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Stream sediment geochemical data represent compositional materials derived from various sources, including
single ormultiple lithologic units, soil types, rocks types, etc. In order to delineate geochemical anomalies, stream
sediment geochemical data are usually subjected to suitable multivariate analysis, and not simply using univar-
iate threshold values because these are not reliable for delineation of geochemical anomalies in areas with com-
plex geological units. Relationships among multiple major/trace elements and rock types are more important
than singlemajor/trace elements for delineation of geochemical anomalies. In this studywe present an approach
based on robust stepwise multiple regression using values major oxides (SiO2, Al2O3, Fe2O3, MnO, and MgO) in
stream sediments to predict elemental content related to rock types and to recognize geochemical anomalies.
The major/trace element data were subjected to isometric logratio transformation to address the compositional
data closure problem. For further examination of the stepwise regressionmethod, its performancewas compared
to robust principal components analysis (RPCA),median+2MAD and concentration-area (C-A) fractalmethods.
The results show that multi-element anomalies obtained by the stepwise regression method, compared to those
obtained by the othermethods, have stronger spatial associationwith the knowndeposits, such as Chichaklo and
Ay-Ghale-Si in the Takab 1:25,000 scale geological map (NW) Iran, and the anomalies have stronger spatial cor-
relation with structural features and prospects, and thus can be used as guides to new exploration targets.

© 2016 Elsevier B.V. All rights reserved.
Keywords:
Stepwise regression
Geochemical exploration
Geochemical anomaly
Logratio transformation
Takab
1. Introduction

Recognition of anomalous and background values in a stream sedi-
ment geochemical dataset is one of the basic tasks in mineral explora-
tion. An anomaly can be defined as a concentration of element or
metal that is greater than a threshold concentration value (i.e., upper
limit of background population). Stream sediments are composite ma-
terials derived from the weathering and erosion of one or more sources
upstream of a sample site. Therefore, uni-element contents of stream
sediments are derived from multiple (usually background and rarely
anomalous) sources. In most cases, a major proportion of variation in
uni-element contents in stream sediment is due to lithological units un-
derlying the areas upstream of stream sediment sample sites (Carranza,
2010b). Recognition of anomalies from background in a regional-scale
stream sediment geochemical dataset is an important stage of mineral
exploration to delineate potential areas for detailed investigation at
finer scales (Deng et al., 2010; Nazarpour et al., 2015c; Pazand et al.,
rpour@ahvaziau.ac.ir
2011; Rantitsch, 2000; Shamseddin Meigoony et al., 2014; Rezaei et
al., 2015).

Various statistical methods have been used to process geochemical
data in order to determine threshold values. Statistical quantities, such
as the mean, standard deviation (sdev) and percentiles, have been
used to define threshold for separating anomalies form background.
For example, geochemical anomalies have been defined as values great-
er than a threshold defined as the 75th or 85th percentile, and
mean + 1sdev or mean + 2sdev. Based on such statistical quantities,
there are two main groups of methods for determining threshold
values: the first group includes frequency-based univariate methods
such as mean ± 2sdev (Hawkes and Webb, 1962), probability graphs,
box-plot and Q-Q plot (Govett et al., 1975; Miesch, 1981; Sinclair,
1976; Stanley and Sinclair, 1989) and second group includes variance-
basedmultivariatemethods to define anomalous multi-element associ-
ations (e.g., Aitchison, 1986; Nazarpour et al., 2015a and b).

The application of a single uni-element threshold value, defined by
frequency-based methods, to delineate anomalies often results in
false-negative anomalies in areas with low background values or false-
positive anomalies in areas with high background values, thereby
undermining the utility of geochemical exploration to define new tar-
gets. A reasonable way to solve this problem is to determine the
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underlying relationships among geochemical anomalies and plausible
causative geological processes. Using rock types to represent geological
processes is a common logical solution tool to recognize geochemical
anomalies in complex geological settings or in overburden-covered
areas (Hao et al., 2014), because there is often a clear relationship be-
tween rock types and major oxide content of rocks (Cohen et al.,
2012; Reimann and Garrett, 2005). For elimination of lithological effects
on uni-element data, one can use a multiple regression model to esti-
mate element values and then subtract these values from measured el-
ement values to yield geochemical residuals that may or may not be
related to anomalous sources (Bonham-Carter and Goodfellow, 1986;
Hao et al., 2014).

