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Abstract

In monitoring a minor geochemical element in groundwater or soils, a background population of values below the

instrumental detection limit is frequently present. When those values are found in the monitoring process, they are

assigned to the detection limit which, in some cases, generates a probability mass in the probability density function of

the variable at that value (the minimum value that can be detected). Such background values could distort both the

estimation of the variable at nonsampled locations and the inference of the spatial structure of variability of the vari-

able. Two important problems are the delineation of areas where the variable is above the detection limit and the

estimation of the magnitude of the variables inside those areas. The importance of these issues in geochemical pros-

pecting or in environmental sciences, in general related with contamination and environmental monitoring, is obvious.

In this paper the authors describe the two-step procedure of indicator kriging and ordinary kriging and compare it with

empirical maximum likelihood kriging. The first approach consists of using a binary indicator variable for estimating

the probability of a location being above the detection limit, plus ordinary kriging conditional to the location being

above the detection limit. An estimation variance, however, is not available for that estimator. Empirical maximum

likelihood kriging, which was designed to deal with skew distributions, can also deal with an atom at the origin of the

distribution. The method uses a Bayesian approach to kriging and gives intermittency in the form of a probability map,

its estimates providing a realistic assessment of their estimation variance. The pros and cons of each method are dis-

cussed and illustrated using a large dataset of As concentration in groundwater. The results of the two methods are

compared by cross-validation.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In the study of the spatial distribution of some geo-

chemical elements (especially the minor ones), the pro-

portion of values below a limit of detection may be

large. This often happens if a trace element is naturally

very low in the composition of soils or groundwater, but

its concentration is high at some places because of

contamination or a geochemical anomaly. The anomaly
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may have a natural origin or be the result of human

activities. Thus, monitoring or sampling of an area for

that element may show a natural background well below

the detection limit and a small number of values higher

than the detection limit. This situation generates a par-

ticular structure of variability known as intermittency

(by analogy with rainfall, where one may distinguish

rainy and nonrainy areas). In geochemical monitoring,

the values below the detection limit are assigned to the

detection limit by the measurement device and a discrete

probability mass appears in the probability density

function at that particular value. This proportion of

constant values, if partially considerable, may have an
ed.
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influence masking the spatial structure of variability of

the variable of interest and can affect the process of es-

timation (spatial interpolation).

Kriging is a distribution-free procedure. Its applica-

tion is always possible using whatever variogram is es-

timated from the experimental data. Nonetheless,

Barancourt et al. (1992) show that using indicator

kriging for estimating intermittency, then estimating the

variable inside the areas where the variable is above the

detection limit, is preferable to ordinary kriging for

the delineation of intermittency and for estimating the

value of the variable inside the areas where it is esti-

mated to be above the detection limit. First, one esti-

mates intermittency, i.e. which areas have values above

the detection limit. Secondly the magnitude of the var-

iable inside those areas above the detection limit is es-

timated. The first step is performed by indicator kriging,

whereas the second step is done by ordinary kriging

conditional on the values being above the detection

limit. The procedure is reviewed below and its draw-

backs are highlighted. The aim of this paper is to present

a novel procedure that can deal with intermittency,

overcoming the weaknesses of the procedure of Baran-

court et al. (1992). The two procedures are compared in

a case study.
2. Methodology

In Geostatistics, a spatial variable (e.g., the concen-

tration of a geochemical element) is modelled as a ran-

dom function (RF) ZðxÞ which, under the intrinsic

hypothesis (Matheron, 1965), has the following mean

and variance for the first-order increments:

EfZðxþ hÞ � ZðxÞg ¼ 0

ðthe mean of the first-order increments is zeroÞ
ð1Þ

and the variogram

cðhÞ ¼ 1
2
Ef½Zðxþ hÞ � ZðxÞ�2g ð2Þ

(half the variance of the first-order increments is a

function of the distance vector h between two spatial

locations, and not of the particular locations them-

selves). This is not a full characterization of the RF,

because its multivariate distribution law is undefined,

but it suffices for performing spatial linear minimum

mean square error interpolation by kriging.

