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Abstract

The probability features of non-normality and non-lognormality are widely observed in geochemistry due to the influences of
multiple factors that are difficult to quantify and model. In Northern Ireland, the pseudo-total concentrations of 14 elements (Ca, Cd,
Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb and Zn) from 6138 topsoils were measured, and GIS mapping showed that the spatial
distribution of these data were in line with the spatial distribution of geology in the area. Investigations into the influences of geology
on the concentration data and their probability features were carried out using GIS and statistics in this study. The whole raw data sets
for each element were positively skewed and none of them followed either normal or lognormal distributions. Logarithmic
transformation was found to have “over-transformed”most of the data sets, changing their skewness from positive to negative values.
When soil samples were classified by rock type using a GIS overlay function, obvious differences were observed in the chemical
concentrations of soils derived from different rock types. Soils in basalt areas displayed the highest concentrations for most elements
under study (Ca, Co, Cr, Cu, Fe,Mg,Mn, Na, Ni, P and Zn) but the lowest concentrations for K, while the highest levels for Cd and Pb
occurred in the shale areas. Classifying soils by rock type producedmore normally distributed data sets, especially for the igneous rock
areas. To restrain the influence of soil type and land cover, samples from both gleys and pastures were extracted via a GIS and it was
found the data sets then showed generally greater tendencies towards normality. However, many of the data sets would still not pass a
test for normality unless the sample size was small (e.g. of the order of a couple of hundreds). Geology, soil type, land cover and
sample size all played important roles in determining soil chemical concentrations and their probability features. However, the
influences from other factors were still evident. Attempts made in this study show that it remains a challenging task in geochemistry to
separate all the factors and to model their influence at the regional scale.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Soil geochemistry is controlled by multiple factors
with solid geology regarded as a major one. Due to the
complicated effects of these factors, non-normal and non-
lognormal distributions are widely observed in geochem-
ical databases (Reimann and Filzmoser, 2000). In the
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1950s, Ahrens (1954) stated the lognormal law of
geochemistry which was based on trace element con-
centrations in igneous minerals and rocks. However,
geochemists soon presented objections to the universality
of this law (Aubrey, 1956; Vistelius, 1960). Ever since,
studies on the probability distributions of geochemical
data have been on-going. The distributions of the
untransformed data were found to be positively skewed
for many elements (Davies, 1980; McBratney et al.,
1982). In common with the findings of McGrath and
Loveland (1992) in their analysis of over 5000 represen-
tative topsoils for England andWales, a logarithmic (base
10) transformation also failed to produce normally
distributed data for any of the elements studied. Zhang
and Selinus (1998) regarded the lognormal distribution as
a special case of more general, positively skewed
distributions. Furthermore, Zhang et al. (2005) found
none of the 27 elements in a large geochemical database
from the U.S. Geological Survey followed either normal
or lognormal distributions. In addition to the widely
known factors such as multiple populations (caused by
geology, soil type, etc.), detection limits and outliers, large
sample size was observed to be an independent factor
affecting the results of statistical tests (Zhang et al., 2005).

In “The Soil Geochemical Atlas of Northern Ireland”
(Jordan et al., 2000), the pseudo-total and extractable
concentrations of sixteen elements (cadmium, calcium,
chromium, cobalt, copper, iron, lead, magnesium,
manganese, molybdenum, nickel, phosphorus, potassi-
Fig. 1. Study
um, sodium, sulphur and zinc) in the agriculturally-
important soils of Northern Ireland were measured and
mapped. These elements were selected either because
they were essential for healthy development of micro-
organisms, plants and animals, or because they could be
important contaminants. The GIS maps of the data sets
showed a consistency between soil chemical composi-
tion and the spatial distribution of rock types in the study
area (Jordan et al., 2000). A recent study by the authors
demonstrated influences of rock type on the spatial
variations of Ni concentrations in soils of the study area
using neighbourhood statistics (Zhang et al., 2007). It is,
therefore, essential to separate soil samples by rock type
in order to more fully understand the influence of
geology on the chemical concentrations of the different
groups of soils. It is also important to evaluate if the
probability features show better tendencies towards
normality when the geology factor is under control.
Even though it is widely known that soil geochemistry is
affected by multiple complicating factors, attempts to
separate or restrain these factors should be of wide
interest. GIS techniques make such analyses possible.

In this study, the influence of geology on regional
soil geochemistry in Northern Ireland, as defined by the
pseudo-total concentrations of 14 selected elements,
was examined. The probability features associated with
soil geochemistry were further investigated when the
effect of geology, as well as soil type and land cover,
was constrained.
area.
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2. Methods

2.1. Study area

Northern Ireland is comprised of six counties viz. (in
clockwise order from the north position) Antrim, Down,
Armagh, Fermanagh, Tyrone and Londonderry. The
Province occupies a total area of 14,120 km2 of which
13,480 km2 is land and 640 km2 is ascribed to inland
waters, predominantly lakes Neagh and Erne (Fig. 1).
Over 17% of the land area is above 200 m with nearly 6%
above 300 m and a maximum altitude of 850 m in the
south-east. The Province is a microcosm of the Earth's
geologywith nearly every period of the Earth's geological
history being represented and almost every known rock
type found there. The major soil subgroups are climatic
peat above 200 m (14%), with acid brown-earths (13%)
and gleys (56%) at lower elevations. The dominant soil
parent materials are drifts and glacial tills derived from
basalts (County Antrim), Silurian shales (counties Down
and Armagh), mica-schist (counties Tyrone and London-
derry) and carboniferous-age rocks (counties Fermanagh
and Armagh). Significant areas of granite are found in the
south-east of the Province (theMournemountains). These
major solid geological features are shown in a simplified
geological map of the Province (Fig. 2) which is based on
Fig. 2. A simplified geological map of Northern Ireland showing the ma
the Geological Survey of Northern Ireland's 1:250,000
solid geology map (GSNI, 1998).

