et al., 2009), that supports a
clustered distribution. The results of fractal analyses suggest the bi-
fractal distribution of the SCDs (Figs. 3 and 4). Therefore, according to
the studies of Carlson (1991) and Carranza (2009a), two geological
processes that operated in the distribution of the SCDs at distances of
≤7.5 km and>7.5 km could be deduced from fractal analyses (Figs. 3
and 4). The results of fry analysis suggest that the distribution of the
SCDs at the distances ≤7.5 km follow an N-S trend manifesting local-
scale controls of skarn mineralization (Fig. 5c). These results are sig-
nificant because local studies on the SCDs of the Varzaghan district
recommended the N-S trending faults to be directly associated with the
skarnification (e.g., Mollai et al., 2009; Jamali et al., 2010; Mokhtari
et al., 2017). Fry analysis also revealed that the district-scale (i.e.,
distances> 7.5 km) geological processes, which yielded in the

distribution of the SCDs in the Varzaghan district, follow an NW-SE
trend (Fig. 5a and b). Such results are meaningful because the NW-
trending faults were previously manifested to be spatially associated
with the skarn copper mineralization of the Varzaghan district
(Meshkani et al., 2013). Overall, the synthesis of the results of point
pattern, fractal and fry analyses with those of the distance distribution
analysis (Fig. 6) suggest the NW-SE trending faults as plausible district-
scale structural controls on skarn Cu mineralization.

4. Lithological controls on skarn Cu mineralization

The spatial distributions of the SCDs in the Varzaghan district are
confined to the areas where the Oligocene-Miocene plutonic rocks in-
truded the Cretaceous limestones (Mollai et al., 2009). The generic
characteristics of 17 known SCDs of the Varzaghan district support that
the Oligocene-Miocene plutonic rocks and the Cretaceous limestones
are heat sources and host rocks of skarn Cu mineralization, respectively
(Karimzadeh Somarin, 2004a,b; Mollai et al., 2009). Therefore, the
distance distribution analysis was conducted to quantify the spatial
association of the SCDs with contacts of the Oligocene-Miocene plu-
tonic rocks and contacts of the Cretaceous limestones.

There are strong positive spatial associations between the SCDs and
the contacts of the Oligocene-Miocene intrusive rocks (Fig. 7a). How-
ever, there are weak positive spatial associations between the Cretac-
eous limestones and SCDs (Fig. 7b). That is because few of the Cre-
taceous limestones, which are exposed in the majority of the study area,
are in contact with the Oligocene-Miocene intrusive rocks. Thus, the
Oligocene-Miocene intrusive rocks can be used as a significant litho-
logical evidence of skarn Cu mineralization in the study area.

5. Significant geochemical signatures of skarn Cu deposits

Recognition of significant geochemical signatures of mineral de-
posits of the targeted type is effective in the calibration of exploration
criteria, and consequently in the delineation of reliable exploration
targets (e.g., Mokhtari et al., 2014; Parsa et al., 2016a–c, 2017a–e;
Yousefi et al., 2014; Yousefi, 2017). For this, multivariate geochemical

Fig. 5. (a) Fry points of the skarn copper deposits in the study area, (b) rose diagram of trends based on all pairs of fry points and (c) rose diagram of trends based on points< 7.5 km
distances of each other.
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analyses can be applied in conjunction with spatial analysis of geo-
chemical signatures with mineral deposits (Parsa et al., 2016a). In this
study, the robust factor analysis (RFA) of compositional data (Filzmoser
et al., 2009) was applied in conjunction with the distance distribution
analysis (Berman, 1977, 1986) to derive significant multi-element
geochemical signatures of the SCDs. The RFA that has been applied for
the recognition of mineralization-related element associations (e.g.,
Parsa et al., 2017c) is the robustified version (Pison et al., 2003) of the
exploratory factor analysis (Treiblmaier and Filzmoser, 2010) through
which the shortcomings of FA has been modulated (Filzmoser et al.,