Another main limitation of the above-mentioned methods is that
they do not take into account the variability of spatial-statistical distri-
bution of geochemical data. However, different areas can differ in rock
compositions or have experienced different geological processes,
which result in different geochemical thresholds. Therefore, the
above-mentioned methods are of limited use in situations where
there are extensive overlaps between background and anomalous
values, or where weak anomalous values are hidden within the strong
variance of background (Cheng, 2007).

The spatial-statistical distribution of geochemical data can be char-
acterized using fractal geometry (Mandelbrot, 1983), which is a branch
of non-linear mathematics that has been widely applied in the
geosciences (e.g., Afzal et al., 2010; Agterberg et al., 1993; Ali et al.,
2007; Carranza, 2008; Cheng et al., 1994; Deng et al., 2010; Sim et al.,
1999; Turcotte, 1986; Wei and Yang, 2010). Several fractal and
multifractal models, including concentration-area (C-A) (Cheng et al.,
1994, Nazarpour et al., 2015a), spectrum-area (S-A) (Cheng, 2004;
Cheng et al., 2000; Xu and Cheng, 2001), concentration-distance (C-D)
(Li et al., 2003), concentration-volume (C-V) (Afzal et al., 2011) and
number-size (N-S) (Agterberg, 1995; Deng et al., 2010; Mandelbrot,
1983; Turcotte, 2002; Wang et al., 2010), have been developed for var-
ious applications in the geosciences including analysis of geochemical
data.

In addition to the above-mentioned main limitations of frequency-
and variance-based methods for anomaly recognition, geochemical
data are compositional (i.e., contribution of parts to some whole),
which carry exclusively relative information (Aitchison, 1986). For ex-
ample, if the SiO2 content of an igneous rock is 68% of thewhole weight,
then the value of MgO will only be equal to or b32%. This means that
geochemical data are not absolute values, but only provide relative in-
formation of certain element in a whole sample (Aitchison, 1986).
Therefore, compositional data represent a closed number system and
should be opened prior to understanding of realistic relationships
among compositions (Filzmoser et al., 2009; Carranza, 2011;
Nazarpour et al., 2015b). Therefore, it is crucial to apply an appropriate
transformation to geochemical data prior to using anymethod ofmulti-
variate analysis. The log-ratio (logarithm of a ratio) transformation
methodology proposed by Aitchison (1986) represents a powerful set
of techniques to open compositional data. Three log-ratio transforma-
tions have been proposed for opening of compositional data: (1) addi-
tive log-ratio (alr) transformation (Aitchison, 1986); (2) centered log-
ratio (clr) transformation (Aitchison, 1986) and (3) isometric log-ratio
(ilr) transformation (Egozcue et al., 2003). These transformations
allow for the application of standard statistical methods to transformed
data, although with some limitations or modifications. In this study, the
stream sediment geochemical data were ilr-transformed prior to statis-
tical analysis.

Finally, exploration geochemical data typically comprise a large set
of geochemical variables (e.g., major oxides, trace elements/metals)
and the choice of which of these variables can be used as predictor (or
independent) and response (or target) variables is a common problem
in attempting to describe relationships among such variables through
regression analysis. However, considering that lithology is a major
source of variation of trace elements/metals and that lithological units
are composed of various major oxides (e.g., SiO2, Al2O3, Fe2O3, MnO,
and MgO), major oxides are typically used as predictor variables in
lieu of lithological units. Determining themost significant predictor var-
iables, and therefore reliable estimates of element values, can be
achieved through stepwise multiple regression.

This paper focuses on the identification of geochemical anomalies
in the Takab 1:25,000 scale geological map sheet by using stream
sediment geochemical data to derive geochemical residuals of trace
elements, which would indicate areas of enrichment (e.g., due to
mineralization) or depletion. Previous researches have derived geo-
chemical residuals by applying stepwise multiple regression using
trace elements as dependent variables (or targets for exploration)
and areal proportions of lithologic units as independent variables
(predictors) or as proxies of the influence of lithology on trace
element background concentration (Bonham-Carter and
Goodfellow, 1984, 1986; Carranza and Hale, 1997; Moon, 1999;
Carranza, 2010a,b). However, we argue that using areal proportion
of lithologic units as predictors would depend on the availability of
a geological map and the results would vary depending on the
scale of the lithologic map used. In this paper, we used major ele-
ments as independent variables (predictors) or as proxies of the in-
fluence of lithology on trace element background concentration.
Results from this proposed methodology are validated using
lithogeochemical data and by comparing with results from using
the median + 2MAD for exploratory data analysis (EDA), concentra-
tion- area (C-A) fractal model and robust principal component anal-
ysis (RPCA) as two effective approaches to separate geochemical
anomalies from background in stream sediment geochemical com-
positional data.