Historically, iron ore, coal, lead and salt were the
dominant minerals mined in Northern Ireland. There are
now over 2000 abandoned mine workings across the
Province, most of which date from the 18th to early 20th
century. However, in recent years, lignite, gold and
industrial minerals have dominated commercial explora-
tion activity in Northern Ireland. Full details of the extent
and distribution of mineralization in Northern Ireland can
be found in Mitchell (2004).

Galena, sphalerite, pyrite and chalcopyrite are the
dominant minerals found in vertical veins at a number of
locations in the south of County Armagh and in north
County Down centred on the towns of Keady and Conlig,
respectively. Small amounts of copper, as malachite, are
also found in these veins. Significant quantities of zinc
and lead are also found associated with gold and silver
mineralization in the Dalradian schists of the Sperrin
mountains in the north-west of the Province.

Other significant sources of minerals are found
throughout Northern Ireland. For example, iron ore was
extensivelyworked in the basalt areas of CountyAntrim up
to the 1920's. Haematite is found at the northern boundary
of the shale/granite interface in County Down and a
significant magnesium limestone deposit (with MgN14%)
jor solid geologies, lakes and peat (original GIS file from GSNI).



Fig. 3. Symbol maps of Fe and K concentrations in the soils of Northern Ireland: a) Fe and b) K (the symbols are designed to highlight both high and
low values).
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is quarried just north of Lough Macnean, close to the
County Fermanagh border with the Republic of Ireland.

Apart from past mining activity, little evidence of
cultural contamination has been proven but may be
suspected around industrial centres and particularly in
localities where copper sulphate has been used exten-
sively for agricultural purposes (Webb, 1973; Jordan
et al., 2000). In modern times, the rapid increase in
vehicular transport accounts for higher emission and
deposition levels of lead (from fuel additives mainly
during the 20th century) and zinc (from tyre wear) in
urban areas and along the major road network. Similarly,
emission and deposition of cadmium and copper
particles from coal and fuel oil combustion are likely
to be centred around urban areas (Dore et al., 2005).

The Province has a long-term (1961–90) mean daily
air temperature of 8.7 °C, a mean annual rainfall of
1113 mm and a mean annual potential evaporation loss of
384mm (Betts, 1997).Agricultural land accounts for 80%
of the total area of Northern Ireland and this is dominated
by grassland (72%) and rough grazing (18%) with only
6% under crops and 1% in broad-leaved woodland
(Tomlinson, 1997).

2.2. Soil sampling and preparation

2.2.1. Soil sampling
Soil sampling was carried out in almost every 1×1 km

square in the lowland area of Northern Ireland (below an
elevation of 200 m) and resulted in the collection of 6038
soil samples. A further 100 samples were collected from
the upland/semi-natural regions of the Province, at a
density of approximately 1 sample per 25 km2 (see Fig. 3
for sampling locations). Water bodies and urban areas
were excluded from this survey. Within each sampled
1 km square, the sample point was located in the dominant
soil type indicated by the distribution on the 1:10,000 soil
survey field sheet (Cruickshank, 1997). The soil samples
were taken in the topsoil within the depth zone 0 to 25 cm
(the vast majority of soils were sampled from the
ploughed horizon Ap but, for peat soils, the O horizon
was sampled). A 1 kg composite soil sample, averaged
over the depth of the sampled horizon at each inspection
pit, was taken in the field. All the samples were
subsequently returned to the laboratory, air-dried, milled
and sieved at 2 mm, sub-sampled down to 300 g and
stored. Each sample was geo-located to the nearest 100 m
using a 6-figure Irish Grid reference (OSI, 1953).

2.2.2. Sample preparation
A 3–4 g homogenised sub-sample was taken from

the sieved, sub 2 mm soil sample. This was milled in
zirconium oxide grinding equipment to a fine powder
and transferred to polyethylene containers prior to
digestion. Approximately 2 g of soil (±0.0001 g) were
weighed into porcelain crucibles. The samples were
oven-dried (105 °C) overnight, cooled in a desiccator
and re-weighed. The crucibles and their contents were
then placed in a muffle furnace (450 °C) for 12 hours
and allowed to cool in a desiccator prior to being
quantitatively transferred into digestion tubes.

