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The uncertainty in the recoverable tonnages and grades in amineral deposit is a key factor in thedecision-making
process of a mining project. Currently, the most prevalent approach to model the uncertainty in the spatial dis-
tribution ofmineral grades is to divide the deposit into domains based on geological interpretation and to predict
the gradeswithin each domain separately. This approach defines just one interpretation of the geological domain
layout anddoes not offer anymeasure of theuncertainty in theposition of thedomain boundaries and in themin-
eral grades. This uncertainty can be evaluated by use of geostatistical simulationmethods. The aim of this study is
to evaluate how the simulation of rock type domains and grades affects the resourcesmodel of Sungun porphyry
copper deposit, northwestern Iran. Specifically, threemain rock type domains (porphyry, skarn and late-injected
dykes) that control the copper grade distribution are simulated over the region of interest using the plurigaussian
model. The copper grades are then simulated in cascade, generating one grade realization for each rock type re-
alization. The simulated grades are finally compared to those obtained using traditional approaches against pro-
duction data.
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1. Introduction

Currently, the most common approach to model the uncertainty in
the spatial distribution of mineral grades in an ore deposit is to define
geological domains deterministically, then to predict or to simulate
the mineral grades within each domain conditionally to the data be-
longing to this domain. This approach consists in interpreting the geo-
logical domains, using experimental data of lithology, mineralogy and/
or alteration and geological knowledge of the deposit (Dowd, 1986;
Duke and Hanna, 2001; Sinclair and Blackwell, 2002; Rossi and
Deutsch, 2014). However, it suggests only one interpretation of the geo-
logical domains and fails at measuring the uncertainty in the spatial
configuration of these domains. By constructing multiple numerical
outcomes or realizations of the geological domains, geostatistical simu-
lation helps to improve the geological interpretation and tomeasure the
uncertainty in the position of the domain boundaries. This ability of
geostatistical simulation allows assessing, in a realistic way, the risk of
a mining project by considering the uncertainty in both the geological
interpretation and the grade distribution. Several methods can be
used to this end, including sequential indicator (Journel and Alabert,
1990; Journel and Gómez-Hernández, 1993; Deutsch, 2006), multiple-
einzadeh@ut.ac.ir (E.H. Sabeti),
Emery).
point (Strebelle, 2002; Mariethoz and Caers, 2015), truncated Gaussian
(Matheron et al., 1987; Galli et al., 1994) and plurigaussian (Galli et al.,
1994; Le Loc'h et al., 1994; Armstrong et al., 2011) simulation. In partic-
ular, plurigaussian simulation has gained popularity and proved to be
versatile to reproduce complex configurations of geological domains
(Riquelme et al., 2008; Yunsel and Ersoy, 2013; Talebi et al., 2013,
2014; Rezaee et al., 2014; Madani and Emery, 2015).

The aim of this study is to investigate the impact of simulated
models instead of deterministic geological models for studying the
risk in the evaluation of mineral resources and ore reserves, through a
case study on the Sungun copper deposit, located in northwestern
Iran. This deposit has been identified both as a skarn and a porphyry-
type deposit. It is characterized by the presence of late-injected dykes
with variable density, size and geometry into the main intrusion mass
of the deposit. These dykes often do not have any mineralization and
consequently dilute the mill feed (Hezarkhani and Williams-Jones,
1998), while porphyry and skarn correspond to ore with different
grade distributions and structures. In this type of deposits, the risk due
to uncertainty of geological contacts is essential. First of all, the
plurigaussian model is applied to the three main rock types (porphyry,
skarn and late-injected dykes) in order to reproduce the spatial variabil-
ity of the rock type domains and to assess the uncertainty in the position
of their boundaries. One hundred realizations (outcomes) are generated
and, afterwards, each of these is used to further generate a copper grade
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realization constructed with the sequential Gaussian simulation
(Goovaerts, 1997). The realizations are then used to quantify uncertain-
ty in recoverable tonnage and grade. The results are compared against
traditional approaches and against production data.