2. Methods

2.1. Exploratory data analysis (EDA)

In EDA of geochemical exploration data, the median + 2MAD value
was originally used to identify extreme values and act as threshold for
further inspection of large data sets (Hawkes and Webb, 1962; Zheng
et al., 2014). The EDA was first established by Tukey (1977), was devel-
oped further by Kürzl (1988), and then was used by many researchers
in modeling of geochemical anomalies (e.g., Ali et al., 2007; Carranza,
2008, 2010a,b; Nazarpour et al., 2014). TheMAD is the median of abso-
lute deviations of individual dataset values (Xi) from the median of all
dataset values (Tukey, 1976):

MAD ¼ median Xi−median Xið Þj j: ð1Þ

2.2. Concentration-area (C-A) fractal model

The C-A fractal model was first introduced by Cheng et al. (1994) for
recognition of geochemical anomalies from background. It has the fol-
lowing general forms (Cheng et al., 1994):

A ρ≤υð Þ∝ρ−a1 ;A ρNυð Þ∝ρ−a2 ð2Þ

where A(ρ) denotes area with background concentrations (ρ) less
than or equal to a threshold concentration (υ) or area with anoma-
lous concentrations (ρ) greater than the threshold concentration
(υ), a1 and a2 are slopes of straight lines fitted to log-log plots of ρ
versus A(ρ).

Cheng et al. (1994) proposed two approaches to calculate A(ρ): (1)
the A(ρ) is area enclosed by a contour of concentration value (ρ) on a
geochemical map derived by interpolation of the original concentration
values using a weighted moving average method; and (2) A(ρ) is ob-
tained by application of the box-counting method to the original con-
centration values. Distinct patterns, each corresponding to a set of
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similarly-shaped contours, can be separated by different straight seg-
ments fitted to the values of the contours and enclosed areas on log-
log plot of A(ρ) versus ρ. The slopes of individual fitted straight lines
can be estimated by the exponents of the power-law relations in Eq.
(2). The optimum threshold for separating anomalies from background
is the concentration value common to two fitted straight lines on the
log-log plot.

2.3. Robust principal components analysis (RPCA)

Geochemical data are multivariate in nature, meaning that back-
ground and/or anomalous populations depict associations of at least
two elements/metals. Certain techniques can be used to reveal inter-el-
ement associations in a multivariate dataset. Classical factor analysis
(PCA) is one of the most popular methods of multivariate data analysis
(Jolliffe, 2002; Reimann et al., 2002; Wang and Zuo, 2015). In many
practical applications, log-transformation is applied in order to reduce
data skewness so that the variables approximately follow a normal dis-
tribution. However, log-transformation does not accommodate the
compositional nature of the data. In addition, geochemical data usually
contain outliers (i.e., values that do not follow the main data structure)
and are heterogeneous, and these severely affect classical estimators
(e.g., arithmetic mean, sample covariance matrix) and can render re-
sults of classical PCA meaningless (Filzmoser et al., 2010; Locantore et
al., 1999; Wang and Zuo, 2015). The compositional nature of geochem-
ical data and the presence of outliers could severe influence the results
of standard statisticalmethods such as PCA. Themain reason is that both
the arithmetic mean and simple covariance matrix, which are used in
mostmultivariate statistical procedures, are very sensitive to deviations
from themain data structures. In order to reduce the effect of the above-
mentioned features, especially of outliers, robustness in PCA can be
achieved by replacing the arithmetic mean and the simple covariance
matrix by their robust counterparts. A frequently used robust estimator
of location and covariance is the minimum covariance determinant
(MCD) estimator, and so the robust PCA (RPCA) based onminimum co-
variance determinant (MCD) estimator can overcome the shortcomings
of classical PCA.