For the pseudo-total concentrations, samples were
digested in block digesters with 15 ml of 50% HCl and
5 ml HNO3 (aqua regia). All acids used were “Aristar”
grade. The samples were mixed on a vortex mixer,
heated for 3 hours at 60 °C, 1 hour at 105 °C and at
140 °C for 10 hours, until dryness. Twenty-five mil-
lilitres of 20% HCl were added to each digestion tube,
the contents mixed using a vortex mixer and then heated
for 40 min at 80 °C. After cooling, the solutions were
again mixed on a vortex mixer and filtered overnight,
using Whatman No. 542 filters, into 100 ml volumetric
flasks and made up to the mark with ultra-pure water. All
filter papers were pre-washed with 0.05 M ethylene
diamine tetra-acetic acid (EDTA) and rinsed with ultra-
pure water before use.

The samples were digested and analysed in sets of 40.
Each set of 40 consisted of 28 samples, 2 samples repeated
from the previous set, 2 samples repeated from the current
set, 4 internal reference soil samples and 4 blanks. All
glassware was cleaned by rinsing with de-ionised water,
soaking in a 10% “Decon” solution overnight, rinsing
with de-ionised water, soaking in a 10% HNO3 solution
for a minimum of 2 hours and finally rinsing with ultra-
pure water and allowing to dry.

2.3. Chemical analysis and quality control

2.3.1. Determination of pseudo-total concentrations
Analysis of pseudo-total Ca, Cd, Co, Cr, Cu, Fe, K,

Mg, Mn, Na, Ni, P, Pb and Zn was carried out using an
IRIS Inductively Coupled Plasma — Atomic Emission
Spectrometer (ICP-AES) from Thermo Jarrell Ash. All
concentration values were adjusted for soil moisture
content and the results expressed in mg/kg oven-dry soil
for trace elements and in % for major elements.

2.3.2. Quality control
All measurements were made in a National Accred-

itation of Measurement and Sampling (NAMAS, now
The United Kingdom Accreditation Service (UKAS))
accredited laboratory. Records of sample weights and
ICP-AES analysis data were stored on a central computer
system. Microsoft Excel macro programmes were written



Table 1
Percentiles for pseudo-total element concentrations in the soils of Northern Ireland (n=6138; for Cu n=6137; units in mg/kg except major elements (Ca, Fe, K, Mg, Na, and P) in %); also included are
detection limits and mean and coefficient of variation (CV) of the reference soil sample analyses used in the quality control (QC) procedures

Element Minimum 5% 10% 25%
(Q1)

Median
(Q2)

75%
(Q3)

90% 95% Maximum Number of
low value outliers a

Number of
high value
outliers a

Detection limits
(mg/kg)

Mean of QC
reference soil
sample b (mg/kg)

CV of QC
reference sample
analyses b (%)

Ca 0.0002 0.12 0.16 0.24 0.36 0.59 0.85 1.03 15.21 1 54 1.07 3189.8 5.4
Cd b0.08 b0.08 b0.08 0.2 0.33 0.5 0.72 0.91 5.49 0 87 0.08 0.3 39.2
Co b0.17 2.72 4.02 6.49 10.53 20.67 35.67 40.31 110.71 6 4 0.17 6.6 5
Cr b0.17 15.16 19.16 28.71 46.51 68.66 103.33 125.8 654.42 1 34 0.17 22.7 9.5
Cu b1.07 6.36 10.13 17.26 27.1 44.47 72.37 88.99 278.54 16 43 1.07 15.6 6.1
Fe b0.001 1.01 1.4 2.01 2.76 3.62 5.49 6.61 15.31 1 28 9.64 22383.8 7.6
K b0.0003 0.07 0.09 0.17 0.32 0.51 0.71 0.82 1.49 1 0 2.79 3376.2 7.9
Mg b0.0002 0.15 0.21 0.34 0.59 0.91 1.37 1.66 5.23 1 20 2.05 3388.6 4.7
Mn b0.03 81 132 249 452 762 1097 1289 22879 4 42 0.03 450.7 4.5
Na b0.0004 0.013 0.015 0.02 0.027 0.04 0.062 0.081 1.491 1 150 0.37 262.5 10.7
Ni b0.32 6.43 8.69 15 29.16 60.36 110.94 137.01 545.24 2 32 0.32 12.2 6
P b0.0004 0.044 0.054 0.071 0.092 0.119 0.154 0.181 0.459 2 40 4.25 988.1 5.3
Pb b2.62 6.73 9.15 12.83 17.92 26.81 41.65 55.32 1000.61 130 156 2.62 36.3 6.5
Zn b0.07 21.18 29.09 43.67 65.38 88.81 110.25 125.31 590.56 1 28 0.07 55.7 3.4
a Low value outliers were identified by sorting the raw data and by reference to the normal Q-Q plots for the logarithmically transformed data; High value outliers were defined as higher than the

third quartile (Q3) plus 3 times the inter-quartile range (IQR=Q3−Q1).
b The number of reference soil samples analysed varied between 705 and 713.
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Fig. 4. Normal Q-Q plots for raw concentration data (n=6138; units in mg/kg except major elements (Ca, Fe, K, Mg, Na, P) in %).
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to evaluate the final concentration of elements in the
samples and highlight any breaches of the quality control
(QC) procedures. Each set of digestions had 4 internal
reference soils that had been characterised against
certified reference materials (e.g. CRM 143R “Sewage
sludge amended soil” from the Community Bureau of
References, BCR). Each of the elements under analysis
were assigned acceptable upper and lower “warning” and
upper and lower “critical” concentration levels, based on 2
and 3 standard deviations from the mean ascertained from
the data used to characterise the soil. Synthetic QC so-
lutions were included in the analytical sample stream
every 20 samples. Batches of samples were re-analysed if
the QC soil results met any of the following conditions:
were above the critical limits, two or more consecutive
QC results were above the warning limits or the standard
checks showed the instrument was out of calibration.