2009). Details about the RFA could be found in Filzmoser et al. (2009).
There are 913 stream sediment samples, collected from the study

area by the Geological Survey of Iran. The collected samples were
analyzed for multi-elements (Cu, Mo, Ag, Pb, Zn, As, Sb, Pb, Bi and Zn)
by inductively coupled plasma optical emission spectrometer. The de-
tection limits of the examined elements were: 0.5 ppm for As; 0.2 ppm
for Pb, Zn and Cu; 0.1 ppm for Mo, Bi and Sb and 0.01 ppm for Ag. Fire
assay method was further employed for preconcentration of gold, and
the final solution was measured by the atomic absorption spectro-
photometry with a detection limit of 1 ppb. The method of Thompson

Fig. 6. Plots showing distances from every location and from deposit locations to (a) N-S trending, (b) E-W trending, (c) NE-SW trending and (d) NW-SE trending faults.

Fig. 7. Plots showing distances from every location and from deposit locations to (a) contacts of Oligocene-Miocene intrusions and (b) contacts of the Cretaceous carbonate sedimentary
rocks.
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and Howarth (1976) was then employed for assessing the analytical
precision of individual elements. Results revealed that the analytical
precision of all of the analyzed elements was better than 10% at the
95% of confidence level.

The isometric log-ratio transformation (ilr: Egozcue et al., 2003)
was applied on the raw-data of 11 analyzed elements. The initial cov-
ariance matrix of the variables was estimated based on the ilr-trans-
formed data. Since the ilr-transformation yielded in the scarification of
one of the variables (Egozcue et al., 2003), the resulting covariance
matrix was back-transformed to the centered log-ratio (clr: Aitchison,
1986) space, in which interpretation of the results of RFA is possible
(Filzmoser et al., 2009). The number of the derived factors was set to be
three because these factors not only explain 85.9% of the total varia-
bility but also they have precisely discriminated the elemental asso-
ciations (e.g., Filzmoser et al., 2009). The principle factor analysis
(Reimann et al., 2002), the varimax rotation (Kaiser, 1958) and the
Bartlett method (Reimann et al., 2002) were used as the methods of
deriving the factors, rotating the factor loadings and deriving the factor
scores, respectively. Significant loadings were retained based on the
absolute threshold value of 0.4, as this value can be applied in the
precise interpretation of factors (Filzmoser et al., 2009; Treiblmaier and
Filzmoser, 2010).

The first robust factor explains 48.9% of total variability and re-
presents the contribution of As, Sb and Zn with negative loadings
(Table 3), while it is representative of an Au-Ag-Cu-Mo-Bi element as-
sociation with positive loadings (Table 3). The second factor, which
explains 26.8% of the total variability, represents the significant con-
tribution of As and Sb with negative loadings and the significant con-
tribution of Zn with positive loading (Table 3). The biplots of the robust
factor 1 versus the robust factor 2 explicitly demonstrates the associa-
tion of Au, Ag, Cu, Mo and Bi (Fig. 8). The third factor with the least
contribution in the total variability (i.e., 10.2%) manifests a Pb-Zn
element association (Table 3). According to the factor loadings
(Table 3) and biplots (Fig. 8), the first factor could be representative of
skarn copper mineralization within the Varzaghan district. The ele-
ments contributed in factor 1 are indicators of, and have been used to,
investigate skarn copper mineralization (e.g., Meinert, 1992).

In order to model the spatial distribution of geochemical anomalies,
the factor score values of each stream sediment sample were specified
to their corresponding catchment basins. This is because the element
concentration of each stream sediment sample is representative of its
upstream materials (Bonham-Carter and Goodfellow, 1984, 1986;
Spadoni et al., 2005; Spadoni, 2006; Carranza, 2008, 2010). Besides,
catchment basin modeling of geochemical anomalies, compared to the
interpolation methods, yields in the enhanced delineation of geo-
chemical anomalies through stream sediment sampling schemes
(Carranza, 2010; Yousefi et al., 2013; Parsa et al., 2016a).