2. Methodology

2.1. Principles of geostatistical simulation

An ore deposit can be characterized by one or more regionalized var-
iables, i.e., variables that are distributed in space and exhibit some conti-
nuity, such as the grades of elements of economic interest or of
contaminants, the rock type or the alteration intensity, to name a few ex-
amples. The exact values of these variables are known at a finite set of
sampling locations, but unknown elsewhere. In order to quantify the un-
certainty in the values at unsampled locations, one assumes that each re-
gionalized variable is a realization of a spatial random field, characterized
by its finite-dimensional distributions (Chilès and Delfiner, 2012). Once
the randomfieldmodel is specified, it is possible to drawdifferent realiza-
tions or outcomes of thisfield and to constrain these realizations to repro-
duce the known values at sampling locations (conditional simulation). A
variety of random field models and simulation algorithms have been de-
veloped in the past decades; the reader is referred to the textbooks by
Lantuéjoul (2002) or Chilès and Delfiner (2012) for an overview.

2.2. Sequential simulation of grades

Let us denote by z(x) the grade of an element of interest at a specific
location x in the deposit, and by D the domain in which the grade is stud-
ied. The regionalized variable {z(x): x ∈ D} is viewed as a realization of a
parent random field {Z(x): x ∈ D}. Commonly, this random field is
modeled as amonotonic transformation of a stationary standardGaussian
random field {Y(x): x ∈ D}, which implies that the grade data have to be
transformed into normally-distributed data prior to simulation and that,
after simulation, the realizations have to be back-transformed into grades,
a procedure known as anamorphosis (Chilès and Delfiner, 2012). A sta-
tionaryGaussian randomfield is characterized by itsmeanvalue, constant
over space, and by its auto-covariance function or its variogram.

The simulation of the Gaussian random field at a set of target loca-
tions can be performed through the following steps (Goovaerts, 1997;
Deutsch and Journel, 1998; Remy et al., 2009):

1. Obtain a representative histogram for the input data.

2. Transform the data into normal scores (anamorphosis).
3. Calculate the sample variogram of the normal scores data and fit a

variogram model.
4. Select a target location for which the value has not been yet

simulated.
5. Perform simple kriging at the target location, using the input nor-

mal scores data and the already simulated values. Obtain a predic-
tion and a variance of the prediction error.

6. Draw a random value from aGaussian distributionwithmean equal
to the simple kriging prediction and variance equal to the simple
kriging variance.

7. Incorporate the value drawn into the conditioning data set.
8. Repeat steps 4–7 until all the target locations are visited.
9. Back-transform the simulated Gaussian values into the original

grade scale.
10. Repeat steps 4–9 to generate another realization.

2.3. Plurigaussian simulation of geological domains

Let now z(x) denote the value of a geological domain (codified as,
say, an integer between 1 and n) at location x. In the plurigaussian
model, this value is interpreted as a realization of an integer random
field {I(x): x ∈ D} obtained by truncating one or several underlying
Gaussian random fields, according to a given truncation rule.

Specifically, consider a set of m stationary Gaussian random fields
{Yi(x): x ∈ D} with i=1…m, which can be viewed as the components
of a vector Gaussian random field {Y(x): x ∈D}. Also consider a partition
of Rm into n disjoint subdomains D1,…, Dn and define an integer random
field by.

∀x∈D, I(x)= i if and only if Y(x)∈Di. (1)

The geometry of the partition (D1,…, Dn) defines the so-called trun-
cation rule, which controls the spatial relationships between the geolog-
ical domains. Usually, the subdomains forming the partition are cuboids
of Rm (Emery, 2007; Armstrong et al., 2011). The specific values that de-
fine the boundaries of such cuboids are known as the truncation thresh-
olds and are related to the proportion of space covered by each
geological domain.

As an example, consider two independent Gaussian random fields
(Y1 and Y2) and the following truncation rule to define the domain at lo-
cation x:

I xð Þ ¼
1 if Y1 xð Þ b t1
2 if Y1 xð Þ ≥ t1 andY2 xð Þ b t2
3 if Y1 xð Þ ≥ t1 andY2 xð Þ ≥ t2

8<
: ð2Þ

where t1 and t2 are the threshold values. Geometrically, this truncation
rule can be represented by a two-dimensional flag, where each axis rep-
resents a Gaussian randomfield and the rectangular areas correspond to
the couples of Gaussian values associatedwith each domain (Fig. 1). The
choice of the truncation rule may be based on topological or chronolog-
ical relationships between geological domains. For instance, domain 1
may correspond to a younger domain that crosscuts the other two do-
mains (Madani and Emery, 2015). The values of thresholds t1 and t2 de-
termine the proportion of space covered by each domain. For example,
if they are equal to zero (median of the standard Gaussian distribution),
then the Gaussian random fields take values below the thresholds half
of the time and values above the thresholds half of the time, which
means that domain 1 will have a proportion of 0.5, while the propor-
tions of domains 2 and 3 will be 0.25.