As over 700 replicate measurements (between 705
and 713) of the internal reference soil were made for
each element, the coefficient of variation (CV) of the
measurements about the mean were calculated to give a
measure of the precision with which each metal deter-
mination was made (see Table 1).

2.4. Database and statistical analyses

The pseudo-total concentrations of the 14 elements in
each soil sample were stored in a Microsoft Excel
spreadsheet and merged, on the basis of laboratory
sample number, with a separate spreadsheet containing



Fig. 5. Normal Q-Q plots for concentration data after logarithmic transformation to the base 10 (n=6138; units for raw data in mg/kg except major
elements (Ca, Fe, K, Mg, Na, P) in %).
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matching soil attribute data (Cruickshank, 1997). In this
way, each sample record acquired locational information
(an Irish Grid reference) together with a summary soil
description. Moreover, before numerical analysis of
the data, those samples with concentrations below the
detection limit of the method were assigned a value equal
to half the detection limit for the element(s) in question.
Only Cd had significant numbers of samples with
concentrations at or below the detection limit (1085 or
18% of all samples).

The GIS layers used in this study included geology,
soil type and peat. The geology map was based on the
digital version of the 1:250,000 “Geology Map of
Northern Ireland” (GSNI, 1998) while the peat map was
based on a combination of the 1:250,000 soil map of
Northern Ireland and the CORINE land cover map of
Northern Ireland (Cruickshank and Tomlinson, 1996;
Tomlinson, 1997).

In this study, descriptive statistical analyses were
carried out to identify the overall features of the
data sets, which included percentiles, median, skew-
ness and kurtosis. A statistical test by Kolmogorov–
Smirnov (K-S) was applied to test the normality of
data sets. Normal quantile–quantile (Q-Q) plots were
produced to illustrate the probability features of both
the raw and logarithmically transformed data sets.
GIS was applied to classify soil samples by rock type
using an overlay function. Median values were then



Table 2
Skewness and kurtosis values and significance levels of the
Kolmogorov–Smirnov test for normality for the whole data set
(n=6138; outliers excluded)

Element Raw data Log-transformed data

Skewness Kurtosis K-S p a Skewness Kurtosis K-S p

Ca 1.31 1.80 0 −0.37 0.65 0.01
Cd 1.00 1.36 0 −0.92 −0.22 0
Co 1.18 0.35 0 −0.29 0.09 0
Cr 1.20 1.33 0 −0.79 2.36 0
Cu 1.33 1.46 0 −0.60 0.85 0
Fe 1.08 1.08 0 −1.01 3.23 0
K 0.81 0.24 0 −0.67 0.11 0
Mg 1.15 1.12 0 −0.50 0.21 0
Mn 1.01 0.83 0 −1.16 2.49 0
Na 1.44 1.97 0 0.00 0.72 0
Ni 1.41 1.21 0 −0.14 −0.42 0
P 0.93 1.22 0 −0.92 3.60 0
Pb 1.44 2.00 0 0.06 −0.10 0
Zn 0.70 0.93 0 −1.08 2.49 0

a “0” values represent “b0.001”.
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calculated for each rock type. All of these functions
are available in popular statistical software packages,
and thus they are not explained in this paper. Sta-
tistical analyses were mainly carried out using SPSS®
(V.14) and the GIS software used was ArcGIS®
(V.9.1).

3. Results and discussions

3.1. GIS visualization of soil geochemistry

Initial GIS mapping showed there was a good
association between soil chemical composition and the
Table 3
Median values for soils by dominant rock type and peat (in mg/kg except m

Element Basalt Dolerite Granite Limestone M

n a 1591 102 199 832 2
Ca 0.68 0.32 0.28 0.30
Cd 0.29 0.23 0.22 0.41
Co 31.98 7.40 7.45 6.72
Cr 86.64 33.42 27.11 32.36
Cu 60.25 22.36 21.76 16.89
Fe 4.67 2.32 1.88 2.05
K 0.12 0.41 0.27 0.36
Mg 1.12 0.43 0.42 0.32
Mn 906 306 330 285 5
Na 0.050 0.025 0.022 0.019
Ni 95.72 14.19 15.69 18.38
P 0.110 0.079 0.087 0.081
Pb 16.09 13.36 18.75 16.74
Zn 90.30 42.08 50.59 50.71

a One value is missing for Cu in peat.
spatial distribution of rock type. The maps for Fe and K
were selected as examples (Fig. 3).

The spatial locations of element concentrations
clearly reflected rock type boundaries. High concentra-
tions of Fe (circle symbols in Fig. 3) were found to be
predominantly located in the basalt area in the north-
eastern part of Northern Ireland, while low concentra-
tions of Fe (+ symbols in Fig. 3) were found in the
granite, limestone, and schist areas to the south and west
of the Province. Shale and sandstone areas had inter-
mediate Fe concentrations. However, K showed a very
different spatial distribution to Fe with high concentra-
tions of K (circle symbols in Fig. 3) located in the shale
and sandstone areas in the south and south-west, while
the lowest K concentrations (+ symbols in Fig. 3) were
found in the basalt area in the north-east of the Province.
Other areas have intermediate concentrations of K.

