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Abstract

A large regional geochemical data set of C-horizon podzol samples from a 188,000 km2 area in the European Arctic,

analysed for more than 50 elements, was used to test the influence of different variants of factor analysis on the results
extracted. Due to the nature of regional geochemical data (neither normal nor log-normal, strongly skewed, often multi-
modal data distributions), the simplest methods of factor analysis with the least statistical assumptions perform best. As a

result of this test it can generally be suggested to use principal factor analysis with an orthogonal rotation for such data.
Selecting the number of factors to extract is difficult, however, the scree plot provides some useful help. For the test data, a
low number of extracted factors gave the most informative results. Deleting or adding just 1 element in the input matrix can

drastically change the results of factor analysis. Given that selection of elements is often rather based on availability of
analytical packages (or detection limits) than on geochemical reasoning this is a disturbing result. Factor analysis
revealed the most interesting data structures when a low number of variables were entered. A graphical presentation of
the loadings and a simple, automated mapping technique allows extraction of the most interesting results of different

factor analyses in one glance. Results presented here underline the importance of careful univariate data analysis prior
to entering factor analysis. Outliers should be removed from the dataset and different populations present in the data
should be treated separately. Factor analysis can be used to explore a large data set for hidden multivariate data

structures. # 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The principal aim of factor analysis, which was

developed initially by psychologists, is to explain the
variation in a multivariate data set by as few ‘‘factors’’ as
possible and to detect hidden multivariate data struc-

tures. The term ‘‘factor’’ used by psychologists is equiva-
lent to ‘‘controlling processes’’ in geochemistry. Thus,
theoretically, factor analysis should be ideally suited for

an easy presentation of the ‘‘essential’’ information

inherent in a geochemical data set with many analysed
elements.
In regional geochemistry an advantage would be that

instead of presenting maps for 40–50 (or more) elements
only maps of 4–6 factors may have to be presented,
containing a high percentage of the information of the

single element maps. It is even more informative if fac-
tor analysis can be used to reveal unrecognised multi-
variate structures in the data that may be indicative of

certain geochemical processes, or, in exploration geo-
chemistry, of hidden mineral deposits. Factor analysis
has been successfully used for this purpose (e.g. Garrett
and Nichol, 1969; Chork and Govett, 1985; Chork,

1990; Chork and Salminen, 1993), but is still a con-
troversial method. A focal point of critique is that too
many different techniques are available, all giving
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slightly different results (Rock, 1988). It is argued that
the statistically untrained users will thus always be
tempted to experiment until finding a solution that fits
their preconceptions. Another problem is that users are

not always aware of some of the basic requirements for
carrying out a successful factor analysis. As a result,
factor analysis is very often merely applied as an

exploratory tool, and results could often have been pre-
dicted using much simpler methods.
Using a large regional scale geochemical data set

containing 605 samples and more than 50 variables, the
objective of this study is to answer some fundamental
questions with regard to the use of factor analysis in

geochemistry:

. Can (and should) factor analysis be applied to

such a high-dimensional data set? What are the
prerequisites for applying factor analysis to such a
data set?

. What are the results of factor analysis when such
a large data set is investigated?

. Can the information contained in more than 50
single element maps be presented in just a few (e.g.

3–6) factor maps?

Furthermore, an attempt is made to answer the ques-
tion as to which parameters have the largest influence

on the results of factor analysis. The influence of the:

. actual method used (principal factor analysis

(PFA) versus maximum likelihood (ML), method
of factor rotation),

. number of factors extracted, and

. number of elements entered into the factor analy-

sis will be discussed.

2. Materials and methods

2.1. The Kola project

From 1992 to 1998, the Geological Surveys of Fin-
land (GTK) and Norway (NGU) and Central Kola
Expedition (CKE), Russia, carried out a large, interna-

tional multi-media, multi-element geochemical mapping
project, covering 188,000 km2 north of the Arctic Circle.
The entire area between 24 and 35.5�E up to the Barents

Sea coast (Fig. 1) was sampled during the summer of
1995. Results of the ‘‘Kola Ecogeochemistry’’ project
are documented on a web site (http://www.ngu.no/

Kola) and in a geochemical atlas (Reimann et al., 1998).
One of the sample media for this project was the C-
horizon of podzol soil profiles, developed on glacial
drift. The average sample density was 1 site per 300 km2.

C-horizon samples were taken at 605 sites and subse-
quently analysed by a number of different techniques for
more than 50 elements, resulting in 89 variables. The

project was primarily designed to reveal the environ-
mental conditions in the area, as reflected by the very
low sample density, and an aqua regia extraction
method applied to the <2 mm grain size fraction of the

soils for chemical analysis.
For a geochemical mapping or exploration project, a

much higher sample density is usually considered neces-

sary. In the case of stream sediments, about 1 sample
per 1–3 km2 is collected; in the case of soils, up to sev-
eral hundred samples per km2 are often required to

intersect the anomalous patterns related to a target of
the size of an average ore body. On the other hand, it
has been proposed that mineral deposits occur in ‘‘geo-

chemical provinces’’ — large areas with enhanced con-
centrations of certain elements (Hawkes and Webb,
1962), which should be easily detectable with low-den-
sity geochemistry (Bølviken et al., 1990, 1992). For

regional geochemical mapping using glacial till, the fine
fraction (<0.063 mm) has mostly been used (Koljonen,
1992). In Europe geochemists and geologists commonly

study total element concentrations in their samples.
With an aqua regia extraction of the <2 mm fraction,
mineral weathering properties and secondary processes

will play an important role in determining the element
concentrations found in the samples. A geological
interpretation of the C-horizon results is presented in

Reimann and Melezhik (2001).

2.2. Geology

The bedrock of the study area includes rocks forming
part of the basement of the Fennoscandian Shield. They
are mostly Archean or Early Proterozoic in age, auto-

chthonous and parautochthonous cover rocks of Late
Proterozoic to Early Cambrian age, allochthonous
basement and cover rocks of Late Proterozoic to Early

Cambrian age. Autochthonous rocks of similar ages
occur in windows within the Caledonian Orogen. The
rocks in large areas of the Kola Peninsula and in Fin-
land are Archean. In the Kola Peninsula, the supra-

crustal rocks include felsic gneisses, iron quartzites
(BIF) and amphibolites (Fig. 2). In Finland, the rocks
belonging to this group are similar in the northeastern

and eastern areas. In a large area in the western part of
the study area, the bedrock also includes felsic gneisses
and tonalites. In the Granulite Complex, 2000–1900 Ma

in age, extending from the western part of the Kola
Peninsula through northern Finland to Norway, the
rocks are mainly mafic and felsic granulites, or high-

grade gneisses. On the coast of the Barents Sea, in the
northern part of the Kola Peninsula, there are Archaean
felsic gneisses and tonalites as well as arkosic and
quartzitic sandstones of late Proterozoic age.

A greenstone belt extends from Russia, through Fin-
land, to Norway. It consists predominantly of basaltic
and komatiitic volcanites of Proterozoic age (Bølviken
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et al., 1986; Koljonen, 1992). This type of bedrock (in a
general sense) exists also north of the White Sea in

Russia and in the Pechenga Belt in the northern part of
the Kola Peninsula. On the margins of this belt, there are
also andesitic and dacitic rocks. The greenstone belts

contain several ore bodies, e.g. Fe ores in western Finnish
Lapland, a Cu deposit (Kittilä), Au-ores (Pahtavaara (in
production), Saattopora and Bidjovagge), Ni-ores (Nikel

and Zapoljarnij) and others (e.g. Keivitsa Ni–Cu–PGE)
(see Table 1 in Reimann and Melezhik, 2001).
The study area includes intrusive complexes of var-

ious ages, from Archaean to Palaeozoic. North of the

Granulite Complex there are granite, granodiorite and
alkaline granite intrusions (Vainospää and Litza-Ura-
Guba). The Koitelainen layered gabbro intrusive occurs

south of the artificial lake Lokka. Intrusive complexes
of alkaline rocks are found at Sokli (phosphorite-bear-
ing and a possible Nb-occurrence) in Finland, and at

Kovdor (apatite-magnetite) in Russia. The alkaline
intrusions in the Khibiny/Lovozero Mountains are
among the most intensely studied of their kind in the

world. The related apatite and loparite deposits have
been mined for decades. Ultramafic alkaline rocks occur
east of Kirovsk. In Central Lapland, there are grani-
toids, a group constituting silica-rich, felsic rocks.