From Eq. (1) the mathematical expectation of the RF

is constant over the area of study, i.e. 8x 2 D � R2, a

region of the real plane, where x represents two cartesian

coordinates x ¼ fx1; x2g, easting and northing or longi-

tude and latitude. The variance of ZðxÞ does not need to

be defined, so processes of infinite dispersion may be
modelled by the intrinsic hypothesis. Nevertheless, a

more restringent case, which suffices in many applica-

tions, is to consider second-order stationarity where a

covariance function CðhÞ exits. This requires a finite

variance Cð0Þ, leading to the well-known relation be-

tween covariance and variogram CðhÞ ¼ Cð0Þ � cðhÞ.
For interpolation, one is interested in a linear estimator

of ZðxÞ at unsampled locations x0:

Ẑðx0Þ ¼
XM
i¼1

w0
i ZðxiÞ; ð3Þ

where M is the number of random variable neighbours

of Zðx0Þ used in the interpolation.

The weights in Eq. (3) are obtained as the solution

of the ordinary kriging system which is set up by

imposing the condition of the estimator being unbi-

ased and by minimization of the estimation variance

(Journel and Huijbregts, 1978; Isaaks and Srisvastava,

1992; Goovaerts, 1997; Chil�es and Delfiner, 1999). The

estimation variance of the estimator in Eq. (3) can

also be obtained through Ordinary kriging. This

method is distribution-free and may be applied to any

dataset if the variogram function is known or, as is

most often the case in practice, can be estimated from

the experimental data. In the presence of intermit-

tency, i.e. when areas v � D exit for which ZðxÞ is zero
or negligible (for example in geochemistry values be-

low a detection limit), a binary RF can be defined to

characterize the spatial variability of such intermit-

tency. The binary RF is known as an indicator RF

(Barancourt et al., 1992) IðxÞ:

IðxÞ ¼ 1 if ZðxÞ > zc;
0 otherwise;

�
ð4Þ

where zc is, for example, the detection limit.

If IðxÞ is second-order stationary, then it may be

characterized by its variogram (or covariance) cIðhÞ:

cIðhÞ ¼ 1
2
Ef½Iðxþ hÞ � IðxÞ�2g: ð5Þ

The variogram for distance h is related to the probability

of transition from a value where the RF is below the

detection limit to a value in which the RF is above the

detection limit, for that distance h.
Moreover the expectation of the RF IðxÞ is equal to

the probability of ZðxÞ being over the threshold limit

EfIðxÞg ¼ PfZðxÞ > zcg ¼ 1� FðzcÞ; ð6Þ

where F ðxÞ is the cumulative distribution function of

ZðxÞ. The probability density function has a finite

probability mass at zc. Thus, a new RF SðxÞ can be de-

fined which is equal to ZðxÞ but without the probability

mass at zc. This new RF, defined over the whole domain

D, is only known observable where IðxÞ ¼ 1.
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The procedure described by Barancourt et al. (1992)

involves the following steps.

Using the detection limit zc, the indicator function

IðxÞ is calculated from the original RF ZðxÞ and the

variogram of the indicator cIðhÞ is estimated. Next, the

RF SðxÞ is calculated (the subset of ZðxÞ above the de-

tection limit) and its variogram cSðhÞ is estimated. This is

followed by ordinary indicator kriging from the indica-

tor data in yielding the map of indicator estimates IKðxÞ.
The next step is to perform the hard thresholding:

I�ðxÞ ¼ 1 if IKðxÞ > IC ;
0 otherwise;

�
ð7Þ

where IC is a threshold for the indicators such that

EfI�ðxÞg ¼ EfIKðxÞg ð8Þ

in order to have unbiasedness in the hard thresholding

given in (7).

Next, SðxÞ is estimated by ordinary kriging using the

variogram cSðhÞ and giving the estimated map SKðxÞ,
and finally the variable ZðxÞ is estimated as

ẐðxÞ ¼ I�ðxÞSKðxÞ: ð9Þ

Although this procedure is preferable over ordinary

kriging of the variable ZðxÞ directly, it has several

drawbacks:

(i) The hard thresholding implies that the procedure is

unbiased with respect to the areas that are overesti-

mated and underestimated. Yet this in turn implies

bias in the total value of the variable inside those ar-

eas (known in mining geostatistics as the amount of

metal in a given support). The total amount of the

variable in overestimation is always small, because

the overestimated cells are cells that, despite having

a value equal to the detection limit, are estimated as

being over the detection limit. Meanwhile, the cells

that are estimated as being under the detection lim-

it, when they are in fact over the detection limit (un-

derestimation), can contain very high values of the

variable. Thus, a probabilistic approach to intermit-

tency would be preferable. Indeed, the estimated in-

dicator map may be considered a probability map;

as mentioned earlier, however, the indicator map

does not take into account how far the variable is

from the detection limit.