3.2. Normal Q-Q plots for all data sets

To investigate the probability features of the data
sets, normal Q-Q plots were produced for both raw data
(Fig. 4) and log-transformed data (Fig. 5).

All the whole raw data sets for the elements studied
showed significant deviation from a normal distribution,
with their samples located away from the diagonal lines
in Fig. 4. All the raw data sets displayed a convex shape,
with both the high value and low value ends falling
below the diagonal lines. Fig. 4 shows that if the raw
data were normally distributed, their low values should
be lower, and their high values should also be lower.
Due to the non-negative constraint of elemental con-
centrations, it is impossible to find any values below
“0”. On the other hand, the abnormally high values
ajor elements (Ca, Fe, K, Mg, Na, and P) in %)

udstone Shale Sandstone Schist Peat

49 1225 855 789 296
0.40 0.30 0.27 0.29 0.29
0.27 0.41 0.31 0.31 0.27
12.79 12.01 7.32 7.10 5.38
55.22 54.07 37.36 22.68 28.05
31.92 27.14 17.89 22.18 15.16
2.73 2.93 2.21 2.32 2.02
0.23 0.60 0.41 0.37 0.25
0.45 0.74 0.45 0.37 0.28
00 469 289 336 196
0.027 0.026 0.024 0.022 0.024
35.51 35.61 20.57 12.29 12.09
0.081 0.098 0.083 0.088 0.072
15.93 27.20 14.93 17.10 16.71
58.18 78.07 45.93 46.87 36.72
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could be explained as the result of rare processes, such
as mineralization or human pollution. The high value
outliers were easily identified on the normal Q-Q plots,
as they were located far away from the majority of the
samples. Several elements showed only one or two
extremely high values e.g., Fe, Mg, Na and Ni. These
are likely to result from errors in the database (e.g. from
typing or analytical errors), or the samples may have
been contaminated. Another feature of the normal Q-Q
plots was that there were multiple kinks (changes in
slope) for elements like Co, Cu, Fe, K, Ni and Zn. These
kinks are caused by a mixture of multiple populations
within the data, showing that there are several groups of
samples within the whole data set due, for example, to
the presence of groups of different rock type. If the
multiple populations are well mixed, the multiple-kink
feature may not be significant as was observed for
elements other than Co, Cu, Fe, K, Ni and Zn.

For most elements, the normal Q-Q plots for the log-
transformed data set (Fig. 5) showed that the data were
now more normally distributed than before transforma-
tion. However, non-normal behaviour was still found on
the low value and high value ends and the multiple-kink
feature was still obvious for several elements. One of the
major features observed for the log-transformed data set
for all elements (Fig. 5) was that the high value outliers
observed in Fig. 4 were pushed towards the majority of
samples while the reverse occurred with the low value
outliers from Fig. 4. The isolated, extremely low values in
Fig. 5 confirmed these samples as outliers in the data set.

3.3. Descriptive parameters and test for normality for
the whole data sets

Percentiles for the whole raw data set are listed in
Table 1. Concentration values for the elements varied over
a wide range of several magnitudes, showing the complex
nature of soil geochemical features in Northern Ireland,
e.g. the minimum and maximum values for Ca were
0.0002% and 15.21%, respectively. When we compared
the minimum values and 5th percentiles, some extremely
low values (outliers) were observed. Meanwhile, ex-
tremely high values (outliers) were also identified by
comparing the maximum values and 95th percentiles.
Median values are a robust measure of central tendency
for data sets with such extreme values. The ranges
between 25th and 75th percentiles (inter-quartile ranges)
showed that 50% of the data varied over a much narrower
range than the whole data set. For example, the inter-
quartile range for Cd was 0.20–0.50 mg/kg, compared
with a range for the whole data set of b0.08–5.49 mg/kg.
One important observation for Cd was that 18% (as
explained earlier) of the samples were below the detection
limit (0.08 mg/kg). Concentrations of the other elements
were generally well above their detection limits. The
detection limit for each element studied, together with the
CVofmeasurement of the reference soil samples analysed
as part of the QC procedures, is appended to Table 1. Of
the elements studied, only Cd had a high CV value which
reflects the fact that the internal reference soil used had a
mean Cd concentration only three times that of the
detection limit for this element.

Since outliers were clearly identified in the normal
Q-Q plots of Figs. 4 and 5 (see also Table 1), it is
necessary to remove these outliers prior to testing for
normality and subsequent analyses (except for the
calculation of median values due to their robustness
against outliers). Low value outliers were determined by
sorting the raw data and by reference to the normal Q-Q
plots for the logarithmically transformed data. The high
value outliers were identified from the definition of
“extreme” values of a Box-and-Whisker plot viz. values
higher than the third quartile plus 3 times inter-quartile
range. The specific numbers of outliers identified were
listed in Table 1. The number of high value outliers were
greater than those shown on the normal Q-Q plots of
Fig. 4, but they were still only a very small portion of the
total number of data values (less than 1%, except for Cd
(1.4%), Na (2.4%) and Pb (2.5%)). The high value
outliers can be attributed to contamination, natural min-
eralization, or both. The very high values for Ca were
likely due to the presence of limestone debris in soils that
have not been well weathered. Most of the low value
outliers identified were values below the detection limits
for the elements concerned. It should be noted that since
18% of all Cd values were below the detection limit, no
low value outlier for Cd was removed.