In Norway, along the northern coast, there are
supracrustal rocks of Late Proterozoic–Cambrian age.
In the western part, these are metamorphosed and

include quartzites, meta-arkoses, phyllites and gray-
wackes. In the eastern part, the rocks are sedimentary

and Proterozoic in age: conglomerates, sandstones, silt-
stones and mudstones, locally enriched in P.
This extremely heterogeneous geological environment

is well reflected in the simplified geological map of the
survey area (Fig. 2). For a colour version of this map,
see Reimann et al. (1998) or Reimann and Melezhik

(2001).

2.3. Quaternary geology

The study area is part of the glaciated terrain of
Northern Europe. The area was entirely covered by ice
during the Pleistocene, which began 2–3 Ma ago

(Eriksson, 1992). During this period, Northern Europe
was glaciated and deglaciated at least 3 times; warmer
climatic periods intervened, giving rise to ice-free inter-

glacials. For a shorter period during the last, Weichsel,
glaciation, the ice in Fennoscandia melted almost
totally.

The main Quaternary deposits are till and peat; there
are also large areas without any drift, covered by out-
crops and boulder fields (see map of Quaternary depos-
its of Finland and north-western part of Russian

Federation and their resources; Niemelä et al., 1993).
Till consists of an unsorted mixture of rock and mineral
fragments from boulders to clay size. The rock material

Fig. 1. General location map of the study area for the Kola Project (Reimann et al., 1998). Locations named in the text are given.
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Fig. 2. Simplified geological (lithological) map of the study area.
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Table 1

Statistical summary of the test data seta,b,c

Element Unit DL <DL Min Max Mean Median S.D. MAD p p_ln p_Box–Cox

Ag mg/kg 0.001 0.2 <0.001 0.119 0.011 0.008 0.011 0.004 <0.001 <0.001 <0.001

Al mg/kg 10 0 1840 85,900 12,665 9910 9814 5834 <0.001 0.002 0.5

Al_XRF wt.% 0.03 0 2.92 12.08 7.34 7.38 0.969 0.667 <0.001 <0.001 <0.001

As mg/kg 0.1 1.7 <0.1 30.7 1.25 0.5 2.349 0.445 <0.001 <0.001 <0.001

Ba mg/kg 0.5 0 4.7 1300 60.15 43.5 74.33 28.91 <0.001 0.059 0.5

Ba_INAA mg/kg 50 0 210 3000 600 575 224 170 <0.001 0.046 0.002

Be mg/kg 0.05 0 0.06 14 0.442 0.235 1.06 0.141 <0.001 <0.001 0.5

Bi mg/kg 0.005 2.3 <0.005 3.89 0.049 0.026 0.164 0.021 <0.001 <0.001 0.001

Ca mg/kg 3 0 110 41,700 2279 1905 2383 1075 <0.001 <0.001 <0.001

Ca_XRF wt.% 0.005 0 0.03 6.76 2.133 2.17 0.899 0.801 0.007 <0.001 0.003

Cd mg/kg 0.001 0 0.007 0.221 0.029 0.024 0.02 0.01 <0.001 <0.001 <0.001

Ce_INAA mg/kg 3 0 12 500 58.84 45 53.23 23.72 <0.001 0.001 0.023

Co mg/kg 0.2 0 1.2 44.3 8.22 7 5.029 3.706 <0.001 0.5 0.5

Co_INAA mg/kg 1 0.2 <1 57 14.27 13 6.718 5.93 <0.001 <0.001 <0.001

Cr mg/kg 0.5 0 2.2 471 36.16 28.35 35.09 16.23 <0.001 0.033 0.5

Cr_INAA mg/kg 5 0 11 910 116.15 99 87.51 45.96 <0.001 <0.001 <0.001

Cu mg/kg 0.5 0 2 149 21.96 16.2 18.44 10.82 <0.001 0.5 0.5

Eu_INAA mg/kg 0.2 0 0.3 14.3 1.239 1.05 1.006 0.371 <0.001 <0.001 <0.001

Fe mg/kg 10 0 3310 79,200 17,236 14,700 10,189 7154 <0.001 0.5 0.5

Fe_XRF wt.% 0.02 0 0.59 12.35 3.605 3.43 1.4 1.342 <0.001 0.5 0.5

Hf_INAA mg/kg 1 0 2 120 6.47 6 6.588 1.483 <0.001 <0.001 <0.001

K mg/kg 200 0.5 <200 11,000 1478 1100 1295 741 <0.001 0.004 0.004

K_XRF wt.% 0.004 0 0.36 5.24 1.558 1.41 0.593 0.482 <0.001 <0.001 0.064

La mg/kg 0.5 0 3.5 203 17.94 12.8 20.96 6.449 <0.001 <0.001 0.5

La_INAA mg/kg 0.5 0 6.1 310 30.64 24 29.10 13.34 <0.001 <0.001 0.015

Li mg/kg 0.5 0 1.7 70.9 9.129 7.2 6.883 4.3 <0.001 0.048 0.5

Lu_INAA mg/kg 0.05 0 0.05 2.67 0.368 0.3 0.263 0.163 <0.001 0.038 0.5

Mg mg/kg 5 0 370 70,500 4741 3720 4815 2002 <0.001 0.002 0.028

Mg_XRF wt.% 0.02 0 0.12 7.32 1.271 1.15 0.677 0.526 <0.001 0.001 0.076

Mn mg/kg 0.5 0 33.8 2140 185 128.5 180 65.83 <0.001 <0.001 0.5

Mn_XRF wt.% 0.008 0 0.015 0.356 0.059 0.054 0.031 0.022 <0.001 <0.001 <0.001

Na mg/kg 15 0 20 19,400 338 140 1368 88.96 <0.001 <0.001 <0.001

Na_XRF wt.% 0.01 0 0.08 4.87 2.26 2.45 0.678 0.504 <0.001 <0.001 <0.001

Nd_INAA mg/kg 5 1.3 <5 220 22.35 18 19.44 8.896 <0.001 <0.001 <0.001

Ni mg/kg 1 0 1.2 228 23.41 18.65 21.09 11.56 <0.001 0.5 0.5

P mg/kg 7 0 59 7170 446 393 368 185 <0.001 0.012 0.009

P_XRF wt.% 0.004 0 0.004 0.589 0.045 0.039 0.032 0.019 <0.001 <0.001 <0.001

Pb mg/kg 0.2 0 0.3 45.3 2.748 1.6 3.326 0.741 <0.001 <0.001 <0.001

S mg/kg 5 0.5 <5 531 41.00 30 42.63 12 <0.001 <0.001 0.004

Sc mg/kg 0.1 0.2 <0.1 15.4 2.816 2.3 1.809 1.186 <0.001 0.001 <0.001

Sc_INAA mg/kg 0.1 0 1.7 36 13.60 13 5.695 5.93 <0.001 <0.001 <0.001

Si mg/kg 10 0 50 590 154 140 64.94 44.48 <0.001 <0.001 <0.001

Si_XRF wt.% 0.23 0 17.05 40.27 31.461 31.74 2.579 2.216 <0.001 <0.001 0.024

Sm_INAA mg/kg 0.1 0 0.9 37 3.964 3.4 3.113 1.631 <0.001 0.042 0.061

Sr mg/kg 0.5 0 1.6 1040 25.34 7.7 98.23 3.781 <0.001 <0.001 <0.001

Th_INAA mg/kg 0.2 0 1 54 7.164 5.8 4.953 3.41 <0.001 0.016 0.022

Ti mg/kg 0.5 0 48.8 5730 895 807 515 405 <0.001 <0.001 0.5

Ti_XRF wt.% 0.003 0 0.053 1.9 0.362 0.347 0.16 0.151 <0.001 0.001 0.5

V mg/kg 0.5 0 4.5 183 34.99 30.9 19.65 15.72 <0.001 0.5 0.5

Y mg/kg 0.5 0 0.9 169 6.366 4.4 10.97 2.372 <0.001 <0.001 0.004

Yb_INAA mg/kg 0.2 0 0.3 19.9 2.377 1.9 1.835 1.038 <0.001 0.003 0.038

Zn mg/kg 0.5 0 3.7 348 27.40 20.9 24.17 12.45 <0.001 0.1 0.5

LOI wt.% 0.1 0 0.34 16.4 2.34 1.8 1.854 0.72 <0.001 0.027 0.077

pH 0.1 0 3.7 7.6 5.83 5.8 0.358 0.2 <0.001 <0.001 <0.001

a Minimum, maximum, mean, median, standard deviation, median absolute deviation (MAD), and p-values of a Kolmogorov–Smirnov test