(ii) It is difficult to estimate the variogram of inner var-

iability on areas over the detection limit, precisely

because the limits of such areas are uncertain. This

is particularly true when the indicator variogram

has a nugget variance and with data scattered in

the study area.

(iii) The most important drawback is that Barancourt

et al. (1992) do not give a measure of uncertainty

of their estimator, such as for example the estimation
variance. Modern statistical practices call for not

only an estimate but also a measure of the uncer-

tainty of the estimate.

Although some modifications could be made to the

previous procedure in order to overcome these difficul-

ties, alternative approaches exist that can deal with in-

termittency, such as empirical maximum likelihood

kriging (EMLK) (Pardo-Ig�uzquiza and Dowd, 2004).

EMLK was designed primarily for dealing with skew

distributions of the variable of interest but it can also

account for a probability mass at the origin (the origin

being the detection limit, not necessarily zero). Geo-

chemical variables with intermittency are often highly

skewed in their one-dimensional distribution.

The methodology of EMLK involves the following

steps:

(1) Normal score transformation. A normal score

transformation is used; that is, the experimental data are

transformed to the univariate Gaussian domain

Y ðxÞ ¼ u ZðxÞð Þ; ð10Þ

where Y ðxÞ is the normal score variable which is as-

sumed to have a multivariate Gaussian distribution.

The general transformation to normality is defined as

yðiÞ ¼ uðzðiÞÞ ¼ U�1 i� 0:5

n

� �
; ð11Þ

where i is the position, or rank, of datum zðiÞ after

sorting the data in increasing order; ðz1; z2; . . . ; znÞ are

the original data; ðzð1Þ; zð2Þ; . . . ; zðnÞÞ are the original data

sorted in increasing order and U�1ð�Þ is the inverse of the
cumulative standard Gaussian distribution function.

As shown by Verly (1984), when the variable pre-

sents an atom at the origin, the normal score trans-

formation of the values equal to the detection limit is

done in such a way that their rank is related to the

mean value of the data inside a window centred on

their location.

(2) Variogram inference from the normal score data.

The statistical inference of the variogram of the normal

scores is generally easier than the original variables be-

cause the effect of the high values is damped by the

Gaussian transformation.

(3) Maximum likelihood estimation using a Bayesian

approach, i.e. calculation of the posterior distribution

function. In the Gaussian domain, the simple kriging

estimator (maximum likelihood estimator) is equal to

the conditional mathematical expectation of the random

variable at the unknown location, which is the optimal

estimator (in mean square error terms). Nevertheless, a

Bayesian approach is adopted because it introduces

several advantages as seen below.

We are interested in the estimation of the variable of

interest at an unsampled location. In the most general

case it may be of interest to estimate an average value of



160 E. Pardo-Ig�uzquiza, M. Chica-Olmo / Applied Geochemistry 20 (2005) 157–168
this variable on a given support V (e.g. mean value on a

given area or volume):

Z0 ¼
Z
V
Zx dx: ð12Þ

The likelihood function of the Gaussian variable

Y0 ¼ uðZ0Þ is

h Y0 ðZ1; . . . ; ZpÞ; l;R
���� �

¼ ð2pÞ�ðpþ1Þ=2 Rj j�1=2

� exp
n
� 1

2
/ðZÞ
h

� l
it

�R�1 /ðZÞ
h

� l
io

; ð13Þ

with Z ¼ ðZ0; Z1; . . . ; ZpÞt the p þ 1 original random

variables;

uðZÞ ¼ ðuðZ0Þ;uðZ1Þ; . . . ;uðZpÞÞt ¼ ðY0; Y1; . . . ; YpÞt ¼ Y
the p þ 1 normal scores and l ¼ ðl0; l1; l2; . . . ; lpÞ

t
the

mean of normal scores.

For second-order stationary data, this mean is zero,

l ¼ 0, or, in the universal kriging case, a low degree

polynomial (Pardo-Ig�uzqiza and Dowd, 1998).

Also we have that

R ¼

�C00 C01 � � � C0p

C10 r2 � � � C1p

..

. ..
.

� � � ..
.