Because geochemical data are compositional in nature, they repre-
sent a closed number system. Therefore, a data transformation is re-
quired to properly reveal inter-element relationships prior to analysis
(Asadi et al., 2014; Carranza, 2011; Nazarpour et al., 2015b; Wang and
Zuo, 2015; Zuo et al., 2013b). The following log-ratio transformation
methods, namely alr (Eq. (3)), clr (Eq. (4)), and ilr (Eq. (5)) have been
suggested to ‘open’ compositional data (Egozcue et al., 2003;
Filzmoser et al., 2009):

yi ¼ log
xi
xD

i ¼ 1;2;…;D−1ð Þ ð3Þ

yi ¼ log
xiffiffiffiffiffiffiffiffiffiffi
∏D

i¼1
D
q

xi
i ¼ 1;2;…;Dð Þ ð4Þ

yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D−i

D−iþ 1

r
log

xiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∏D

j¼iþ1
D−1
q

xj

i ¼ 1;2;…;D−1ð Þ ð5Þ

For alr-transformation, one compositional part is selected to divide
the remaining parts, and then the ratios are log-transformed
(Aitchison, 1986). For clr-transformation, every value is divided by the
geometric mean of all values and the ratios are log-transformed. How-
ever, clr-transformation results are collinear because the sum of values
of every clr-transformed variable is zero. The ilr-transformation can
overcome this shortcoming and give correct representation of composi-
tional data in (D-1)-dimensional Euclidean real space.

In this study, the stream sediment geochemical data were ilr-trans-
formed prior to RPCA (Filzmoser et al., 2009). However, because ilr-
transformed variables do not represent a one-to-one transformation
from the simplex to the standard Euclidean space, the results of RPCA
to extract geochemical anomalies can be back-transformed to clr
space for better interpretation. The analysis was completed using the
“robCompositions” and “spatial” which are free R packages (see http://
cran.r-project.org/). In RPCA, we applied the Kaiser (1960) criterion
(i.e., eigenvalue N 1) to retain only the statistically meaningful PCs that
can be extracted from the data.

2.4. Stepwise regression model to selection of estimator variables

In regression analysis, the relationship, called the regression func-
tion, between a dependent variable (Y) and several one or more inde-
pendent or predictor variables (Xi) can be defined. A regression model
with at least one predictor variable is a multiple regression model. A
multiple linear regression model, using trace elements are dependent
variables andmajor oxides as predictor variables, can take the following
general form:

Ci ¼ α þ βi � CSiO2
þ β2 � CFe2O3 þ…þ βk � Ck þ ε for i

¼ 1;…;n samples ð6Þ

Ci ¼ α þ∑k
j¼1β jC j þ ε ð7Þ

where Ci is measured value of dependent trace element in sample i, Cj is
measured value of predictormajor oxide j in sample i, α andβ are unde-
termined coefficients, and ε refers to summation of the influence of all
associated random factors (sometimes referred to as random errors).
Random error terms are assumed to be independent, and follow the
normal distribution with mean 0 and covariance δ2. Predicted values
of Ci, denoted as Ci, can be derived by determining coefficients α and β
through a least square method, thus:

Ci ¼ α þ β1 � CSiO2
þ β2 � CFe2O3 þ…þ βk � Ck ð8Þ

and geochemical residuals (ei), which may be positive or negative, for
sample i, can be derived as:

ei ¼ Ci−Ci ð9Þ

To determine the relative contribution of each predictor variable
in their ability to account for total variation of the dependent vari-
able, one can perform a forward, stepwise solution, but force every
predictor variable into the solution either simultaneously or sequen-
tially. In this way, one can systematically evaluate the effect of each
predictor variable. At the end of each step in a sequential or stepwise
linear regression, the predictor variables that significantly contribute
to the prediction of Ci can be identified and this procedure continues
until non-significant predictor variables are eliminated for each of
the favorable elements. Statistical criteria inclusion or exclusion of
predictor variables in a final linear regression model are discussed
in detail in, for example, Shacham (1999) and Shacham and
Brauner (2003).