for normality of the original, the log-transformed (p_ln), and the Box–Cox transformed (p_Box–Cox) data).
b C-horizon podzol samples, fraction <2 mm. No extension: aqua regia extraction; _INAA: analysed by instrumental neutron activation

analysis; _XRF: analysed by X-ray fluorescence; DL: detection limit, <DL: % of samples below the detection limit.
c The data are taken from Reimann et al. (1998).
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in the till is mainly of local origin, although some cob-
bles and boulders may have been transported over sev-
eral kilometres. The moraine formations in the study
area are mostly gravelly and sandy tills, locally hum-

mocky moraines occur.
In-situ occurrences of weathered bedrock are dis-

tinctive features of the bedrock in Finnish Lapland

(Hirvas, 1991). The weathering products are mixed with
till to a varying degree, thus demonstrating that weath-
ering took place before the last glaciation. The chemical

composition of the gravelly, weathered bedrock differs
little from that of the fresh bedrock. The thickness of
the weathered bedrock varies, being only a few metres in

most places, but tens of metres in others.
In valleys, between moraine formations and outcrops,

there are areas covered by peat formations, which are
generally not very thick. In the river valleys, fluvial

deposits dominate. In many places, there are eskers and
sorted, ice-marginal formations. In the northwestern part
of northern Finland some aeolian deposits can be found.

Climatic conditions varied during Holocene (post-
glacial) times. In the climatic maximum, during the lat-
ter part of the Atlantic Period (6–4.6 ka BP), pine for-

ests extended over most of the Kola Peninsula
(Khotinskiy, 1984), leaving a narrow zone of coniferous
middle taiga (spruce) and a strip of tundra along the NE

coast of the peninsula.

2.4. Sampling, sample preparation and analyses

A detailed description of sample site selection criteria
and sample methods is given in Äyräs and Reimann
(1995) and in Reimann et al. (1998). In short, complete

podzol profiles were dug at carefully selected sites and
about 2 kg of the C-horizon material was sampled. A
field duplicate was taken at every 15th site. The rando-

mised samples were air dried and subsequently sieved
through 2 mm nylon screening, and the <2 mm fraction
was retained for analysis.
Analytical procedures and all analytical results are

detailed in Reimann et al. (1998). Quality control pro-
cedures followed the methods suggested in Reimann and
Wurzer (1986). In short, after insertion of a project

standard at a rate of 1 in 20 and sample duplicates at a
rate of 1 in 15, a 2 g subsample of the <2 mm fraction
of the C-horizon samples was digested in aqua regia (3:1

HNO3/HCl) at 90
�C at Geological Survey of Finland’s

(GTK) laboratory. The solutions were analysed by ICP-
AES for 32 elements (Niskavaara, 1995) and by graphite

furnace atomic absorption spectrometry (GFAAS) for
Ag, As, Cd and Pb. A second aliquot was analysed after
pre-concentration using reductive co-precipitation (Nis-
kavaara and Kontas, 1990) for Bi, Sb, Se and Te by

GFAAS. Aqua regia extraction will not yield total ele-
ment concentrations. The determined amounts will be
strongly influenced by differences in mineralogy between

the samples, and mostly reflect secondary geochemical
processes like weathering, scavenging of elements by Fe-
oxides/hydroxides and/or the amount of sulphides and
clay minerals in the individual samples.

Additionally, the samples were analysed for major
elements (Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti) by XRF
in the Norwegian Geological Survey’s (NGU) labora-

tory, and for more than 30 other elements by instru-
mental neutron activation analysis (INAA) at Activation
Laboratories in Canada. These 2 techniques result in

total element concentrations.

2.5. Data analysis

For rapid factor analysis and mapping of the results a
combination of S-PLUS [Mathsoft — http://
www.splus.mathsoft.com/; Venables and Ripley (1997)

for factor analysis] and DAS1 [Dutter et al. (1992) for
mapping] was used. Class selection for the black and
white symbol maps was undertaken by box plot analysis

as proposed by Kürzl (1988).

3. Results

Table 1 summarises the variables and analytical

results (minimum, maximum, mean, median, standard
deviation, median absolute deviation (MAD) of the
data, and p values of a Kolmogorov–Smirnov test for
normality (see Afifi and Azen, 1979) of the original, the

log-transformed, and the Box–Cox (Box and Cox, 1964)
transformed data.
Factor analysis is a very data-sensitive technique, a

fact that is often neglected. A careful univariate analysis
should be carried out for any data set prior to its being
used for factor analysis. Some users may be surprised —

is not factor analysis chosen to ‘‘simplify’’ data analysis?
This paper will start with a discussion of the prerequisites,
and determine whether or not the data set fulfils the sta-
tistical requirements for undertaking a factor analysis.

3.1. Factor analysis versus principal component analysis

In geochemical textbooks and publications there is
much confusion as to what is ‘‘factor analysis’’ and what
is ‘‘principal component analysis’’ (PCA). In addition,

both methods can be carried out based on either the
correlation matrix or the covariance matrix. The data
entered can be transformed and/or standardised. To

further confuse the issue, the data could be first stan-
dardised and then transformed or first transformed and
then standardised. The choice and sequence of these
steps will have a major influence on the results. This will

be discussed below.
The major difference between factor analysis (FA)

and PCA is that PCA performs a transformation of the
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data with no statistical assumptions whereas factor ana-
lysis assumes a statistical model with certain pre-
requisites. PCA accounts for maximum variance of all
variables, while FA is based on the correlation structure

of the variables. The model of factor analysis allows that
the common factors do not explain the total variation of
the data. This implies that factor analysis allows for the

existence of some unique factors that have a completely
different behaviour than the majority of all other fac-
tors. Thus unusual variables will not enter the common

factors. PCA in contrast will always show the total
structure in the data (all variables are ‘‘forced’’ into the
result). In practice, this means that factor analysis is

better suited to detect common structures in the data. In
geochemistry chances to detect common processes
determining element behaviour are thus better when
using factor analysis.

In factor analysis, 2 main methods exist for extracting
the common factors: principal factor analysis (PFA)
and the maximum likelihood method (ML). PFA works

in principle like PCA but with a reduced correlation or
covariance matrix. Only the common structure of all
variables but not any special behaviour (uniqueness) of

each single variable is thus used. ML, in contrast, uses a
complicated statistical optimisation procedure to extract
the factors.

3.2. Mixing major, minor and trace elements and
overcoming differences in amount of variation

In multi-element analysis of geological materials one
usually deals with elements occurring in very different
concentrations. In rock geochemistry, the chemical ele-

ments are divided into ‘‘major’’, ‘‘minor’’ and ‘‘trace’’
elements. Major elements are measured in % or tens of
%, minor elements are measured in about 1% amounts,

and trace elements are measured in ppm, or even ppb.
This may become a problem in multivariate techniques
considering all variables simultaneously because the
variable with the greatest variance will have the greatest

influence on the outcome. Variance is obviously related
to absolute magnitude. As one consequence, one should
not mix variables quoted in different units in one and

the same multivariate analysis (Rock, 1988). Transfer-
ring all elements to just one unit is not an easy solution
to this problem, as the major elements occur in much

larger amounts than the trace elements. Possible solu-
tions to the problem include transformation and/or
standardisation.

Standardisation to zero mean and unit variance of the
raw data makes little sense in geochemistry because it is
known that the distributions are strongly skewed. Thus
the data should be transformed first before a decision on

standardisation is taken. Log-transformation is most
widely used to approach considerably more homogenous
ranges. Previously, Bartlett (1947) and Bartlett and

Kendall (1946) noted that log-transformation aids in
obtaining homogeneity of variance. It will, however,
emphasise the influence of variables with a large varia-
tion. For example, in the Kola data set, Ag has a range

(defined as maximum�minimum) of 0.119 in the raw
data, while Si has a range of more than 200,000. After a
log transform Ag has a range of 7.1 while that for Si is

now 0.86. If this effect of emphasising the influence of
variables with a large variation is wanted, a log-trans-
form of the data will suffice. If this effect is not wanted

the data have in addition (and after the log-transforma-
tion!) to be standardised to zero mean and unit variance.
Standardisation is equivalent to using the correlation

matrix and not the covariance matrix in factor analysis.
This approach would be the standard choice of most
statisticians and is implemented automatically in many
software packages (e.g. S-PLUS).