To complete the specification of the model, one has to infer the cor-
relation structure of the vector Gaussian random field {Y(x): x ∈D}. This
is done in order to fit the correlation structure of the integer random
field {I(x): x ∈ D}, which is experimentally known from the available
data on the geological domains prevailing at the sampling locations
(Armstrong et al., 2011).

The steps for simulation are the following:

1. Define the truncation rule.
2. Define the truncation thresholds.
3. Define the correlation structure of the underlying Gaussian random

fields, via its impact on the indicator variograms of the integer field
I(x).

4. At the sampling locations, transform the integer data into Gaussian
data. This can be donewith an iterativemethod known asGibbs sam-
pler (Lantuéjoul, 2002).

5. Simulate the Gaussian random fields at the target locations, condi-
tionally to their values at the sampling locations. This can be done
with the sequential algorithm described in the previous section.

6. Truncate the simulated Gaussian random fields to obtain an integer
random field.

7. Repeat steps 4–6 to generate another realization.

2.4. Cascade simulation of geological domains and grades

The cascade approach consists in simulating first the layout of the
geological domains, then the mineral grades within each domain



Fig. 1. Realizations of two Gaussian random fields (a, b) and of three domains (c) obtained by applying the truncation rule (d).
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conditionally to the grade data belonging to this domain only (Chilès
and Delfiner, 2012; Roldão et al., 2012). The steps are the following:

1. Simulate the geological domains using plurigaussian simulation
(Section 2.3).

2. Select the conditioning data located in domain 1 and the target loca-
tions that have been simulated as domain 1.

3. Simulate the grade at these target locations using sequential simula-
tion (Section 2.2).

4. Repeat steps 2–3 to simulate the grade in the other domains.
5. Repeat steps 1–4 to generate another realization.

3. Case study: Sungun copper deposit

3.1. Geological description

The Sungun porphyry copper deposit is located in northwestern
Iran, on the well-known Urmia-Dokhtar Magmatic Arc (UDMA, Fig. 2).
Most of the Iranian porphyry copper deposits were formed during the
magmatic activities of this arc (Shahabpour, 2005; Hezarkhani, 2006b;
Shahabpour, 2007; Boomeri et al., 2010; Dargahi et al., 2010; Shafiei,
2010; Hou et al., 2011; Afshooni et al., 2013; Azadi et al., 2015). The re-
mains of ancient tunnels and smelting furnaces in the area of interest
show that copper ores used to be exploited in the skarn zone, and
were the center of attention before the discovery of the porphyry cop-
per deposit by Etminan (1977) in the adjacent stock (Calagari and
Hosseinzadeh, 2006). The oldest rocks exposed in the study area are a
500 m sequence of Cretaceous limestone with intercalations of shale,
and a 1500 m thick sequence of Middle to early Late Tertiary, interme-
diate, calc-alkaline lavas, and tuffaceous rocks, intruded by numerous
calc-alkaline andesitic dykes (Hezarkhani, 2006a; Fig. 2). The deposit
is associated with diorite–granodiorite to quartz monzonite of Miocene
age that intruded Eocene volcano-sedimentary and Cretaceous carbon-
ate rocks. Several intrusive pulses are observable in the emplacement of
the Sungun stock and also hydrothermal activities that are associated
with this mineralization (Hezarkhani and Williams-Jones, 1998;
Hezarkhani, 2006a; Fig. 2). Skarn-type alteration and associated miner-
alization occurs as a rim along the eastern and northern margins of the



Fig. 2. a) Geological map of Sungun showing different rock domains (Hezarkhani, 2006a); and b) map of Iran showing Urmia-Dokhtar Magmatic Arc (UDMA).
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stock (Lescuyer et al., 1978;Mehrpartou, 1993). Late-injected dykes are
distributed mostly in the north and eastern parts of the Sungun deposit
(outside the main stock, Fig. 2). Most of these dykes rarely have miner-
alization or are poorly mineralized (0.08% copper in average), and their
thicknesses vary from a few centimeters to several tens of meters
(Hezarkhani, 2006a).