Non-normality and non-lognormality are widely ob-
served in geochemical databases. Table 2 shows both the
skewness and kurtosis values, and the results of theK-S test
for normality of the data set, after removal of the outliers.

All elements in the whole raw data set showed positive
skewness values with relatively high skewness values
found for Na and Pb (both 1.44). It was noted that the
skewness values were not extremely high due to the re-
moval of outliers in the data set. The results from the K-S
test (Table 2) showed that none of the 14 elements under
study passed the test for normality, even after removal of
outliers.

The log-transformed data showed, as expected, gener-
ally less deviation from normality than the raw data, with
relatively smaller skewness values. The significance value
(K-S p) for Ca even increased to 0.01. However, with the
exception of Na and Pb, most of the skewness values



Fig. 6. Comparison between histograms for Fe concentrations in all soil samples (n=6109) and samples grouped by rock type or peat (a total of 29
outliers were excluded).
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changed from being positive to being negative showing
that log-transformation had “over-transformed” most of
the data sets. Another important feature for the logarithmic
transformation was that the kurtosis values for several
elements obviously increased (e.g., Cr, Fe, Mn, P, and Zn).
Together with the negative skewness values, it was clear
that while logarithmic transformation is effective in
reducing the proportion of high values in the data set, it
also pushes lowvalues away from the centre of the data set,
causing the negatively skewed and sharp distribution of the
transformed data. For most elements, the shift towards
normality (with generally smaller absolute skewness
values) after the log-transformation was related to their
positive skewness values before transformation. While a
log-transformation is inflexible, a power transformation
(e.g. Box–Cox) will provide the flexibility to choose an
appropriate power to push the skewness towards “0”
(Zhang and Selinus, 1998).



Fig. 7. Comparison between histograms for K concentrations in all soil samples (n=6137) and samples grouped by rock type or peat (1 outlier was
excluded).
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3.4. Comparisons of data grouped by rock type

Factors such as climate, topography, soil genesis,
geology and human activities strongly influence the
chemical nature of soils. Based on the initial GIS
mapping (Fig. 3), geology (mainly rock type) plays a
dominant role in soil geochemistry in the study area. If
soil samples are classified by rock type, each group of
samples should belong to a more similar population, and
thus their probability distribution should display a better
tendency towards normality. Our hypothesis is: “IF rock
type is a main influencing factor for soil geochemistry,
THEN soil samples separated by rock type should have
a better tendency towards normality.” It should be noted
that the logic order of the hypothesis cannot be swapped
i.e. we are, specifically, not testing “IF there is a better
tendency towards normality for soils separated by rock
type, THEN rock type is a main influencing factor.”

To test our hypothesis, the raw data for 6138 samples
were classified into 8major rock types (viz. basalt, dolerite,



Table 4
Significance levels of the Kolmogorov–Smirnov test for normality (after Lilliefors correction) for raw soils data grouped by dominant rock type and
peat a

Element Basalt Dolerite Granite Limestone Mudstone Shale Sandstone Schist Peat

n b 1591 102 199 832 249 1225 855 789 296
Ca 0 0.006 0 0 0 0 0 0 0
Cd 0 0 0 0 0 0 0 0 0
Co 0 0.001 0 0 0 0 0 0 0
Cr 0 0 0 0 0 0 0 0 0
Cu 0 0 0.013 0 0 0 0 0 0
Fe 0 N0.200 0 0.034 0 0 0.062 0.004 0
K 0 N0.200 0 0 0 N0.200 0 0 0
Mg 0 0.111 0 0 0 0 0 0 0
Mn 0 0 0 0 0 0 0 0 0
Na 0 N0.200 0.003 0 0 0 0 0 0
Ni 0.002 0.003 0 0 0 0 0 0 0
P 0 0.024 0.005 0 0 0 0 0 0
Pb 0 0 0 0 0 0 0 0 0
Zn 0.002 0.011 0 0 0.005 0 0 0 0
a “0” values represent “b0.001”.
b Actual sample number varies among different rock types and elements due to different number of outliers removed.
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granite, limestone, mudstone, shale, sandstone, schist) and
peat using the simplified geology map of Northern Ireland
(Fig. 1). The peat class includes some organic mineral soils
such as humic rankers and organic mineral gleys which
raise the elemental concentrations for some samples above
that expected for “pure” peat. The median values,
calculated with all the raw data including the previously
identified outliers, by rock type are listed in Table 3.

The differences between rock types are clearly illus-
trated in Table 3. Soils in basalt areas have significantly
higher median concentrations for most elements under
study (Ca, Co, Cr, Cu, Fe, Mg, Mn, Na, Ni, P, and Zn),
while the highest values for Cd and Pb occurred in the
shale areas. Soils in mudstone/shale areas generally
displayed the second or third highest median concentra-
tions for these elements among the 8 rock types and peat.