3.3. Closed data (complete subcompositional
independence)

The problem of entering statistical analysis with
‘‘closed number systems’’ has been much discussed in

the literature (e.g. Butler, 1976; Le Maitre, 1982; Wor-
onow and Butler, 1985; Aitchison, 1986). All composi-
tional data expressed as % (or ppm), which sum up to a

constant value (e.g. 100 wt.% — major elements ana-
lysed by XRF) are closed data. Given values for N�1
variables the Nth value is automatically known. This has
quite serious consequences in correlation analysis (on

which factor analysis is based) that are often neglected.
For example, a negative correlation is less significant and
a positive correlation is more significant in a closed array

than in an open array (Rock, 1988). High ‘‘artificial’’
internal correlations between variables can lead to ill-
conditioned matrices and give unstable and even erro-

neous results (Rock, 1988). Another important point is
that for closed number systems the correlation matrix
has not full rank. The estimation of the factor scores by
the usual regression method is thus not possible since

the inverse of the correlation matrix is needed. Data
closure cannot be overcome by any conventional data-
transformation method.

3.4. Normal distribution

Before carrying out a classical factor analysis, it should
generally be tested whether or not all variables have a
normal distribution. Just as for many other statistical

techniques, factor analysis is very sensitive to non-nor-
mally distributed data (Pison et al., 1999). It is now well
known amongst geochemists that regional geochemical
data practically never show a normal distribution

(Reimann and Filzmoser, 2000). ML requires not only a
normal distribution for all the variables entered but also
a multivariate normal distribution. When using PFA a
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normal distribution is not a must, but this method is
based on the correlation or covariance matrix and these
are strongly affected by non-normally distributed data
and the presence of outliers (see below). In many pub-

lished examples of the use of factor analysis, it is neglec-
ted that regional geochemical (and environmental) data
almost never follow a normal distribution. Continuing

with factor analysis in such a case must lead to biased
results. A proper normalisation procedure must first be
applied to the data to approach a normal distribution. In

many cases a logarithmic transformation is used, and
many geochemical textbooks state that geochemical
data usually follow a log-normal distribution. It remains

somewhat unclear from where the authors take this
observation without carrying out the proper statistical
tests. Vistelius (1960) pointed out that many of the
apparently log-normal distributions observed in geo-

chemical data sets come about from combining data from
several parent normal distributions. Garrett et al. (1980)
demonstrate this in the context of regional geochemical

reconnaissance data, where, a priori, geochemists accept
that the data are drawn from different lithological
populations, and hopefully mineralisation, and have

been influenced by a variety of secondary processes. The
question whether to enter factor analysis with the origi-
nal or somehow transformed data can easily be

answered. All entered variables should come as close to
a normal distribution as possible (Reimann and Filz-
moser, 2000).
For the test data, Table 1 demonstrates that not a sin-

gle variable follows a normal distribution. After log-
transformation most variables are still not normally dis-
tributed (Table 1). Many different wide spread transfor-

mations were investigated (e.g. square root, log10, logit,
double logarithmic including scale transformation) and
none resulted in a normal distribution for more than

20% of all variables (Reimann and Filzmoser, 2000). If it
is essential to approach normal distributions a Box–Cox
transformation (Box and Cox, 1964; Howarth and
Earle, 1979) is one of the few remaining solutions.

Table 2 shows that after a Box–Cox transformation
more than 2/3 of all variables approach normality. This
would thus be a good data transformation when work-

ing with geochemical data and statistical methods that
require a normal distribution. Unfortunately, there are
few statistical software packages that allow for a Box–

Cox transformation, and the second choice is then to
log-transform all data prior to entering factor analysis.
Thus the much more wide spread log-transformation

was employed. Factor analysis was, however, also tested
with Box–Cox transformed and standardised data. In
general, the first 3 factors stayed comparable, major
differences could be found in higher order factors.

Although results were different, they were not better or
more easily interpretable than the results obtained with
the same data following a log-transformation.

3.5. Data outliers

Regional geochemical data sets practically always

contain outliers. The outliers should not simply be
ignored but they have to be analysed because they con-
tain important information about data quality and

unexpected behaviour in the region of interest. In fact,
finding data outliers that maybe indicative of miner-
alisation (in exploration geochemistry) or of pollution

(in environmental geochemistry) is one of the major
aims of any geochemical survey. Outliers can have a
severe influence on factor analysis, since the parameter
estimates are based on the correlation or covariance

matrix (Pison et al., 1999). Outliers should thus be
removed prior to entering a factor analysis (or statistical
methods able to handle outliers should be used). This is

rarely done. One reason maybe ignorance, another that
with the outliers removed the expected or wanted
‘‘obvious’’ results will no longer be revealed in the fac-

tors. Finding data outliers is not a trivial task, especially
in high dimensions. One way of identifying outliers is to
compute Mahalanobis distances (Garrett, 1989) or bet-

ter Mahalanobis distances based on robust estimates of
location and scatter (Rousseeuw and Van Zomeren,
1990). A more elegant way to reduce the impact of out-
liers is to apply robust factor analysis (Filzmoser, 1999;

Pison et al., 1999). The aim is to estimate the parameters
in the factor analysis model to fit the majority of data
points, contrary to classical (least squares) estimation

Table 2

Summary statistics for different methods of factor analysisa

Residuals

Method F1 F2 F3 F4 Total m s

XRNA PFA Q4 42 15 12 4 73 0.213 0.362

XRNA PFA O4 37 17 12 5 71 0.21 0.33

XRNA PFA P4 40 21 9 6 76 0.007 0.083

XRNA PFA V4 40 21 9 6 76 0.005 0.084

XRNA ML Q4 42 15 12 4 73 0.15 0.309

XRNA ML O4 36 16 14 5 71 0.144 0.282

XRNA ML P4 40 21 8 6 75 0.009 0.09

XRNA ML V4 40 21 8 6 75 0.005 0.091

a Columns F1–F4 represent the explained variance for each

factor. ‘‘Total’’ gives the sum of the explained variance in %.

This should be as high as possible. ‘‘Residuals’’ represent the

unexplained part of the factor analysis, m: mean, s: standard

deviation over all elements of the residual matrix. The mean

should be close to 0. The standard deviation should be as small

as possible. XRNA: only results of total analyses either with

XRF or INAA used. PFA: principal factor analysis, ML:

maximum likelihood method, Q: quartimax. O: oblimin, P:

promax and V: varimax rotation.
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where all data values, including the outliers, are fitted.
When using a robust factor analysis the outliers can be
identified and interpreted by looking at the residuals of
the robust fit.

There is a further problem that often occurs when
working with geochemical data: the detection limit pro-
blem. For some determinations a proportion of all

results are below the lower limit of detection of the
analytical method. For statistical analysis these are
often set to a value of half the detection limit. However,

a sizeable proportion of all data with an identical value
can seriously influence an estimate of correlation. For
the study dataset several variables had more than 25% of

the data below detection. It is very questionable whether
or not such elements should be included at all in a factor
analysis. Unfortunately it is often the elements of great-
est interest that contain the highest number of missing

data (e.g. Au) — the temptation to include these in a
factor analysis is thus very high. Note that in addition
to the elements/parameters given in Table 1 the elements

Au, B, Br, Cs, Hg, Ir, Mo, Rb, Se, Ta, Tb, Te and U
were also analysed. These were not used for this study
because for all these elements a substantial part (>3–

100%) of all data were below the respective limits of
detection.