Previous studies on the geological features of this deposit revealed
threemain rock type domains controlling the copper grade distribution
(Hezarkhani and Williams-Jones, 1998; Calagari and Hosseinzadeh,
2006; Calagari, 2003, 2004; Hezarkhani, 2006a; Asghari et al., 2009):
Sungun porphyry (SP) stock, skarn mineralization (SK), and late-
injected dykes (DK). These domains are discussed in detail in the next
subsections.

3.1.1. Sungun porphyry (SP) stock
The multiphase porphyry stock at Sungun is composed of monzo-

nite/quartz monzonite and diorite/granodiorite in order of emplace-
ment (Fig. 2). The monzonite/quartz-monzonites are mainly
porphyritic, and exposed to the west of the diorite/granodiorite intru-
sion, and in a small body in the southeast. The diorite/granodiorite
forms the central part of the stock and intrudes the monzonite/quartz-
monzonite (Hezarkhani, 2006a). Potassic and phyllic hydrothermal al-
teration and the mineralization at Sungun are centered on the diorite/
granodiorite intrusion andwere broadly synchronouswith its emplace-
ment (Hezarkhani, 2002; Fig. 2). According to Hezarkhani and
Williams-Jones (1998), early hydrothermal alteration was dominantly
potassic, and was followed by later phyllic alteration. The earliest alter-
ation in diorite/granodiorite, whichwas produced by fluxes of magmat-
ic fluids away from the pluton center, is represented by potassicmineral
assemblages developed pervasively and as halos around veins in the
deep and central parts of the Sungun stock. The change frompotassic al-
teration to phyllic alteration is transitional. Influx ofmeteoric water into
the central part of the systemandmixingwithmagmatic fluid produced
phyllic alteration that is characterized by the replacement of almost all
rock-forming silicates by sericite and quartz, and overprints the earlier
formed potassic zone (Hezarkhani and Williams-Jones, 1998).



Table 1
Statistics of copper grade (%), in the overall deposit and for each rock type domain.

Number of
data

Mean Median Std.
deviation

Variance Minimum Maximum

DK 9016 0.08 0.01 0.22 0.05 0 3.58
SK 749 0.57 0.26 1.28 1.64 0 23.50
SP 20,664 0.54 0.46 0.48 0.23 0 9.61
Total 30,429 0.40 0.25 0.51 0.26 0 23.50
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Hypogene mineralization occurs as disseminations, fracture and micro-
fracture fillings. Pyrite is the most abundant sulfide, and chalcopyrite is
the dominant copper ore, accompanied by minor amounts of molybde-
nite and trace amounts of bornite, tetrahedrite, and hypogene chalcocite
(Calagari, 2004).

3.1.2. Skarn mineralization (SK)
The contact between granodioritic rocks and Cretaceous lime-

stone is well exposed in the northern and eastern parts of the study
area (Fig. 2). Intrusion of granodioritic rocks into the limestone has
altered it to skarn that locally contains abundant copper mineraliza-
tion (Hezarkhani, 2006a). Based on Calagari and Hosseinzadeh
(2006), the skarnification process occurred in two stages: prograde
and retrograde. During the prograde stage, considerable amounts
of medium- to coarse-grained anhydrous calc-silicates formed. In
the retrograde stage, the previously formed skarn assemblages
were affected by intense multiple hydro-fracturing phases in the
copper-bearing stock. Consequently, considerable amounts of hy-
drous calc-silicates (epidote, tremolite–actinolite), sulfides (pyrite,
chalcopyrite, galena, sphalerite, bornite), oxides (magnetite, hema-
tite) and carbonates (calcite, ankerite) replaced the anhydrous
calc-silicates (Calagari and Hosseinzadeh, 2006). The associated con-
tact metasomatic alteration andmineralization are best developed in
places where the fracture density in the carbonate rocks is relatively
high. The abundance and type of opaques vary spatially, depending
on the locality and distance from the intrusive contact. Sulfides are
predominantly present in the skarn zone and their abundance is al-
most restricted to within 0–20 m from the contact; further away
their abundance sharply diminishes (Calagari and Hosseinzadeh,
2006).