The high concentrations of most of the elements in
soils are inherited from the parent rock through
weathering. Basalt rock is very fine grained and con-
tains almost no quartz. Dolerite and granite contain
large amounts of quartz and feldspar, but generally
contain low concentrations of trace elements. Soils in
areas of sedimentary rock generally contain intermedi-
ate concentrations of most elements but mudstone and
shale contain higher concentrations of many elements
due to their relatively fine grain sizes. Trace elements in
sandstones are diluted by quartz. Limestone contains
very low concentrations of most elements except Ca
(and Sr which is not included in this study). However,
limestone is easily weathered and soils developed on
limestones can become enriched with trace elements. In
this study, Cd had the highest median values in the
limestone and shale areas (0.41 mg/kg). Schist contains
intermediate amounts of most elements, similar to the
average level for the whole data set. Peat generally
contains very low concentrations of most elements under
study (except for Pb which may be due to historical
atmospheric deposition) as it is comprised almost entirely
from organic matter but, as our sample also includes
organic mineral soils under this heading, the elemental
concentrations are higher than for pure peats. Based on
these results, geology is the overriding influence on soil
geochemistry in the study area.

3.5. Probability features of data grouped by rock type

To further investigate the effects of rock type on soil
geochemistry, histograms were produced for Fe (Fig. 6)
and K (Fig. 7) in soils grouped by rock type and peat
(after removal of outliers).

When the soil samples were grouped by rock type
and peat, the histograms showed significant improve-
ment towards normality compared with those for all
samples. The histogram for Fe in all samples showed a
clear multi-modal and positive skewness feature, with
the high values mainly contributed by soils from the
basalt areas. It was clear that the histograms for Fe in
granite, limestone, sandstone and schist areas were quite
symmetric. The histogram for K in all samples was also
clearly positively skewed and became more symmetric
when the samples were grouped by rock type.

Meanwhile, deviations from normality can still be
observed for most of the histograms. Fe in basalt was
positively skewed, with a few very low values. These



Fig. 8. Spatial distribution of gley and pasture and locations of soil samples extracted from both areas: a) Gley and pasture, b) soil samples.
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low values in the basalt area may be due to the presence
of peaty soils. On the other hand, there were some high
values of Fe in almost all the other rock type areas, which
can be related to the spatial heterogeneity of different
rocks (e.g. with different degrees of mineralization or
metamorphic processes). Since many of the high value
outliers were already excluded from these histograms,
the impact of other factors must be taken into account. In
particular, the effect of the glacial movement which
caused the significant mixing of soil parent materials
needs to be considered. Thus, some soils have developed
from tills that contain materials transported from other
places. This, together with the fact that simplified rock
type classes based on the dominant rock type present was
used to stratify the original data set, explains why
outliers were observed in almost every rock type area.
For example, quartzite and limestone were both found in
the schist area.

Histograms for both Fe and K in peat appeared much
more skewed than in the rock type areas, with obviously
high value outliers. The outliers observed in the “peat”
data set were expected due to the inclusion of other



Table 5
Significance levels of the Kolmogorov–Smirnov test for normality (after Lilliefors correction) for raw data from both gley and pasture areas grouped
by dominant rock type a

Basalt Dolerite Granite Limestone Mudstone Shale Sandstone Schist

n b 835 43 25 552 121 466 495 345
Ca 0 N0.200 N0.200 0 0 0 0 0
Cd 0 0 N0.200 0 0.002 0 0 0
Co 0.046 0.076 0.098 0 0 0.105 0 0
Cr 0 0.004 N0.200 0 0 0 0 0
Cu 0 0.002 0.030 0 0.052 0 0 0
Fe 0 N0.200 N0.200 0.006 0 0.145 N0.200 N0.200
K 0 N0.200 0.018 0 0 0.150 0 0.002
Mg 0 0.180 0.114 0 0 0.001 0 0
Mn 0.001 0.005 N0.200 0 0.004 0 0 0
Na 0 0.025 N0.200 0 0 0 0 0
Ni 0 0.028 N0.200 0 0 0.001 0 0
P 0 0.198 N0.200 0 0.001 0 0 0.017
Pb 0 0.013 0.006 0 0 0 0 0
Zn 0.063 0.012 0.048 0 0.193 0 0.006 0
a “0” values represent “b0.001”.
b Actual sample number varies among different rock types and elements due to different number of outliers removed.
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organic soils such as humic rankers and organic mineral
gleys in this data set.

The normality of the data sets by rock type and peat
was tested using the K-S test after Lilliefors correction
(Table 4).

The elements Fe, K, Mg, and Na in dolerite, K in
shale and Fe in sandstone areas passed the K-S test at a
significance level of 0.05. Most elements in most rock
type groups had a very low significance level pb0.001.
This showed that even though the soil samples were
separated by rock type, it was still difficult for most
elements to pass a test for normality. Elements in the
dolerite area had the best chance of passing a test for
normality as shown in Table 4.