3.6. Inhomogenous data set

Geochemical data sets are often extremely inhomoge-
neous. Usually they consist of a mixture of different

populations. In different subsets antagonistic data
structures may exist. In the case of the test data set there
exists some knowledge about the processes governing

the data structure. The geological map could be used to
construct more homogenous subsets of the samples that
were collected. If this is done and the correlation matrix

for each of these subsets is estimated it becomes at once
clear that each of these lithologically based data subsets
has a quite different correlation matrix (Fig. 3). Entering
factor analysis with such inhomogeneous data will

almost invariably lead to unstable results. The existence
of such problems can easily be detected in a simple CDF-
diagram. Fig. 4 shows 4 examples displaying breaks in

the data structure, caused by the presence of different
lithologies. This must influence the results of factor ana-
lyses. The main result being that factors will be governed

by the elements that show high (or low) values in one of
the sub-populations. It is predictable that factor analysis
will have as one of its main outcomes an elucidation of

some of the known lithological units. Such data beha-
viour can be expected in the vast majority of cases when
working with regional geochemical or environmental
data. It is doubtful that factor analysis is the correct

method of multivariate data analysis in such cases.
The correct data analysis procedure would be to first

disaggregate the total data set into more structurally

homogenous subsets, e.g. via a clustering procedure or
by the use of already existing knowledge (e.g. the geo-
logical map). However, in most cases, and definitely in
the case of the test data set, there would not remain

sufficient samples in any of these subsets to carry out a
meaningful factor analysis.

3.7. Spatial independence

Factor analysis assumes that the data represent ran-

dom, independent samples from a multivariate distribu-
tion. However, geographic variables usually have a
spatial dependence, i.e. the observations are correlated.

Factor analysis of correlated observations will reflect
such correlations, which cannot be removed by a ran-
dom shuffling of the data points. For a correct statistical
investigation, the data should be viewed as a realisation

of a stochastic process, which will result in complicated
and expensive statistical procedures (see, e.g. Basilevsky,
1994). The data set considered here comes much closer

to spatial independence than most data from regional or
environmental geochemical investigations because of the
low sample density employed, i.e. 1 site per 310 km2.

3.8. Dimensionality

One of the first requirements for stable results from a
factor analysis is that there are a sufficient number of
samples for the number of variables. Different rules
have been suggested (Le Maitre, 1982), e.g. n>p2+

3p+1 (where n is the number of samples and p the
number of variables) — for the 54 variables from Table 1
this gives 3079 samples — but the data set consists of

‘‘only’’ 605 samples. Even if more tolerant rules are used
(e.g. n>p2 or n>9p, or just n>8p) the number of sam-
ples in this study is rather small in relation to the num-

ber of variables. Factor analysis should thus preferably
not be entered with the full set of elements. The above
cited rules suggest that for a data set consisting of 605
samples factor analysis should not be entered with many

more than about 23 variables. Some possibilities of
reducing the number of variables are discussed below.

3.9. Factor analysis

Judged by the statistical criteria presented one should

probably come to the conclusion that the Kola data set
(and most other geochemical data sets) are not suited
for factor analysis. There are often too many variables

for the number of samples. There is a closed number
problem. There are many data outliers, and the data are
not normally distributed. Even after a log-transforma-
tion they do not show a normal distribution. The data

are extremely inhomogeneous. Other techniques, e.g.
cluster analysis, should probably be used prior to factor
analysis to gain more stable data subsets. This, however,
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adds considerable work, and with the small number of
samples in the original data set it would most likely
result in too few cases in the resulting subsets to carry

out stable factor analyses.
Having clearly stated that the study data set is hardly

suited for classical factor analysis, factor analysis is still

entered (as is so often done) and the results of different
approaches are discussed in view of the issues presented
above. To avoid as many as possible of above discussed

problems all data were log-transformed and standardised
prior to entering factor analysis. This approach approx-
imates normality and gives the same weight to all variables.

3.10. Factor analysis method and rotation

As the next step, the actual method for carrying out

factor analysis has to be chosen. The options are the
classical PFA or more complicated techniques like
maximum likelihood (ML). Is this choice likely to have

a fundamental influence on the results of the factor
analysis? Furthermore, the method of factor rotation
must be selected: Varimax (Kaiser, 1958), Promax

(Hendrickson and White, 1964), Oblimin (Harman,
1976) or Quartimin (Carroll, 1953) are just some exam-
ples. Varimax and Promax are orthogonal rotations, i.e.

the rotated factors are not correlated, Oblimin and
Quartimin are oblique rotation methods, i.e. the rotated
factors can be correlated. Most geochemists will likely

accept the standard choice offered by the software
package being used. The mathematical background is
well documented in a number of specialised textbooks

(e.g. Harman, 1976; Seber, 1984; Basilevsky, 1994;
Mardia et al., 1979; Johnson and Wichern, 1998). In the
light of above discussions on the statistical assumptions
that need to be met, PFA may be the ‘‘safer’’ method

for geochemical applications (Pison et al., 1999).
To ease comparison of different versions of factor

analysis, which usually result in long tabulations, one

Fig. 3. Pearson correlation coefficients within 4 selected rock units underlying the C-horizon in the survey area for 9 elements

(Granites: n=94, Alkaline rocks: n=12, Basalts: n=42, Sediments: n=68). Note that the same pair of elements can show positive as

well as negative correlation depending on rock type.
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can plot the resulting factor loadings into a simple XY-
graph, where the X-axis is scaled according to the
explained variance for the whole data set for each fac-

tor. The Y-axis is scaled from +1 through 0 to �1 and
shows the factor loadings of the different variables
entering each factor. Names of variables with an abso-
lute value of the loadings <0.3 are not plotted. Fig. 5

shows 8 results of factor analyses using a selection of all
the elements where total concentrations were determined
either by XRF or INAA techniques. In the first example,

4 factors result in a total explained variance of 76%, F1
contributes 40%, F2 21%, F3 9% and F4 only 6%.
At a first cursory glance, the factors look similar in all

8 cases (Fig. 5). This is not surprising because the factor
analyses are based on the same correlation matrix, and,
independent of the method chosen, the same elements

always will show high correlations. In all 8 tested cases,
between 71 and 76% of the total variability is explained
by just 4 factors, which were chosen for this comparison
because in all cases the 5th (and the following) factors

explained less than 5% of the total variability.
When studying the resulting factors more carefully, it

is apparent that there are slight differences between the

results. Some elements are exchanging positions
between different factors, depending on method and/or
rotation. Such slight shifts can result in dramatic chan-

ges in the regional distribution displayed in factor maps.
Results obtained by the ML-method appear to be very
sensitive to factor rotation — F1 and F2 exchange
position here between Varimax/Promax and Oblimin/

Quartimin rotations. For geochemical reasons none of
the 8 results can be selected as the best. There are a
number of statistical parameters that can be used to

judge the quality of a factor analysis (Basilevsky, 1994).
Unfortunately in practice it is often difficult to decide
which of these parameters is really indicative of a ‘‘use-

ful’’ result. Criteria for the quality of the results can be
the explained variance of each single factor (should be
high, e.g. >5%) and the total explained variance

(should reach a certain cut-off, e.g. >70%). Another
measure is the simple structure of the rotated factors:
more separated factors should have an easier inter-
pretation. According to Table 2, PFA with an orthogo-

nal rotation performs best.
In a further step, all resulting factor maps were plotted

(8�4=24 maps). For several of the principally different

Fig. 4. CDF-diagrams scaled for linearity of lognormal distributions for 4 selected variables demonstrating some inherent problems of

the data-set with regards to the suitability for factor analysis. Some of the main reasons (mostly certain lithologies) causing breaks in

the diagrams are marked (DL: detection limit).
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methods, the same procedure was carried out for 3, 5
and 6 factors giving in total over 100 maps (not shown).
Careful investigation of all these showed that PFA with

Varimax rotation gave the most ‘‘stable’’ maps. When
using the ML method, one factor more or less could
result in completely different maps. The different rota-
tion methods resulted in completely different regional

distributions of the factors. In general, the ML-maps
where rather noisy. For geochemical data, PFA, as the
method making the least statistical assumptions, is thus

the best choice. Orthogonal rotations (e.g. Varimax) are
preferable to the more complicated oblique rotation
methods. Fortunately this will be the default selection in

most statistical packages.
With the many choices at hand, geochemists using

factor analysis will invariably be tempted to choose the
one result that is most interpretable on the basis of their

knowledge in general, and the study area in particular.
This may result in some really important but unexpected
results being neglected.

Fig. 5. Factor loadings for the first 4 factors (F1–F4) extracted with 8 different methods of factor analysis from the same data set.