Stepwise multiple regression has been used to model the relation-
ship between trace element concentrations in stream sediments and
rock types in areas where geological maps are available (e.g.,
Bonham-Carter and Goodfellow, 1984, 1986; Bonham-Carter et al.,
1987; Carranza and Hale, 1997; Moon, 1999; Carranza, 2010a,b). How-
ever, variations in major element concentrations in stream sediments
are invariably due to lithology (De Vivo et al., 1998; Ohta et al., 2005).
Therefore, in this study, instead of using areal proportions of lithologic
units as proxies of lithologic influence (e.g., Bonham-Carter and
Goodfellow, 1984, 1986; Bonham-Carter et al., 1987; Carranza and
Hale, 1997; Moon, 1999; Carranza, 2010a,b), we used concentrations
of major oxides (SiO2, Al2O3, MnO, Fe2O3) as predictor variables of
trace metal concentrations using stepwise regression. Finally, derived
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geochemical residuals (ei) (Eq. (9)) are subjected to PCA and then C-A
fractal analysis for separation of multi-element geochemical anomalies.

3. Geological setting and mineralization of the study area

The Takab 1:25,000 scale geological map sheet is located in the east-
ern part of the Takab 1:100,000 scale geological map sheet, which is in
the NW part of Iran (Nabavi, 1976). The volcanic arc and the Sanan-
daj-Sirjan metamorphic zone in NW Iran (Fig. 1) were formed due to
the continental collision between the Iranian micro-continent and the
Afro-Arabian continent during closure of the Tethys ocean in the Late
Cretaceous (Ghasemi and Talbot, 2006; Karimzadeh Somarin, 2005;
Mohajjel and Fergusson, 2000). More specifically, these belts were
formed as a result of subduction of the Arabian plate beneath central
Iran during the Alpine orogeny (Agard et al., 2005). In two separate
time intervals, one during Late Precambrian–Early Cambrian and the
other during Tertiary (Neogene), the prevailing geological (namely, tec-
tonic, magmatic, metamorphic, stratigraphic, and mineralogic) condi-
tions have made the Takab quadrangle one of the most important
metallogenic provinces of Iran, wherein the following mineral de-
posits/occurrences exist (Ghorbani, 2002):

• Lead–zinc deposits/occurrences, such as Angouran (the largest Zn–Pb
mine in the Middle East), Alam Kandi, Poshtkuh, Molla, and Ayghal'e-
si, with an aggregate of N30 million tons of lead–zinc ores.

• Iron deposits/occurrences, such as Shahrak, Mirjan, Ghaliche Bolagh,
Chehar Tagh, Kuhbaba, and Zafarabad, with an estimated aggregate
reserve of N50 million tons of iron ores.

• Manganese deposits/occurrences, such as Dabaklou and Amirabad.
• Gold deposits/occurrences, such as Zarshouran, Agh Dare, Zarinabad,
and Ghoozlou, and the Arabshah gold indication. Previous investiga-
tions show that a minimum of 100 tons of gold occur at Zarshouran
and Agh Dare.

• Antimony, arsenic, and mercury deposits/occurrences, such as
Moghanlou, Agh Dare, and Ghizghapan antimony deposits,
Zarshouran arsenic deposit, Arabshah arsenic indication, Shakh–
Shakh mercury indication, and Qare Dash mercury deposit.

• Copper deposits/occurrences, such as Baiche Bagh polymetallic
Fig. 1. Simplified geological map of
deposit with copper, lead–zinc, cobalt, nickel, and bismuth, and
Tataqeshlaqi and Tazekand indicationswith an estimated ore reserves
of 100,000 tons.

4. Geochemical data

A total of 611 stream sediment samples have been collected from
within the 1:25,000 scale Takab geological map sheet by the Geological
Survey of Iran (GSI) in 2009. In addition, for validation of the reliability
of the results ofmapping stream sediments geochemical anomalies and,
thus, the effectiveness of the geochemical anomaly separation, 40
lithogeochemical samples for chemical analysiswere collected from tar-
get areas defined in this study (Fig. 2). To evaluate the efficacy of the
methods applied, the derived stream sediment geochemical anomalies
were compared with the lithogeochemical data for As, Pb, Zn, Cu, Sn,
Mo, W, Ni and Sb obtained by XRF (X-ray fluorescence) and Au, Ag,
and Hg were analyzed by AAS (flame atomic absorption spectropho-
tometry). The accuracy of the geochemical data, compared to the Mon-
tana soil as standard reference material (SRM) 2710, is 5–10%; whereas
the precision, measured by calculating the average difference between
duplicate samples (5% of the analyzed samples), is b10%. Analyses
were carried out by Geological Survey of Iran (GSI) Laboratories (GSI,
2009). The statistical properties of the element concentrations in the
stream sediment samples are given in Table 1, and the skewness coeffi-
cients indicate that the raw data are strongly variable probably due to
the diversity of lithology and features such as thrusts, faults andmineral
occurrences.