Cp0 Cp1 � � � r2

2
66664

3
77775 ð14Þ

is the symmetric covariance matrix of the normal score

variable with Cij ¼ covðuðZiÞ;uðZjÞÞ ¼ covðYi; YjÞ ¼
EfYiYjg � lilj, and Zi and Yi are short notations for

ZðxiÞ and Y ðxiÞ, respectively.
Moreover,

Cij ¼ Cji
�C00 ¼
r2 if Y0 has point support;
�CV if Y0 has block support;

�

where �CV is the mean value of the covariance inside

support V .
The negative log-likelihood function (NLLF) of Y0 is

then

‘ðY0Þ ¼ � ln h Y0 ðZ1; . . . ; ZpÞ; l;R
���� �

¼ p þ 1

2
lnð2pÞ þ 1

2
ln Rj j þ 1

2
uðZÞ � l
h it

� R�1 uðZÞ
h

� l
i
: ð15Þ

The value Y � for which the NLLF reaches its minimum

is the maximum likelihood estimator of uðZ0Þ. The

maximum likelihood estimator of Z0 is Z�
0 ¼ u�1ðY �Þ. If,

however, the original distribution of the random func-
tion is skewed, this estimator is conditionally biased. A

Bayesian procedure can be used to obtain a condition-

ally unbiased estimate. From Bayes’ theorem we have:

~f ðY0Þ / f̂ ðY0ÞhðY0Þ; ð16Þ

so the posterior distribution of uðZ0Þ ¼ Y0, ~f ðY0Þ, is

proportional to the product of prior distribution, f̂ ðY0Þ,
and the likelihood hðY0Þ. In the absence of prior

knowledge of the values of the variable uðZ0Þ, an uni-

form distribution can be assumed for f̂ ðY0Þ and the

posterior distribution will then have essentially the same

form as the likelihood. Thus, the likelihood can be

standardized, so that it integrates to 1 and can be in-

terpreted as the posterior distribution.

(4) Point estimates, interval estimates and measures of

uncertainty derived from the posterior distribution. The

posterior distribution contains all the information re-

quired for estimation: point estimates, interval estimates

and measures of uncertainty such as variances and

confidence intervals. For example, the mean of the

posterior distribution is used as an estimator instead of

the mode of the posterior distribution (maximum like-

lihood or simple kriging estimator) because it has the

property of being conditionally unbiased (unbiased in

the real domain of the random function ZðxÞ).
In particular, conditional unbiasedness is achieved by

using the mean of the posterior distribution, which

minimizes the mean squared error Ef½Z0 � Z�
0 �

2g with

MeanðPDÞ ¼ Z�
0 ¼ Ef/�1ðY Þg

¼
Z 6

�6

/�1ðyÞfY ðyÞdy; ð17Þ

where MeanðPDÞ is the mean of the posterior distribu-

tion estimator and fY ðyÞ is the posterior probability

density function (i.e. Eq. (15) after normalization in

order to integrate the area under the function to 1), and

the integration limits of )6 and +6 suffice for practical

purposes in lieu of the minus and plus infinite values.

Interval estimates are easily derived from the pos-

terior probability density function as well as measures of

uncertainty that can be attached to the estimates. The

posterior probability function may be very asymmetrical

and not necessarily Gaussian.

The complete formulation of the method is given in

Pardo-Ig�uzquiza and Dowd (2004); and a computer

program for normal score transformation with an atom

at the origin, as well as for EMLK with the user guide, is

in the public domain, available from the authors upon

request. Another approach to Bayesian kriging where

the uncertainty of the variogram parameters is included

in the estimation may be seen in Pardo-Ig�uzqiza and

Dowd (2003).

The procedure is no different from kriging in that one

uses a moving neighbour around each location to be
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estimated and then selects the experimental data inside

that window. With the structure of spatial variability

(variogram or covariance), the conditional Gaussian

probability density function is fully specified. That

posterior distribution contains all the information that is

needed and point estimates, interval estimates, measures

of uncertainty and the probability of the variable being

larger (or smaller) than a given value may be easily

calculated. A comparative study of the application of

both techniques to a case study is given next.
3. Mapping areas of high arsenic content in Bangladesh

The dataset comprises 3453 values of As content in

groundwater samples from Bangladesh (Reports of

British Geological Survey on Arsenic Groundwater

Contamination in Bangladesh). This dataset is chosen

for several reasons:

• It is convenient because it is available on Internet to

other researchers, and the proposed methodology

and results are reproducible.

• It has an unusually high number of observations, al-

lowing one to split the dataset into two subsets, one
Fig. 1. Spatial location of
for estimation and the other for validation, though

each subgroup maintains a sufficient number of data.

• From an environmental point of view, the problem of

As contamination in Bangladesh is a serious problem

and the authors wish to contribute to its study.

The data, while scattered, cover the country more or

less uniformly (Fig. 1). A total of 1837 (53%) of the

values of this dataset are below the detection limit

of 6 lgL�1.