To further explore the significance of the derived factors in the
description of the SCDs in the study area, cumulative decreasing dis-
tance distribution analysis (e.g., Carranza, 2009a) was conducted to

recognize whether the robust factors are significant geochemical sig-
natures of the skarn Cu mineralization. Factor 1 demonstrates a re-
markable positive spatial association with the SCDs (Fig. 9a). Around
60% of the SCDs are located in areas where the scores of factor 1 are
higher than -0.38 (Fig. 9a). There are no significant or remarkable
positive spatial coincidences between the scores of factor 2 and 3 and
the SCDs (Fig. 9b and c). Therefore, it is suggested that the multi-ele-
ment geochemical association of Au, Ag, Cu, Mo and Bi in – stream
sediment data of the Varzaghan district (i.e., the robust factor 1: Fig. 8
and Table 3) is an efficient geochemical signature for vectoring toward
skarn mineralized zones.

6. Data-driven modeling of the skarn Cu prospectivity

In order to delineate further exploration targets of the SCDs in the
study area, two data-driven modeling process of mineral prospectivity,
namely the random forest algorithm (RF: Breiman, 2001) and the lo-
gistic regression (LR: Hosmer and Lemeshow, 2000) were conducted.
Both of the modeling methods (a) are robust and do not require the
input data set to follow a specific distribution; (b) do not require the
input variables to be conditionally independent; (c) can model the
probability of the occurrence of a dichotomous target variable based on
a set of continuous or categorical predictor variables; (d) are multi-
variate approaches that consider the complexities of geological pro-
cesses and (e) have been successfully applied to model the mineral
prospectivity of various terrains (e.g., Chung and Agterberg, 1980;
Carranza et al., 2008; Rodriguez-Galiano et al., 2015; Carranza and
Laborte, 2015a,b, 2016).

Target variable of the two prospectivity mapping approaches is
modeled as a set of event and non-event points. These points are the
deposit (values= 1) and non-deposit (values= 0) locations, respec-
tively. These locations should be defined by considering the following
criteria (Nykänen et al., 2015; Carranza and Laborte, 2016):

• The number of the non-deposit locations (hereinafter denoted as
NDLs) should be equal to that of the deposit locations, which is 17 in
this study.

• NDLs should be far from the deposit locations so that their geo-
chemical and geological characteristics would be different from the
deposits. To this end, the point pattern analysis was implemented to
recognize the maximum distance from the KMDs, in which there is a

Table 3
Rotated component matrix of robust factor analysis. Significant loadings (bolded values)
are selected based on the absolute threshold value of 0.4.

Element Factor1 Factor2 Factor 3

As −0.418 −0.524 0.110
Sb −0.523 −0.480 0.125
Zn −0.644 0.474 0.567
Cu 0.485 0.355 −0.105
Mo 0.488 0.228 −0.226
Bi 0.479 0.149 −0.168
Pb 0.210 −0.290 0.620
Au 0.638 0.249 −0.341
Ag 0.458 0.199 −0.257
Var. 48.9 26.8 10.2
Cum. Var. 48.9 75.7 85.9

Fig. 8. Biplots of robust factor 1 versus robust factor 2 of geochemical variables.
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100% probability of finding a deposit. This distance was found to be
7 km, which leaves 45% of the study area for NDLs.

• Unlike the SCDs that have a clustered spatial distribution (Table 2),
NDLs should be chaotically distributed. Therefore, point pattern
analysis was conducted to generate 17 random points in the re-
maining 45% of the study area (Fig. 10).