3.1.3. Late-injected dykes (DK)
Two types of dykes have been injected into the igneous rocks with

abrupt contacts: (1) light-brown altered and mineralized andesitic
dykes; and (2) dark-brown, almost fresh, un-mineralized (post-miner-
alization) andesitic dykes (Hezarkhani and Williams-Jones, 1998;
Calagari, 2003; Hezarkhani, 2006a). Both types crosscut older rocks
and their thicknesses vary from a few centimeters to several tens ofme-
ters. The thicknesses vary vertically and horizontally, even in a single
dyke, and none of the dykes is flatly planar. In fact, most of them are
Fig. 3. Perspective view of available drill hole samp
curved and do not follow a single direction. The area has suffered from
multiple structural activities and some of the four main fault systems
have dislocated the dykes.

On the one hand, mineralized dykes are dominant in diorite/
granodiorite rocks in the center of the stock (the area of interest in
this study; Calagari, 2003) and are pervasively affected by phyllic al-
terations, with a poor mineralization. These rocks are of early dykes
and are thought to be injected almost nearly after the main stock
(Hezarkhani, 2006a, 2006b). Mineralization in these rocks is more
limited to themargins of the dykes, in contact with the highly altered
intrusive rocks. The mineralization in these dykes is believed to be
introduced during the influx of meteoric water into the central part
of the system and mixing with magmatic fluid and formation of
phyllic alteration (Hezarkhani and Williams-Jones, 1998). On the
other hand, un-mineralized late dykes, which crosscut monzonite/
quartz-monzonite in the north, are fresh, unaltered rocks with no
mineralization (Hezarkhani, 2006a). From the mining point of
view, either the dykes bear a weak mineralization or no mineraliza-
tion, are all considered as waste, insofar as the average copper grade
in Sungun dykes is 0.08%, with a variance of 0.05 (Table 1).

3.2. Presentation of the data set

A set of 34,037 diamond drill hole samples, located in a volume of
1200 m × 1100 m × 1000 m (Fig. 3), is available with information on
the rock types (SP, SK or DK) and, for 30,429 of these samples, on the
total copper grades. A summary of descriptive statistics is given in
Table 1, globally and per rock type domain, while Fig. 4 shows the
grade distributions via box plots and histograms. From this table and
figure, one observes that the distributions of copper grade strongly dif-
ferwith the rock type, suggesting that the data are amixture of different
populations. On the one hand, SP and SK have a high average grade, but
the grade variability is quite different between these two domains. On
the other hand, DK has almost no economic mineralization and corre-
sponds to waste material not to be sent to the processing plant. These
facts force mine geologists to separate the rock type domains prior to
the resources evaluation process, since different grade distributions
are expected in these domains.

3.3. Plurigaussian simulation of rock type domains

As the rock type domains are mutually in contact, two independent
Gaussian random fields {Y1, Y2} and two thresholds {t1, t2} are usedwith
the same truncation rule as in Fig. 1. The second random field (Y2) is ap-
plied to separate the two oldest domains (SK = code 2 and SP = code
3), which have a roughly similar anisotropy and irregular boundary,
while the first random field (Y1) is used to erode these two domains
by the late-injected dykes (DK=code 1) that have a lower average cop-
per grade. These dykes have more regular boundaries than the other
les showing a) copper grade and b) rock type.



Fig. 4. a) Box plots of copper grade (drill hole data) for each rock type domain; and b) histogram of copper grades (drill hole data).
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two domains. Accordingly, the rock type prevailing at a given spatial lo-
cation x is defined in the following fashion:

• location x belongs to DK domain ⇔ Y1(x) b t1
• location x belongs to SK domain ⇔ Y1(x) ≥ t1 and Y2(x) b t2
• location x belongs to SP domain ⇔ Y1(x) ≥ t1 and Y2(x) ≥ t2.