Only elements analysed with XRF or INAA were used here. Method of factor analysis (PFA or ML) and method of factor rotation is

given on top of each graphic.
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3.11. Number of factors extracted

There are different procedures to determine the
‘‘optimum’’ number of factors to be extracted from fac-

tor analysis, including, a number of statistical tests (see
Basilevsky, 1994). However, the procedures most often
used are more of the ‘‘rule of thumb’’ type, e.g.:

. To select as many factors as there are eigenvalues
larger than the average;

. To select enough factors to reach a certain pre-

selected explained variance (e.g. >70%); and
. To use the scree plot (Cattell, 1966) where the

number of factors is plotted against explained
variance (see Fig. 6 for an example) and the cut-

off is chosen at the point where the function flat-
tens out.

It is also possible to enter factor analysis with a pre-
selected number of factors (although, in most cases, one

may argue that if one has enough knowledge to pre-
select the number of factors one probably does not need
to use factor analysis). Results can drastically change

with the number of factors extracted. This effect is
especially pronounced when factor analysis is entered
with only a few variables. Experience from studying

many factor maps suggests that it might in general be
better to extract a low number of factors. The scree plot
is probably the best of the ‘‘simple’’ techniques for
determining the optimum number of factors, although

the answer is again not a clear one.

3.12. Selection of elements

Following decisions on data transformation (log),
standardisation, selection of method (PFA) and factor

rotation (Varimax) the influence of the number of ele-
ments entered into factor analysis was studied. Because
factor analysis is mostly used as a method to reduce

dimensionality in a data set it will normally be entered
with all available variables. Thus, here this test was
started with all 54 elements/parameters named in Table 1
(605/54=11.4 — see discussion on dimensionality). The

scree plot shown in Fig. 6 is constructed with the results
of factor analysis using all these variables. The resulting
curve suggests that 4, 5, 6 or 7 factors could be extrac-

ted. All these possibilities were plotted (factor loadings
and maps) and finally the results for 6 factors, which
explain 76% of the total variation, were selected. Only

these results are shown in Fig. 7 and Table 3. Fig. 8
gives the 6 factor maps, which all show clear regional
structures.

Geochemically F1 is dominated by the rare earth ele-
ments (REEs), high concentrations of these occur in the
soils overlying the alkaline intrusions, the granulite
complex and parts of the Caledonian sediments (Fig. 2).

In the F1 map, these are reflected with the highest values.
Most interesting is the linear continuation of this zone
from the northeastern end of the granulite belt towards

the coast of the Barents Sea (Fig. 8). F2 shows a
‘‘mafic’’ association of elements. High values in the map
reflect the greenstone belts (Figs. 2 and 8) and parts of

the granulite complex containing mafic layers. The third
factor associates some surprising elements. LOI (loss on
ignition — content of water/organic material in the

samples) plays an important role and suggests that sec-
ondary geochemical processes dominate this factor. High
factor scores are visible along the coast of the Barents Sea
in Northern Norway and parts of Russia, where very

thin soil profiles rich in organic material are observed. A
second area with high scores occurs on top of the alka-
line intrusions, from where a trend extends in a westerly

direction towards the alkaline intrusions near Kovdor
and the Sokli Carbonatite in Finland. It is very likely
that two different processes are reflected here in the

same factor: admixtures of organic material even in the
C-horizon along the coast (different mineral weathering
conditions in coastal areas could be an alternative
explanation) and a high proportion of hydrous minerals

occurring in the alkaline intrusions. Factor 4, domi-
nated by Na and Sr, clearly separates the sedimentary
sequences in Northern Norway from the alkaline intru-

sions in Russia. The very large area with high values
surrounding these intrusions is most likely indicative of
extensive hydrothermal alteration accompanying the

emplacement of the intrusions. The heavy REEs and
several ‘‘mafic’’ elements enter Factor 5. Although the
map shows a very clear regional structure it cannot be

explained on the basis of current geological knowledge.
Phosphorus and Ca are the most important elements in
F6, and this element association points to Ca-phos-
phate, apatite, determining the values in this factor. The

map is rather noisy, however, the most interesting
structure is a half-circular area with high values running
from Murmansk to the Norwegian Russian border and

Fig. 6. Scree plot for a factor analysis (PFA, Varimax rotation)

with all elements/parameters (54), demonstrating the very

minor increase in the explained variance with an increasing

number of factors.
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on to Kirkenes. Several of the important iron deposits
of the region occur within this area.
Factor analysis would thus appear to give inter-

pretable results, notwithstanding the fact that on the

basis of the foregoing discussion it should probably not
be used with these data. Do these results warrant the use
of a quite work-intensive method? Unfortunately not,

any of the discussed patterns/processes can easily be
detected when carefully studying just a few single ele-
ment maps as presented in Reimann et al. (1998). Do

just 6 factors at least reflect the main information con-
veyed in the analytical values for 54 variables? Could a
heavy geochemical atlas be replaced with a small book-
let, showing some factor maps? Importantly, the ele-

ments that do not enter any of the factors with high
loadings are some of the most interesting elements for
the exploration geochemist, e.g. Ag (Table 3) or many

of the elements with a detection limit problem that were
not entered from the beginning. That some elements do
not enter any of the factors is probably an important

message. This could, of course, have been predicted
beforehand when studying a data set that is largely
comprised of lithological variation. Thus, single element

regional maps for these elements are still needed and
should be studied with great care.

3.13. Reduction of the number of elements entered

In many cases, it appears sensible to enter factor
analysis with a reduced number of elements. Some

authors (e.g. Böhm et al., 1998) suggest the use of
Monte Carlo methods to extract those elements that
have a major influence on the total variance of the data
set. The result of this approach can be that the regional

distribution patterns of some of the most interesting
elements are never studied. Another approach could be
to remove all elements that do not reach a certain mini-

mum explanation (e.g. 0.5) by the common factors, as
expressed by the communality (see Table 3). Again this
approach may result in removing some interesting ele-

ments. A third approach could be to combine some of
the elements that load high on the same factor and carry
out a second factor analysis. A sub-selection of variables
could also be motivated by geochemical reasons/models.

The possibilities are limitless.
In the test data set, several of the same elements have

been analysed by different methods (aqua regia extrac-

tion versus XRF and INAA, the latter two giving total
element concentrations). While geological processes will
mostly govern the ‘‘total’’ element concentrations, the

partial aqua regia results will be influenced by a multi-
tude of additional processes (e.g. mineralogy of the sam-
ples, weathering). Thus it is sensible to separately carry

out factor analysis for these two sets of elements. Fur-
thermore, as detailed above, there are big differences in
the concentration ranges of the different elements, which
might affect the result of the factor analyses. A subdivision

into ‘‘major’’, ‘‘minor’’, and ‘‘trace’’ elements was thus
used to study what happens to the results of factor analy-
sis when the number of variables entered is changed. In

Fig. 7. Graphical presentation of 6 factors extracted from factor analysis (PFA, Varimax rotation) with all available elements/para-

meters (54) — compare also with Table 3. _I: INAA results, _X: XRF results, all others: aqua regia extraction.
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Table 3

Factor loadings of a factor analysis (PFA, Varimax rotation) carried out with all 54 available variablesa

F1 F2 F3 F4 F5 F6 Comm.