A set of target variables that was used in both modeling methods
was generated according to the procedure outlined above. District-scale
controls on mineralization (Sections 3 and 4) and the significant multi-
element geochemical signature of the SCDs (Section 5) were translated
to a set of predictor variables or evidence layers to be used in the
modeling methods. These predictor variables were continuously gen-
erated so that systematic uncertainties of MPM, resulting from im-
proper classification of geological data, could be reduced (Yousefi and
Carranza, 2015a,b, 2016). Following a procedure outlined by Carranza
(2009b), a unit pixel size of 100m×100m was objectively selected for
generation of evidence layers and the upcoming processes of MPM.
Fig. 10 depicts the exploration evidence layers generated.

6.1. Logistic regression modeling

The LR models the logit of the probability of the occurrence of
mineralization, as a binary target variable, Y, based on a set of evidence
layers or predictor variables, Xi, using a nonlinear relationship, ac-
cording to the following equation (Hosmer and Lemeshow, 2000):

= ⎛
⎝ −

⎞
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= + + + …+Logit P P
P

β β X β X β X( ) ln
1

. . .n n0 1 1 2 2 (5)

where Logit (P) is the logit of the probability of the occurrence of the
target variable, β0 is the intercept of the model and β1, β2, … , βi are the

slopes of predictor variables in the LR model. The probability of the
occurrence of the target variable, P, then could be derived via the Eq.
(6):

=
+ −P
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1
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In this study, the backward stepwise procedure was used for opti-
mizing the predictor variables in the final LR model (e.g., Carranza
et al., 2008). The values of (β0, β1, … , βi) were determined by the
maximum likelihood method (Cox and Snell, 1989). The Wald statistic
was used for assessing the significance of the incorporation of predictor
variables within the LR model (Menard, 2001). Besides, a 95% of
confidence level was used for retaining significant predictor variables,
based on which the predictor variables whose significance levels are
lower than 0.05 have effectively contributed in the final LR model (e.g.,
Mokhtari, 2014). The final LR model demonstrates that all the evidence
layers are significantly incorporated in the model (Table 4). Such re-
sults are reliable because all the three evidence layers are efficient ex-
ploration criteria that were selected through investigations of controls
on mineralization. Fig. 11 shows the prospectivity model generated by
the LR method.

6.2. Random forest modeling

The RF is an ensemble of multiple decision trees (DTs: Breiman,
1984) that could be utilized in regression and classification problems
(Breiman, 2001). Each DT uses a random subset of training samples
which are taken with replacement from the original data (Breiman,
1996). About two-thirds of samples are used for generation of models,
while the rest of them that are called out-of-bag (OOB) samples are used
for validation of the results using the OOB error. RF initiates with the
purification of child nodes through splitting the target variable based

Fig. 9. Plots showing difference between robust factor scores at each cells and cells containing SCDs (a) robust factor 1, (b) robust factor 2 and (c) robust factor 3.
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on predictor variables from the parent node. The splitting successively
iterates until a pre-defined stop criterion is reached. Through this
process, every DT has reached to its simple regression or classification
model. RF then averages the results of various DTs to gain the final
model. More descriptions about the RF algorithm could be found in
Breiman (2001).

In this study, the ‘randomForest’ package (Liaw and Wiener, 2002)
of the R statistical freeware (R development core team, 2008) was used
for RF modeling. Two parameters should be tuned prior to the RF
analysis, namely the number of trees to be grown and the number of
predictors to be entered at each node. Picking a large number of trees
results in stable predictions (Micheletti et al., 2014), and therefore
20,000 trees were selected (e.g., Carranza and Laborte, 2016). Besides,

the optimum number of predictor variables to be entered at each node
was objectively selected by the ‘tuneRF’ function of the 'randomForest'
package (Liaw and Wiener, 2002), which yielded in the minimizing of
the OOB error (e.g., Pourghasemi and Kerle, 2016; Carranza and
Laborte, 2016).

The OOB error was used for the evaluation of the performance of the
RF model. The OOB error was 2.94%, and therefore the model accuracy
is 97.06% (Table 5), which indicates that the model is somehow perfect
(cf. Breiman, 2001). Since the prospectivity scores derived by the RF
modeling are probability values ranging from 0 to 1, the prospectivity
values of ≥0.5 are considered as prospective for the deposit-type
sought and vice versa (Carranza and Laborte, 2016). According to the
mentioned criterion, a confusion matrix was generated and revealed
that the RF modeling resulted in the classification accuracy of 100% for
deposit locations and the classification error of 0.058% for NDLs
(Table 5).