The threshold values are determined in agreement with the domain
proportions calculated from the drill hole data. For variogram analysis,
the two Gaussian random fields Y1 and Y2 are assumed to be indepen-
dent and their variograms are determined through their impact on the
variograms of the domain indicators, which can be estimated experi-
mentally from the drill hole data (Emery, 2007; Armstrong et al.,
2011). Table 2 indicates the parameters for the variogram models ob-
tained for the Gaussian random fields. In order to reproduce a regular
boundary between late-injected dykes and the other two domains,
cubic variogram models have been used for the first Gaussian random
field (Y1), since they are smooth at the origin and associated with regu-
lar boundaries (Lantuéjoul, 2002). In contrast, spherical models (linear
at the origin) are used for the second Gaussian random field, which
will produce a more irregular boundary between domains SK and SP,
as can be observed in Fig. 1.

One hundred point-support realizations of the rock type domains
are generated on a grid with a 5 m × 5 m × 2 m spacing. Fig. 5 shows
a perspective view of three realizations (d, e, f), together with the prob-
ability maps (a, b, c) for the three domains calculated by dividing, at
each location, the number of outcomes for a specific rock type (an inte-
ger between 0 and 100) by the number of total outcomes (100). In these
maps, the red regions are associated with the locations where there is a
high potential tofind a specific rock type domain,while the blue regions
correspond to locationswhere domains are quite unlikely to be present.
Both red and blue regions are located around the drill holes, for which
the domains have been seen directly. Finally the intermediate color re-
gions indicate a greater uncertainty onwhether or not a specific domain
Table 2
Parameters of variogram models of underlying Gaussian random fields. Ranges and rotation an

Gaussian random field Nugget Sill Basic structure First range (m) Second r

Y1 0.05 0.40 Cubic 200 120
0.55 Cubic 800 600

Y2 0 0.38 Spherical 350 250
0.62 Spherical 1350 950
can be found (in particular,whether or not there is some economicmin-
eralization). These mainly correspond to the regions in-between the
drill holes and to the margins of the deposit.

3.4. Grade simulation

To assess the accuracy of the results, three different approached will
be compared, as follows:

• Copper grade simulation without geological control (A1): in this
method, sequential simulation is used to reproduce the copper
grade variability, without considering a rock type partition of the
deposit.

• Copper grade simulation using a deterministic geological model (A2):
thismethod uses an interpretedmodel of the three rock type domains
(SP, SK, and DK). Copper grades are then simulated independently
within each domain using sequential simulation.

• Copper grade simulation using a stochastic geological model (A3):
here, one hundred realizations of the rock type domains are obtained
with plurigaussian simulation. Copper grades are then simulated in-
dependently within each simulated domain, using the cascade ap-
proach presented in Section 2.4.

In each case, the copper grades are generated using point-support
simulation on the same grid as the one considered for plurigaussian
simulation of the rock types (5m× 5m× 2m spacing). The variograms
of the Gaussian random fields that have been used for simulating the
grades, inferred from the normal scores data, are indicated in Table 3.

3.5. Performance evaluation

The simulated grade models based on three approaches are validat-
ed against a model created by point-support ordinary kriging on the
5 m × 5 m × 2 m grid, given a set of 20,405 blast hole data in which
gles define the ellipsoid of anisotropy for each basic structure.

ange (m) Third range (m) First angle (°) Second angle (°) Third angle (°)

80 150 0 30
250 150 0 30
110 150 0 0
640 150 0 0



Fig. 5. Probabilities of occurrence of a) DK, b) SK, and c) SP domains, obtained from a set of 100 conditional realizations, and three conditional realizations of the rock type domains (d, e, f).
Yellow ellipses in a) and d) show the probability of occurrence and a realization of a late-injected dyke, respectively, in a specific region. (For interpretation of the reference to color in this
figure legend, the reader is referred to the web version of this article.)
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the true copper grades are known. Because the mesh of blast hole data
(about 5 m × 5 m × 3 m) is of the same order of magnitude as the
mesh of the target grid, the kriging errors are negligible and the kriged
grades are therefore considered as the true copper grades, against
which the grades obtained with the different simulation approaches
can be compared. In order to quantify the distribution of errors in the
simulated grades, themean error percentage (MEP) for the k-th realiza-
tion, with k = 1 … 100, and the linear correlation coefficient (LCC) be-
tween the k-th realization and the validation model are defined as
follows (Cáceres and Emery, 2010):