Ag 0.22 0.11 0.44 0.13 0.08 0.14 0.3

Al 0.35 0.43 0.7 0.28 �0.12 �0.07 0.89

Al_XRF 0.3 0.22 0.04 0.49 0.14 �0.14 0.42

As 0.16 0.17 0.72 �0.18 �0.05 0.05 0.6

Ba 0.47 0.4 0.38 0.39 0.07 �0.06 0.69

Ba_INAA 0.64 �0.07 �0.05 0.06 0.06 �0.29 0.51

Be 0.54 0.07 0.71 0.23 �0.11 �0.06 0.86

Bi �0.02 0.06 0.7 �0.26 �0.01 �0.03 0.57

Ca �0.06 0.17 0.01 0.53 0.65 �0.06 0.73

Ca_XRF �0.28 0.26 �0.39 0.65 0.32 �0.16 0.86

Cd 0.28 0.22 0.56 0.31 0.06 0.2 0.59

Ce_INAA 0.91 0.09 0.28 0.09 0.09 0.06 0.94

Co 0.1 0.77 0.55 �0.07 0.11 0.02 0.92

Co_INAA �0.03 0.87 0.16 0.17 0.12 0.24 0.89

Cr 0.01 0.8 0.26 0.12 �0.1 �0.23 0.78

Cr_INAA �0.15 0.76 �0.07 0.28 �0.18 0.04 0.73

Cu 0.07 0.69 0.44 0.09 0.15 0.1 0.72

Eu_INAA 0.82 0.17 0.15 0.34 0.13 0.22 0.91

Fe 0.27 0.66 0.56 �0.25 0.14 �0.05 0.9

Fe_XRF 0.33 0.75 0.14 0.21 0.08 0.4 0.89

Hf_INAA 0.78 �0.05 0.16 0.17 �0.04 0.18 0.7

K 0.33 0.27 0.42 0.14 0.17 �0.14 0.43

K_XRF 0.59 �0.31 0.37 �0.24 �0.12 �0.27 0.72

La 0.8 0.04 0.37 0.18 0.16 �0.2 0.88

La_INAA 0.93 0.08 0.21 0.12 0.06 0 0.94

Li �0.01 0.2 0.79 �0.12 0.13 �0.23 0.76

LOI 0.23 0.26 0.75 0.1 �0.12 0 0.71

Lu_INAA 0.71 0.28 0.09 �0.03 0 0.55 0.89

Mg 0.04 0.7 0.57 �0.03 0.19 �0.08 0.86

Mg_XRF �0.05 0.84 0.02 0.28 0.05 0.27 0.86

Mn 0.25 0.27 0.77 0.06 0.16 0.15 0.77

Mn_XRF 0.33 0.39 0.24 0.48 0.18 0.48 0.81

Na 0.24 0.04 0.07 0.84 0.19 �0.02 0.8

Na_XRF �0.22 �0.19 �0.28 0.51 0.25 �0.42 0.66

Nd_INAA 0.87 0.14 0.19 0.12 0.08 0.08 0.84

Ni �0.01 0.77 0.42 0.14 �0.09 �0.04 0.81

P 0.1 0.09 0.03 0.08 0.86 0.01 0.77

P_XRF 0.35 0.12 0.12 0.3 0.78 0.09 0.86

Pb 0.42 �0.05 0.67 �0.24 0 0.06 0.69

pH 0.02 0.08 �0.03 0.13 0.01 0.06 0.03

S 0.23 0.18 0.53 0.12 0.01 0.06 0.38

Sc 0.18 0.76 0.35 �0.15 0.12 �0.09 0.77

Sc_INAA 0.14 0.83 �0.14 0.01 0.12 0.35 0.87

Si 0.02 �0.02 �0.05 0.21 �0.13 0.07 0.07

Si_XRF �0.29 �0.47 �0.31 �0.57 �0.17 �0.09 0.76

Sm_INAA 0.89 0.21 0.2 0.14 0.12 0.2 0.95

Sr 0.4 �0.06 0.37 0.7 0.18 �0.02 0.83

Th_INAA 0.83 0 0.27 �0.22 �0.08 �0.11 0.82

Ti 0.28 0.5 0.2 0.32 0.2 �0.42 0.69

Ti_XRF 0.52 0.55 0.25 0.2 0.1 0.3 0.77

V 0.22 0.82 0.24 0.03 0.16 �0.19 0.83

Y 0.73 0.09 0.45 0.1 0.15 0.1 0.78

Yb_INAA 0.71 0.26 0.11 �0.01 0 0.56 0.9

Zn 0.38 0.27 0.79 0.09 0.09 0.08 0.86

a Comm.: Communality, or that part of the variance explained by the common factors. A high value (e.g. >0.5) indicates that this

variable is well explained by the factor model.
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Fig. 8. Factor score maps for the 6 factors shown in Fig. 7: for locations, see Fig. 1; for general geology of the area Fig. 2.

200 C. Reimann et al. / Applied Geochemistry 17 (2002) 185–206



addition, geochemical reasoning (e.g. geochemical asso-
ciations and/or pathfinder elements for different types of

ore deposits) was used to select further sub-sets of vari-
ables. In geochemistry, the selection of elements entered
will in practice most often arbitrarily depend on which

elements have been analysed.
As the main result of this investigation, again leading

to hundreds of factor maps, it can be stated that the
selection of elements with which factor analysis is entered

has a most important effect on the results. Just one ele-
ment more or less can give very different factor solutions
and maps. This is rather disturbing when considering

that the choice of elements analysed often depends quite
arbitrarily on the multi-element package a laboratory is
offering, detection limits reached and price rather than

on good geochemical reasoning. In general, it was easier
to explain results obtained with a factor analysis when
the number of variables entered is small. Structures in

the maps are often much ‘‘sharper’’ than in the maps
where very many elements were employed (compare also
the maps in Fig. 8 with those in Fig. 10). Surprisingly,
the most general criteria for selection of variable sub-

sets (i.e. ‘‘total’’ and ‘‘aqua regia extracted’’ elements
separated, ‘‘major’’, ‘‘minor’’ and ‘‘trace’’ elements
analysed separately) gave the most convincing results.

None of the variable selections according to geochem-
ical criteria resulted in better factors or new interesting
features in factor maps. The most likely reason for this
is the data inhomogeneity issue documented above.

A last word of caution is necessary with regard to the
number of factors extracted. Fig. 9 shows an example
where factor analysis was entered with a very limited

number of elements (Ba, Ce, Co, Cr, Lu and Rb) all
analysed by INAA (total concentrations). It was possi-
ble to extract 2 or 3 factors, the first version explaining

70% of the total variance, while 3 factors explain 85%.
Judged by statistical reasoning the second result is by
far superior. In both cases the elements entering the

different factors are fully acceptable for the geochemist.
However, when these factors are mapped, 2 factors
result in two very informative maps (not shown but
comparable to those shown in Fig. 10A and B) revealing

important and new structures in the data. Mapping 3
factors results in one informative map and 2 maps that
could not be interpreted (not shown).

3.14. A collection of the most interesting results

Fig. 10 presents a collection of factor maps. These are
the most interesting results of all the different approa-
ches tested. The first two maps come from an extended

version of the above example of factor analyses with 10
elements (instead of 6 as above), all analysed by INAA.
In both maps very clear and interesting regional struc-
tures with sharp boundaries emerge. F1 (Ce, Lu, Ba)

marks the alkaline intrusions, the northern half of the
sediments along the Norwegian coast and parts of the
granulite belt in Finland (compare also with Fig. 8, F1).

The most unusual feature is a clear linear zone (marked
in grey) extending from the granulite belt towards the
coast of the Barents Sea, probably marking a lineament

with numerous alkaline intrusions (Fig. 10A). The sec-
ond map (Fig. 10B) shows a linear anomaly along the
Ura Guba zone (grey) — a very exciting feature for Cu–
Ni deposit exploration in the study area. In addition,

the well known greenstone belts are marked by high
values. This is also one of the very few maps where
both, the Cu–Ni deposits near Monchegorsk and the

Pechenga deposits near the Norwegian Russian border
are indicated by high values. The features shown in
Fig. 10A and B were detected with slight differences in

resolution in a number of different factor analyses with
varying element combinations of REEs (Fig. 10A) and
elements indicative of mafic rocks (Co, Cr, Fe, Mg, Mn,

Sc, Ti — F2 — Fig. 10B).
Another large-scale linear feature was observed in 3

maps resulting from 3 different factor analyses (only two
shown: Fig. 10C and D). It appears in F4 (Al) of a fac-

tor analysis carried out with the major elements as
determined by XRF (total concentrations of Al, Fe, Ca,
K, Mg, Mn, Na, P, Si, Ti). The area marked in grey in

Fig. 9. Difference in factor loadings depending on whether 2 or

3 factors are extracted. NA: analyses with INAA.
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Fig. 10. Maps of factor scores showing the most interesting data structures detected in different factor analyses (see text for

explanations).
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Fig. 10C cuts several geological units, and is most likely
indicative of alteration processes related to a deep-
seated fault. It was revealed again in a factor analysis
carried out with all those elements extracted by aqua

regia as F6, dominated by K and Ba, showing the same
structure (Fig. 10D).
A circular structure running from Murmansk to Kir-

kenes became visible in F5 when all elements analysed
were used for factor analysis (Fig. 8). A similar structure
appears in two more factor maps. In Fig. 10E, the dis-

tribution shows F5 (of 6) of a factor analysis entered
with all elements analysed by XRF and INAA. Here,
the circular structure reflects low values of Rb and K.