The variogram of the normal scores of the experi-

mental data – that is, of all values – may be seen in Figs.

2(a)–(d) together with the fitted model, for the 4 main

geographical directions. It features nugget variance and

two nested spherical structures:

czðhÞ ¼ 0:35þ 0:15fðh; 15; 0�; 1Þ
þ 0:5Sphðh; 240; 0�; 1:8Þ: ð18Þ

The nugget variance is 35% of the total variance and

each spherical structure is expressed in the standard

form aSphðh; b; c; dÞ, with a as the sill (i.e. variance of

that structure), b the long range, c the anisotropy angle

in degrees and d the anisotropy ratio. Range b is

the longest range of the anisotropy ellipse, and the
experimental data.



Fig. 2. Experimental variogram and fitted model for variable normal scores of ZðxÞ for the 4 main geographical directions: (a) E–W,

(b) NE–SW, (c) N–S and (d) NW–SE.
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anisotropy angle is the angle between the X (or easting)

axis and the longest range measured counterclockwise

(Isaaks and Srisvastava, 1992).

The variance is given in lgL�1 and the range in km

(where each geographical degree has been taken as 100

km). The variogram for the indicator variable is given by

(Figs. 3(a)–(d)):

cIðhÞ ¼ 0:12þ 0:03Sphðh; 16; 110�; 1:5Þ
þ 0:0976Sphðh; 140; 110�; 2Þ ð19Þ

And the variogram for the variable SðxÞ (Fig. 4) is

cSðhÞ ¼ 13; 100þ 4000Sphðh; 15; 0�; 1Þ
þ 6000Sphðh; 75; 0�; 1Þ; ð20Þ

where the variogram structures are isotropic (the an-

isotropy ratio equals 1).

The original dataset was divided into two: a learning

set and a validation set. The idea was to use the learning

set as experimental data used for estimation and the

validation set as locations where the variable would be

estimated by both methods using the learning set. Be-

cause the variable at those locations is known, the error

will likewise be known. The learning set consists of 500

data chosen at random from among the 3453 original

data, and there are 2953 values for validation.
Fig. 5(a) shows the indicator kriging map. Since it is

calculated that IC ¼ 0:48, the estimation of intermittency

by thresholding the indicator map using the previous

indicator threshold gives the estimation of intermittency

of Fig. 5(b). The final estimate of As can be seen in

Fig. 5(c). This estimate shows abrupt changes in the

borders of the intermittency because of the hard thres-

holding of the indicator map. The main drawback is that

there is no assessment of the reliability of this map; that

is, there is no estimation variance map. In EMLK, all

the information is obtained from the posterior distri-

bution at each location of the estimation grid. In this

sense, the probability map of the value of the variable is

determined as being larger than the detection limit, seen

in Fig. 5(d). The mean of the posterior distribution es-

timate is seen in Fig. 5(e), while the estimation variance

calculated from the posterior distribution is given in

Fig. 5(f). Intermittency is estimated in a probabilistic

way using the probability map of Fig. 5(d). The estimate

of the variable by EMLK has an associated estimation

variance which makes this estimator more appealing.

Although one can certainly use the indicator esti-

mated map as a map of probabilities of the variable

being over the detection limit, this map entails two dif-

ficulties. First, it does not take into account the variance

of the estimates and secondly it does not take into
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account the magnitude of the variable. For instance, a

value above the threshold of 6 lgL�1 of As will give a 1

in the indicator no mater if its value is 7 or 7000 lgL�1,

because both are larger than the detection limit. Clearly,

however, it would be riskier to overlook the 7000 lgL�1
0

5000

10000

15000

20000

25000

30000

35000
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Fig. 4. Experimental variogram and
datum if estimated as below the threshold than to make

the same error with the 7 lgL�1 datum.

The probability map given in Fig. 5(d) by EMLK,

estimated from the posterior distribution, accounts for

both the magnitude of the neighbourhoods and the
0.8 1 1.2 1.4 1.6

 (km x 100)

Experimental

Model

fitted model for variable SðxÞ.



Fig. 5. Indicator map estimated by indicator kriging (a). Intermittency map calculated by applying the indicator threshold of 0.48 to

the indicator map shown in (a). The light colour area is over the detection limit (b). Estimated map (logarithmic scale) by the method of

Barancourt et al. (1992) (c). Probability map of the variable being larger than the detection limit obtained by EMLK (d). Estimated

map by means of the posterior distribution in EMLK (e). Estimation variance from the posterior distribution in EMLK (f).
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uncertainty of the estimation. From this map one can go

on to intermittency maps taking into account the risk

that one is willing to accept.