The importance of predictor variables in the RF model could be
further assessed via the mean decrease in accuracy and the mean de-
crease in node impurity or the Gini impurity index (Breiman, 2001).
The former is determined during the calculation of the OOB error, while
the latter is a measure of how each variable contributes to the homo-
geneity of the nodes and the final RF model. The higher the mean de-
crease accuracy and the higher the Gini impurity index of a predictor
are, the more important the predictor would be (Breiman, 2001).
Fig. 12 depicts the two above-mentioned criteria measured for the
predictor variables. According to this figure, the most important pre-
dictor contributing in the final RF model is the distance to the Oligo-
cene-Miocene intrusive rocks, while the robust factor 1 of composi-
tional geochemical data is the least significant predictor contributing in
the final RF model. Fig. 13 shows the final RF model of the skarn Cu
prospectivity in the study area.

6.3. Comparison of models

The visual comparison of the two prospectivity models generated
manifests that these models are completely different (Figs. 11 and 13).
Quantitative comparison of the models was further implemented using
success- (Agterberg and Bonham-Carter, 2005) and prediction-rate
(Chung and Fabbri, 2003) curves. The former denotes how well the
results correlate with the training samples (Agterberg and Bonham-
Carter, 2005), while the latter reveals the chance of finding

Fig. 10. Three evidence layers generated, namely: (a) Distance to NW-SE trending faults,
(b) Distance to Oligocene-Miocene intrusion boundaries and (c) robust factor 1 scores
specified to sample catchment basins.

Table 4
Coefficients (βi) of predictor variables of final LR model.

Predictors Coefficient (βi) Wald
statistics

Significance

Distance to the NW-trending
faults

49.125 10.276 .001

Distance to the Oligocene-
Miocene intrusive rocks

53.112 11.716 .001

Robust geochemical Factor 1
scores

31.139 4.767 .029

Intercept (β0) −44.040 10.789 .001

Fig. 11. Mineral prospectivity scores generated by the LR method.

Table 5
The accuracy of RF modeling inferred from OOB error rate and confusion matrix of
prediction.

Error for the classification of the deposit
locations

(0 out of 17 incorrect prediction)
0%

Error for the classification of the non-deposit
locations

(1 out of 17 incorrect prediction)
0.058%

OOB error 2.94%
Model accuracy 97.06%
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undiscovered deposits by the models (Chung and Fabbri, 2003). For the
generation of success-rate curves, according to Agterberg and Bonham-
Carter (2005), the prospectivity scores of the models have undergone a
series of discretization processes based on the cut-off values at the five
percentile intervals. Based on each of the cut-off values two parameters
comprising (a) the portion of the area enclosed by the pattern re-
presenting the delimited prospectivity zone, Pa, and (b) the portion of
mineral deposits delimited in the prospectivity zone, Pd, were calcu-
lated. The values of Pa and Pd for different threshold values were esti-
mated and then plotted in the vertical and horizontal axes, respectively.

For the construction of the prediction-rate curves, the leave-one-out
approach (Fabbri and Chung, 2008) was applied. In this approach, as
Fabbri and Chung (2008) mentioned one KMD is excluded from a set of
m KMDs, and the remaining m-1 KMDs are used for generating a pro-
spectivity model. Then the generated prospectivity model is cross-va-
lidated with the excluded KMD. This procedure iterates m times, each
time with excluding a different KMD for cross-validating. The values of
mineral prospectivity models at each excluded KMD are used as
thresholds for classification of mineral prospectivity scores. The pro-
portion of delimited prospectivity areas by the m threshold values in the
m generated prospectivity models are sorted increasingly. Then, the
cumulative increasing proportion of areas, Pa, and the cumulative in-
creasing proportion of the KMDs, Pd, are derived. Similar to the success-
rate curves, prediction-rate curves are constructed by using Pa values on
the horizontal axis versus Pd values on the vertical axis. The success-rate
curve of the RF model lies above that of the LR model (Fig. 14a), re-
presenting that the former compared with the latter possesses a stronger
association between the target and predictor variables.