MEP kð Þ ¼ 1
nloc

∑nloc
i¼1 100� Sk ið Þ � R ið Þ

R ið Þ

 !
ð1Þ
Table 3
Parameters of variogram models of transformed copper grades. Ranges and rotation angles de

Domain Nugget Sill Basic structure First range (m) Second range (

Global 0.07 0.18 Spherical 165 75
SP 0.04 0.19 Spherical 170 80
SK 0.52 1.18 Spherical 170 80
DK 0.00 0.47 Spherical 270 120
LCC kð Þ ¼
nloc∑nloc

i¼1 Sk ið Þ R ið Þ
� �

� ∑nloc
i¼1 S

k ið Þ
� �

∑nloc
i¼1 R ið Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nloc∑nloc

i¼1 Sk ið Þ
� �2

� ∑nloc
i¼1 S

k ið Þ
� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nloc∑nloc
i¼1 R ið Þð Þ2 � ∑nloc

i¼1R ið Þ
� �2r

ð2Þ

where Sk(i) is the simulated grade at location i, R(i) is the “real” grade
obtained by kriging from the blast hole data, and nloc is the total num-
ber of grid locations. Fig. 6 presents the cumulative distribution func-
tions of MEP (a) and LCC (b) calculated over the 100 realizations (one
MEP value and one LCC value per realization), for each approach. Ap-
proach A3 has a MEP distribution closer to zero and an LCC distribution
closer to one than the other two approaches (A1, A2) and therefore
proves to be more accurate.
fine the ellipsoid of anisotropy for each basic structure.

m) Third range (m) First angle (°) Second angle (°) Third angle (°)

60 150 0 0
60 150 0 0
40 150 0 0
40 150 0 30



Fig. 7. Percentage of correct classification.

Fig. 6. Cumulative distribution functions of MEP (a) and of correlation coefficients (b) calculated over 100 realizations.

49H. Talebi et al. / Ore Geology Reviews 75 (2016) 42–51
Considering that the aim of this study is to make the grade predic-
tion more accurate, it is also of interest to avoid misclassifications be-
tween ore and waste. To this end, for each block of the grid, the
selection (mill or dump) at a given cut-off based on the simulated
grade is compared with the selection obtained using the “real” grade,
to determine whether there is a match or not. The grand overall
match percentage at the given cut-off, over all the blocks and over the
100 realizations, is then computed and plotted against the cut-off, for
each approach (Fig. 7). Again, approachA3 is seen to provide consistent-
ly better results than approaches A1 and A2.

4. Discussion

As indicated in Section 3.1.3, due to the complexity in the geometry
of the dykes, a deterministic model of the rock type domains is likely to
misclassify the true rock type at any unsampled location. As a practical
solution, this study considers a stochastic modeling of the rock types,
through the use of multiple equally-probable realizations (Fig. 5), and
subsequently of the copper grades, allowing modeling the joint uncer-
tainty in rock types and grades at unsampled locations. For a better un-
derstanding the differences between each approach and how the rock
type model relates to the copper grade model, compare the results in
Figs. 5 and 8 simultaneously. Fig. 8a depicts the expected copper grade
(calculated as the average of 100 grade realizations) without geological
control (A1). Froma geological point of view, the grade variation is illog-
ical. As a representative example, the yellow ellipses in Fig. 5a and d
show the probability of occurrence and a realization of a late-injected
dyke, respectively. Comparing this dyke sample and the associated ellip-
se in Fig. 8a, it appears that the lowgrade of this late-injected dyke is not
observed in this model. On the contrary, the second approach (A2) pro-
duces a grade model that is consistent with the structure of the DK and
SP domains (Fig. 8b). According to mine geologists and to the produc-
tion data, there is little variation of the copper grade in the DK domain.
However, this approach has some limitations; in particular the obtained
grademodel is strongly dependent on the interpretation of the geologist
about the boundaries of the rock type domains. As a result, one obtains a
grade model with clear-cut discontinuities when passing from one do-
main to another (Fig. 8b), but the position of such discontinuities may
be mistaken due to geological interpretation errors, in particular, in re-
lation to the complicated structure of the late-injected dykes. In con-
trast, in the cascade simulation approach (A3), the uncertainty in the
layout of the rock type domains is considered through the construction
of 100different realizations of the geological domains. Although the dis-
continuities still exist in each individual realization of the copper grade,
the expected copper grade (calculated by averaging the 100 grade real-
izations) no longer exhibits such discontinuities (Fig. 8c), which is ex-
plained because one does not exactly know the position of domain
boundaries: a given location classified as dyke in some realizations
and simulated with a very low copper grade, may be classified as ore
(SK or SP) and simulated with a higher copper grade in other realiza-
tions, resulting in an intermediate average grade over the realizations
and no clear-cut discontinuities between ore and waste in this average
model.