When entering the same elements but extracting only 4
factors, the same feature becomes visible via high values
of Ca, Na and Al (not shown). The same factor analysis
identified another interesting area characterised by

exceptionally low values in the centre of the map
(Fig. 10F). This feature was visible in quite a number of
different factor analyses whenever Ca and Na dominated

a factor. One could assume that it might in some way be
related to feldspar weathering or to alteration processes
related to the emplacement of the Sokli Carbonatite. In

contrast, a rather large area in Russia is marked by
positive loadings in these maps. A regional scale low
marks also the sedimentary rocks on the Varanger

Peninsula in Fig. 10F (compare with the geological map,
Fig. 2).

4. Conclusions

The worked example using the C-horizon soil data of

the Kola project demonstrated that even when neglect-
ing all prerequisites for a sensible factor analysis, inter-
esting results may emerge that can be interpreted based

on geochemical reasoning. However, most of the results
are governed by regional geology and could have been
predicted using pre-existing information. Even the more
informative results presented in Fig. 10 can all be

extracted from a small selection of single element maps
as presented in Reimann et al. (1998). It is disturbing
that a reader (or reviewer) not being unusually experi-

enced with factor analysis or the regional geology of the
survey area has practically no chance of judging whether
or not these results really make sense and introduce new

knowledge.
Should factor analysis then be used when studying

regional geochemical data? The answer to this question

depends strongly on how, and for what purpose, it is
used. Complex polypopulational regional geochemical
(or environmental) data are not really suited for factor
analysis. In nature the chemical elements show neither a

normal nor a log-normal distribution. Different geo-
chemical processes can govern the regional distribution
of one and the same factor. It is not sufficient to use just

one method of factor analysis with one set of elements
to explain the inherent information of a whole data set.
Different choices of parameters result in a multitude of
results — some may be useful, others cannot be inter-

preted. The fact that single elements do not enter any of
the factors does not mean that the regional distribution of
these elements is uninteresting — for an interpretation

these may be the most interesting elements of all.
Although, in general, when entering factor analysis with
all available elements the resulting factors can be

explained by geochemical reasoning, the resulting factor
maps will not reveal the same information as is revealed
in single element maps or combinations thereof. It must

be realised that the majority of regional geochemical data
sets will be plagued by the above problems, independent
of their provenance (exploration or environmental geo-
chemistry). They are thus not well suited for direct entry

into factor analysis. Other techniques (like, for example,
cluster analysis) should be used to disaggregate the whole
data set into more homogenous data subsets prior to

factor analysis. Single element maps will always have to
be produced first. A solid univariate data analysis is a
pre-requisite for using advanced statistical techniques.

Exploratory multivariate analysis, e.g. Chi2-plots (Gar-
rett, 1989) for detecting multivariate outliers and cluster
analysis should all be used prior to entering a factor

analysis. A careful univariate data analysis of the test
data set can be found in Reimann et al. (1998). Tests for
normality are presented in Reimann and Filzmoser
(2000). A comparison of robust and non-robust techni-

ques of factor analysis is given by Filzmoser (1999).
Factor analysis cannot be used as a proof for the

existence of certain processes — it can indicate certain

relations and help stimulate ideas, they have to be pro-
ven in a different way. Much justified critique of factor
analysis as applied to geochemical data is caused by the

misuse of the technique. Factor analysis can be used to
explore the data for hidden multivariate structures,
which then have to be explained by different means. If
used correctly, it will not result in a reduction of geo-

chemical maps but rather in additional maps. To objec-
tively judge the quality of these maps is very difficult. In
regional geochemical mapping, a good result is probably

best indicated by stable geochemical maps, displaying
large-scale patterns. The best success is if new patterns,
that do not necessarily fit the established geological maps

and concepts and that may be difficult to see in single
element maps, are revealed. However, even such large-
scale patterns may often be difficult to interpret based on

current knowledge. They can be used to develop new
ideas about processes influencing element distribution
on a regional scale or to re-interpret the geological map.
To really be able to interpret the results beyond pure

speculation may require considerable new fieldwork.
Factor analysis may be useful in guiding the field activ-
ities into especially interesting areas.
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Researchers critical of the use of factor analysis are
well justified in stating that it is not very scientific to
play with the selection of elements and number of fac-
tors extracted until one ‘‘finds’’ an ‘‘interesting’’ result.

On the other hand, even all the different results pre-
sented here are based on identical data, the data are not
being changed to generate these results. Patterns reflec-

ted in the maps are thus not ‘‘artefacts’’ of the selection
process, but are based on the multivariate behaviour of
real data. However, the patterns may reflect the influence

of individual samples (outliers), or small groups of sam-
ples that perturb the correlations of the variables so that
they do not reflect the underlying correlations in the

main mass of the data. In such cases, the patterns are
artefacts of the constraints of orthogonality, which force
lower order factor axes into data space not occupied by
actual samples. Variable loadings on these factors, and

scores for samples computed on them, will commonly be
hard or impossible to interpret.
Geochemists are not likely to stop using factor ana-

lysis as a tool to study their data as a result of this
paper. Discussions on the advantages and disadvantages
of factor analysis applied to geochemical data were

published as long as 30 a ago (e.g. Miesch, 1969; Tem-
ple, 1978; Kufs, 1979). The results of this paper indicate
that there are a number of general rules for the applica-

tion of factor analysis to regional geochemical data
(compare also with Howarth and Sinding-Larsen, 1983):
1. Before entering factor analysis the distribution of

each of the variables must be carefully studied. A Box–

Cox or a log-transformation may be required to
approach normality and to ensure homogeneity of var-
iance to meet the requirements of a least squares based

procedure.
2. To enter geochemical raw data, including major,

minor and trace elements into factor analysis does not

make sense because it can be predicted that the minor
and trace elements would have almost no influence on the
result. If major, minor, and trace elements are mixed in
one the same factor analysis log-transformation may not

be sufficient to reach homogeneity of variance. In this
case, standardisation to zero mean and unit variance
guarantees an equal influence of all variables. Note that

many standard software packages automatically carry
out this standardisation, which does not allow carrying
out a factor analysis based on the covariance matrix.

3. Furthermore any large regional geochemical data
set should be subdivided into the most obvious data
subsets showing different geochemical behaviour, either

based on pre-existing knowledge of the regional geology
or based on a cluster analysis prior to entering factor
analysis.
4. The safest method for factor analysis with geo-

chemical data is principal factor analysis (PFA). More
advanced techniques like maximum likelihood (ML)
depend even more on the normal distribution of the

data entered and, given the nature of regional geochem-
ical data, will thus produce misleading results. Note that
robust methods of factor analysis were also tested on this
data set (e.g. Filzmoser, 1999). Statistically these perform

clearly better, however, the geochemical interpretation is
not necessarily easier. One reason may be that also
robust techniques cannot overcome the problem related

to a multimodal dataset. In addition they are still not
available in most standard software packages, used by
geochemists.

5. Note that data outliers are a characteristic of
regional geochemical data — when using non-robust
methods of factor analysis these should be recognised

and removed prior to entering factor analysis.
6. For factor rotation an orthogonal method should

be chosen, e.g. Varimax.
7. The number of factors to extract is very difficult to

determine. Most of the existing rules do not really help in
practise. The most practical approach is to use a scree plot
for guidance, and then try some different numbers of fac-

tors and study the results (loadings and maps) in detail,
although this introduces a lot of subjectivity. Inmost cases
a low number of extracted factors gave the best results in

terms of interpretability.
8. The selection of elements entered will govern the

results of factor analysis. It may be worthwhile to first

enter all elements, and afterwards test different combi-
nations of elements. Just one element more or less can
substantially alter the results of factor analysis. It is dis-
turbing, that in geochemistry the selection of elements

will very often arbitrarily depend on what has been ana-
lysed. This is often governed by price, methods available,
and/or detection limits, and not by science.

9. For factor analysis that is carried out with geo-
chemical data it is important to have a computer system
that allows fast and easy graphical presentation of results,

e.g. loading plots, scree plot and factor score maps. This
allows the investigator to ‘‘play’’ with the data in a true
exploratory data analysis approach.
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