The prediction-rate curves of both models lie below their corre-
sponding success-rate curves (Fig. 14a and b). Such results are expected
because if a model is correctly generated its success-rate would be
better than its prediction-rate (Chung and Fabbri, 2003). The predic-
tion-rate curve of the RF model lies above that of the LR model
(Fig. 14b), manifesting that the former model (Fig. 13) compared to the
latter model (Fig. 11) has a stronger reliability for finding undiscovered
skarn Cu deposits in the study area.

6.4. Exploration targets

Raster maps of mineral prospectivity should be classified for inter-
pretation purposes (Asadi et al., 2015; Carranza and Laborte, 2016;
Parsa et al., 2016a,b). For this, the plots of cumulative areas versus
cumulative prospectivity scores (Porwal et al., 2003) were generated
(Fig. 15). In these plots, sudden changes in the slope of fitted curves
manifest the possible threshold values through which the continuous
maps could be classified. A threshold was derived for each of the pro-
spectivity models according to the plots of Fig. 15. Consequently, two
binary maps showing the delineated exploration targets were generated
(Fig. 16). The target areas of the LR model (Fig. 16a) have occupied
19.23% of the study area, in which 76.42% of the SCDs are delineated.
However, the target areas of the RF model (Fig. 16b) have occupied
17.64% of the study area, in which all the SCDs are delineated.
Therefore, it could be deduced that the target areas generated by the RF
model are more reliable than those generated by the LR model.

In addition to the results of table 5 in the accuracy assessment of the
RF model and the success- and prediction-rate curves, field operations
demonstrated that the delineated exploration targets of the RF model

Fig. 12. Measures of predictor variable importance derived by RF method: (a) mean decrease in accuracy and (b) mean decrease in Gini impurity index.

Fig. 13. Mineral prospectivity scores generated by RF method.

Fig. 14. Success-rate (a) and prediction-rate (b) curves of mineral prospectivity models
generated.
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are much more robust than that of LR model. Field surveys revealed
that there are pieces of evidence of skarn copper mineralization within
the target zones. Fig. 17 demonstrates a granodiorite stock intruded
into Cretaceous limestones, which yielded in the development of en-
doskarn and exoskarn zones. The dominant mineral assemblage in the
observed outcrops of skarn zones includes chalcopyrite, pyrite and
magnetite as ore minerals and quartz, calcite, garnet and epidote as the
main gangue minerals (Fig. 17b and c and Fig. 18). Malachite and
azurite of the secondary origin were also found in the observed exos-
karn zones. Therefore, based on the results of statistical analyses and
initial field surveys, it is worthy to follow up further exploration within
the delineated target zones of the RF model.

7. Discussion and conclusion

Systematic uncertainties of mineral prospectivity models could be
reduced by the proper selection of exploration criteria (Carranza, 2008;
Yousefi and Carranza, 2015a,b; Andrada de Palomera et al., 2015;
Lindsay et al., 2016; Parsa et al., 2017a). To achieve this goal, re-
cognizing significant geochemical signatures of the deposit of the tar-
geted type (Parsa et al., 2016a,b) and translation of geological controls
on ore deposition (Carranza, 2008, 2009a) into indicator evidence
layers are essential. Analyses of the spatial distribution of known mi-
neral deposits in an area and quantifying their spatial association with
evidential features are beneficial to understand the plausible controls
on ore deposition, and consequently, to develop calibrated exploration
criteria (e.g., Kreuzer et al., 2007; Carranza, 2008, 2009a; Lisitsin,
2015). According to the results of spatial analyses conducted in this
paper, the following exploration criteria were elicited for vectoring
toward skarn copper mineralized zones in the study area:

• The Oligocene-Miocene granitoid intrusions served as the heat

source of the skarn copper mineralization of the Varzaghan district.
These results are consistent with the former reports of Karimzadeh
Somarin and Moayyed (2002), Mollai et al. (2009) and Jamali et al.
(2010), which concluded that the late Oligocene-Miocene fertile
plutons are responsible for deposition of the skarn copper ore in the
Varzaghan district.