One of the reasons more elements in dolerite areas
passed the test for normality was that dolerite is not very
much mixed with other rock types. However, this is also
the case for basalt and granite, but very few elements in
these two areas passed the test. This may be explained by
sample size. Zhang et al. (2005) suggested that when the
sample size is large, hypothesis tests gain power,
resulting in rejection of the null hypothesis for most
real data sets. Zhang et al. (2005) also suggested a sample
number of 1000 as indicative of a large sample size. In
this study, the sample size for soils in the basalt area was
1591 andwas one of themain reasonswhy it was hard for
elements in soils of this rock type to pass the test for
normality. On the other hand, there were only 102
samples in the dolerite area, and such a relatively small
sample size would favour normality. An exception was
the raw data for K in shale, which passed the K-S test
with a sample size of 1225. This element may have been
quite homogenous in the shale area with little mineral-
ization. It is expected that, if the sample size became
smaller, more elements would pass the tests for normality
(Zhang et al., 2005). This is demonstrated by the his-
tograms in Figs. 6 and 7 where a greater tendency towards
normality was achieved by classifying samples by rock
type and peat. Meanwhile, the statistical constraints of
sample size, together with the non-normality or non-
lognormality for most elements, imply that factors other
than rock type play an important role at small spatial
scales within the hierarchy of geochemical landscapes
with spatial variations at different scales.

3.6. Probability features of data from both gley and
pasture areas grouped by rock type

To further investigate the probability features of soil
geochemistry, factors of soil type and land cover were
considered. InNorthern Ireland, gley is themain soil type
(56%), and pasture is themain land cover (90% including
rough grazing). Using the overlay function of the GIS,
areas with both gley and pasture were combined and used
to extract a total of 2882 soil samples from a total of 6138
(Fig. 8).

In the 2882 samples selected, the effects of soil type
and land cover can be treated as being relatively con-
strained. These soil samples were classified by rock
type and the probability distributions for the raw data
tested using the K-S test after Lilliefors correction
(Table 5).

If we compare the results in Tables 4 and 5, we can see
that more opportunities of passing the test for normality



Fig. 9. Comparison between skewness values for pseudo-total element concentrations by rock type from all soils and from soils in gley and pasture
areas only.
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were obtained for the raw (untransformed) data when the
effects of soil type and land cover were constrained. Using
a p value of 0.05 as the threshold, 24 tests passed the K-S
test (Table 5) as compared to a total of 6 tests (Table 4)
when soil type and land cover were not considered.
Samples in the dolerite and granite areas showed the
greatest tendency to pass the tests for normality, which can
be partly attributed to their relatively small sample size of
43 and 25, respectively.

Since sample size has been shown to play a role in the
K-S test for normality when soil type and land use were
constrained, skewness values were calculated for the
elements by rock type from all soils and from soils in
gley and pasture areas only (Fig. 9). The results appeared
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fairly mixed for dolerite, limestone, shale and schist areas
with both increased and decreased skewness values when
the soil type and land use were constrained. This
demonstrated the complexity of soil geochemical proba-
bility features. However, soils from granite (except for Cu
and Pb), mudstone (except for K, P and Zn), and sandstone
(except for Ca, Cr and Pb) showed obviously decreased
skewness values, which was in line with the results of the
K-S test. An exception is soils from basalt areas which
displayed increased skewness values for most elements.
Taking results from both the K-S test and skewness values
into consideration, improvement towards normality was
evident when the sample was constrained by soil type and
land use, even though such improvement was not as
significant as when the samples were classified by rock
type.

In this study, the effects of rock type, as well as soil type,
land cover and sample size on probability features of soil
geochemistry were investigated. It is expected that other
factors may also have influenced soil geochemistry, such as
different degrees of mineralization and metamorphic
processes of bedrocks, non-independence of sampling
and the non-zero feature of geochemical concentrations.
Meanwhile, it should be mentioned that the GIS overlay
operations were made based on generalized maps, which
may have also omitted the variations of soil geochemistry at
small scales. Attemptsmade in this study show that it is still
a challenging task in environmental geochemistry to
separate all the factors controlling soil geochemistry and
to investigate their influences at the regional scale.

4. Conclusions

Outliers in soil geochemistry were observed using
normal Q-Q plots. High value outliers were identified using
the normal Q-Q plots for raw data while low value outliers
were better detected using the normal Q-Q plots for the log-
transformed data. These outliers were probably associated
with rare processes such as mineralization and human
pollution.

None of the whole raw data sets for the total con-
centrations of 14 elements followed either normal or
lognormal distributions and all displayed positive skewness
values. Logarithmic transformation “over-transformed”
most of the raw data sets changing their skewness from
positive to negative values.

A GIS overlay function was useful to classify soil
samples by rock type which enabled further statistical
analyses to be made. Obvious differences in chemical
concentrations between rock types were observed: soils
in basalt area had the highest levels of most metals in the
study (Ca, Co, Cr, Cu, Fe, Mg,Mn, Na, Ni, P and Zn) but
the lowest levels of K, while the highest levels for Cd and
Pb occurred in the shale areas. After classification by
rock type and peat, soil geochemistry values showed
better tendencies towards normality. Such a trend was
strengthened when the influences of soil type and land
cover were restrained. However, the data sets still had
difficulty satisfying a test for normality unless the sample
size was small.

The factors of rock type, soil type, land cover and
sample size were found to influence the probability
features of soil geochemistry and the results of the sta-
tistical tests. However, the influences of other factors
cannot be omitted and it remains a challenge to properly
quantify these influences.
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