In addition to averaging the copper grade realizations, one can
calculate the variance of the grade realizations at each target location
(Fig. 8d, e, f), which measures the uncertainty in the true unknown
grades. A strong dependence between the variance and the expected
grades is evident in each approach. The explanation of this observa-
tion stems from a property of the spatial grade distribution known as
proportional effect, according to which high-grade areas have a
greater variability than low-grade areas. However, the grade models
based on a deterministic (A2) or probabilistic (A3) modeling of the
rock type domains show significantly lower variances than the
grade model obtained without geological control (A1), suggesting
that the incorporation of the rock type information reduces the un-
certainty in the grade models.

Because it relies on a single rock typemodel, approach A2 is likely to
misclassify the rock type domains when the geology gets complex. The
errors in the rock type model affect the predicted grades and tonnages
of ore, and eventually all the future mining plans. For instance, in ap-
proach A2, for a zero cut-off grade (i.e., without any selection on the
copper grade), the tonnage of ore rocks (SK and SP, excepting DK con-
sidered as waste) is equal to 1158 million tonnes in all the realizations
(Fig. 9a). This method uses just one layout of the rock type domains
and there is no measurement for uncertainty in such a layout, while
for a cut-off grade of 0.3%, the tonnage of ore rocks fluctuates between
598.5 and 667.1 million tonnes, depending on the realization, with an
average of 631.7 million tonnes (Fig. 9b). In contrast, for the same cut-
off grades, approach A3 yields a larger range for the tonnage of SK and



Fig. 8.Mean (a, b, c) and variance (d, e, f) of the simulated copper grades using approaches A1, A2 and A3, respectively (calculations from 100 realizations). Yellow ellipses in a), b), and
c) show the expected copper grade for the late-injected dyke located as in the geological model in Fig. 5. (For interpretation of the reference to color in this figure legend, the reader is
referred to the web version of this article.)
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SP (between 1146.8 and 1212.0 million tonnes at cut-off 0%, and be-
tween 598.2 and 696.1 million tonnes at cut-off 0.3%), which is ex-
plained because the layouts of both domains SK and SP vary from one
Fig. 9.Distribution of the tonnage of orematerial above cut-off 0% (a) and above cut-off 0.3% (b),
of the references to colors in this figure legend, the reader is referred to the web version of thi
realization to another, causing greater uncertainty in their tonnages. Ap-
proachA1 does not provide such information, as no lithologicalmodel is
available in this approach (only a grade model).
calculated over 100 realizations of approaches A2 (red) andA3 (green). (For interpretation
s article.)
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5. Conclusions

In the Sungun porphyry copper deposit, the dyke domain has no
economic mineralization and should not be considered in the mineral
resource evaluation step, while the porphyry and skarn domains have
different copper grade distributions and should be separated from
each other in the resource evaluation stage. Dykes have a very compli-
cated structure and make a big challenge for the mine geologists to in-
terpret their layout. A deterministic interpretation is logically unable
to reproduce the true spatial variability and to measure the uncertainty
in the domain layouts, which may produce a significant error in the
resulting copper grade models. As an alternative to this approach, this
study focused on a probabilistic simulation of the geological domains,
using the plurigaussian model, and afterward combining the rock type
simulation with a copper grade simulation within each rock type. The
proposed approach improves the accuracy of the expected grades
when validating the realizations against production data. Stochastic
mine planning approaches should therefore consider the influence of
probabilistic rock type modeling to grade evaluation in order to allow
better decision-making for mine executives.
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