• Most of the skarn-type Cu deposits of the study area are distributed
in peripheral to the areas with little distances to the NW-trending
faults. Therefore, the NW-trending faults are the district-scale
structural controls on the skarn mineralization. Such results are
consistent with the previous findings of Meshkani et al. (2013) and
Jamali et al. (2010).

• Relative enrichment of Cu, Mo, Au, Ag and Bi in the stream sediment
samples, are significant geochemical signatures of the skarn Cu
mineralization in the Varzaghan district. In this study, the robust
factor 1 (Fig. 8) is a multi-element geochemical signature mani-
festing the enrichment of the Au-Ag-Cu-Mo-Bi element association
and could be used as an efficient exploration clue to delineate the
exploration targets of skarn Cu mineralization.

The recognized exploration criteria, however, are limited to district-
scale interpretations. This is due to the absence of local exploration
evidence data to be incorporated in the recognition of exploration cri-
teria of skarn Cu deposits (cf. Kreuzer et al., 2007; Carranza, 2008,
2009a; Lisitsin, 2015; Haddad-Martim et al., 2017). Besides, the sug-
gested criteria were developed and thus are limited to the available
data, and they can be further facilitated using supplemental data sets.
Although, the study area of this paper is situated in a forest region, in
which dense vegetation makes it extremely challenging to extract hy-
drothermally altered zones through satellite imaginary data. Moreover,
the study area lacks detail airborne geophysical data.

Categorization of spatial evidence values into crisp classes often

Fig. 15. Plots showing the cumulative area versus cumulative prospectivity scores for deriving thresholds to discretize prospectivity models: (a) for LR model and (b) for RF model.

Fig. 16. Exploration targets (red polygons) delineated by (a) LR and (b) RF prospectivity models. The yellow and purple circles are skarn-deposit and non-deposit locations, respectively.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 17. Pieces of evidence of copper mineralization observed in the delineated exploration targets: (a) a granodiorite stock intruded within Cretaceous limestone, (b) hand specimen
taken from exoskarn and (c) endoskarn zones manifesting Cu mineralization in the form of chalcopyrite. Cal: calcite; Ccp: chalcopyrite; Ep: epidote; Grt: garnet; Py: pyrite.

Fig. 18. Photographs of polished (a, b) and thin (c, d) sections from an observed exoskarn zone showing copper mineralization. Ccp: chalcopyrite; Mt: magnetite; Py: pyrite; Cal: calcite;
Ep: epidote; Grt: garnet.
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yields in loss of valuable information and is a source of systematic
uncertainty in mineral prospectivity modeling (Porwal et al., 2003). To
address this caveat, following Nykänen et al. (2008a,b, 2015) and
Yousefi and Carranza (2015a,b, 2016), continuous evidence layers were
employed in two modeling methods of this study. Furthermore, dif-
ferent methods of weighting and synthesizing exploration evidence data
yield in various prospectivity models. Thus, as Carranza (2008) men-
tioned, at least two models should be generated and compared to select
the superior one (e.g., Carranza and Laborte, 2015a,b; Zuo et al., 2015;
Parsa et al., 2017a). In this study, because of higher success and pre-
diction rates (Fig. 14), the random forest algorithm is found to be su-
perior to the logistic regression for modeling the prospectivity of the
skarn deposits. Therefore, the generated targets using random forest
algorithm are reliable to follow exploration up.
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