Because of the hard thresholding of the indicator

map, there are areas above the threshold that are con-

sidered to be below the threshold and vice-versa. Al-

though the procedure is unbiased with respect to the

number of locations or surfaces in case of a nonpoint

support (i.e. number of overestimated locations more or

less equal to the number of underestimated locations),

the method will be biased with respect to the total

amount of the variable in those locations. The strong

gradients seen in the estimated map of Fig. 5(c) are most

likely due to misclassifications in the previous step of

hard thresholding of the indicator map. The map given
by EMLK (Fig. 5(e)) could be used with the probability

map of Fig. 5(d) in order to produce more realistic im-

ages. Finally, the EMLK produces a map of estimation

variances (Fig. 5(f)) that is lacking when the alternative

methodology is used.

The validation of the previous maps was to be carried

out in the 2953 validation locations after estimation by

both methods using the 500 learning locations. The re-

sults are shown in Figs. 6(a) and (b). The coefficient of

correlation is 0.53 for the method of Barancourt et al.

(1992) and 0.55 for EMLK. The mean error for the first

method is 1.734 and the mean squared error 10312,

while the same statistics for EMLK are )8.995 and 9547,

respectively. Furthermore, taking into account inter-

mittency by Barancourt et al. (1992) in the validation
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set, the number of underestimated locations is 421, while

the number of overestimated locations is 349. The

method itself is unbiased; but when taking into account

the amount of As in the underestimated locations we

arrive at a sum of 27,844, while the overestimated figure

is 2094, clearly biased. For the underestimated locations,

the Barancourt et al. (1992) method gives 2526 while the

EMLK assigns a total of 11,277, a much more realistic
figure. Finally, as may be seen in Fig. 6(a) the method of

Barancourt et al. (1992) gives rise to two distinctive

clusters in the validation results. The cluster labelled as

(a) Fig. 6(a) is made up of the data which are below the

detection limit but have been estimated with values over

the detection limit (i.e. overestimation). The cluster la-

belled as (b) in Fig. 6(a) comprises the data that have

been estimated as being below the detection limit while
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in reality they have values above the detection limit (i.e.

underestimation). The results from EMLK seen in

Fig. 6(b) show no type (b) cluster at all, while in the type
(a) cluster the interval of values is closer to the true

values than in Fig. 6(a). All these results of the case

study underline the advantage of using EMLK.



Fig. 6. Scatter plot of true values versus estimated values for the 2953 validation data using the methods of: (a) Barancourt et al. (1992)

and (b) EMLK.
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4. Discussion and conclusions

It is usual for geochemical variables of minor ele-

ments both to exhibit intermittency and to have a

skewed distribution. Barancourt et al. (1992) showed

that their method was superior than ordinary kriging for

the purposes of identification of intermittency and esti-

mating the variable inside the areas above the detection

limit. Yet because the present authors have encountered

several difficulties using the method of the above au-
thors, results were checked against those of another

method that can deal with intermittency and with

skewed distributions: EMLK (Pardo-Ig�uzquiza and

Dowd, 2004). The As dataset of Bangladesh was divided

into two sets: 500 data for estimation and 2953 data for

validation. First of all, EMLK gives slightly better val-

idation statistics, which could be significant in view of

the high number of data for validation. Also the cluster

of values underestimated as being below the detection

limit (labelled as (b) in Fig. 6(a)) is absent in the EMLK
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method. The authors believe that EMLK is advanta-

geous because of the rationale of the two methods: the

hard thresholding of the indicator map implies that no

uncertainty is attached to it. It was found preferable to

use the probability map of EMLK, which gives the

probability of the variable as larger than the detection

limit, taking into account its location, the magnitude of

the neighbouring data and the variability structure of

the spatial variable. With respect to the map of esti-

mates, the main advantage of EMLK is that it assigns an

estimation variance to each estimate, whereas the

method of Barancourt et al. (1992) does not provide for

any assessment of the reliability of estimates. Finally,

estimating the covariance or variogram inside areas over

the detection limit will entail great difficulties in delin-

eating the areas above the detection limit, especially

when data are scattered and there is a nugget effect in the

variogram. With EMLK, however, the normal score

transformation facilitates the analysis of the structure of

variability, as the effect of high values is minimized by

the transformation.
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