5. Results

5.1. Mapping of uni-element anomalies by median + 2MAD method

Concentration values of Au, Pb, Zn and Cu in the 611 stream sedi-
ment samples, as favorablemetal elements based on the knownmineral
deposits/occurrences in the Takab area, were used for separating and
mapping uni-element geochemical anomalies. The uni-element
study area – the Takab district.



Fig. 2. Locations of stream sediment geochemical samples and lithogeochemical samples.
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threshold values obtained usingmedian+ 2MADwere used tomap the
spatial distribution of element concentrations (Fig. 3). These interpolat-
ed maps were produced by means of inverse distance weighted (IDW)
method.

5.2. Mapping of uni-element anomalies by C-A fractal model

For separation of uni-element geochemical anomalies, the C-A frac-
tal model was applied to stream sediment Au, Pb, Zn and Cu concentra-
tion data. Breaks in the straight line segments fitted to the C-A plots of
the stream sediment geochemical data (Fig. 4) indicate the presence
of two populations in the Au data and three populations in the Pb, Zn,
and Cu data. The break point in the C-A plots for the stream sediment
Au data define a threshold value, such that the left-hand line segment
represents background population (≤11.3 ppb) and the right-hand
line segment represents anomalous population of N11.4 ppb (Table 2).
Each of the C-A plots for the stream sediment Pb, Zn and Cu data can
bemodeled with two breaks, such that the left-hand line segments rep-
resent background (≤19.95 ppm Pb, ≤95.4 ppm Zn, and ≤35.48 ppm
Cu), the middle segments represent moderate anomalies (19.96–
Table 1
Analytical method, detection limit and statistical parameters of favorable elements/metals in t

Number of samples Detection limit

Au (ppb) 611 0.2
Cu (ppm) 611 2.5
Pb (ppm) 611 5
Zn (ppm) 611 7
Ag (ppm) 611 0.08
Sn (ppm) 611 1
Mo (ppm) 611 0.5
W (ppm) 611 0.5
Ni (ppm) 611 3
Hg (ppm) 611 0.005
As (ppm) 611 2
Sb (ppm) 611 0.4
1122 ppm Pb, 95.5–416.8 ppm Zn, and 37.15–62.1 Cu), and the right-
hand segments represent high anomalies (N1122.1 ppm Pb,
N416.9 ppm Zn, and N62.1 ppm Cu) (Table 2). The defined threshold
values are then used to reclassify the IDW-interpolated raster maps of
the uni-element data (Fig. 5). The multiple thresholds derived by the
C-Amodel represent different geological factors, such as lithological dif-
ferences, geochemical processes, mineralizations, surficial weathering,
which are considered important controls of stream sediment element
concentrations (Cheng et al., 1994). Considering the geology of the
study area, values of N11.3 ppb Au are correlated with the alteration
zone associated with the Chichaklo deposit and the contact zone be-
tween silicified marble and gray schist. The Au anomalies also exhibit
spatial correlation with faults. The background population of Au
(≤11.3 ppb) covers a large portion of the study area underlain by
greenschist and diorite (Fig. 5).

The populations of high Pb and Zn anomalies exhibit similar spatial
distributions and coincide with the diorite, gray phyllite and partly
with graymarble. The populations ofmoderate Pb and Zn anomalies co-
incide mainly with greenschist andmarbles, and cover large portions of
the study area and cannot distinct main anomalies for further
he stream sediment geochemical data of the Takab area.

Minimum Maximum Median MAD

1 94 3.23 1.9
8 455 26.6 9.2
6 7544 44.81 17.6

26 6850 105.6 42.5
0.05 12.2 0.19 0.08
1 340 2.5 0.08
0.5 20.1 0.98 0.41
0.5 10.5 1.07 0.47
7.5 1150.5 46 15.6
0.01 61 0.06 0.06
0.6 2155 32 21
0.14 210 2.65 1.61



Fig. 3. Uni-element anomaly maps obtained using the median + 2MAD method: (A) Au, (B) Pb, (C) Zn, (D) Cu.
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exploration targets. Moreover the spatial distributions of populations of
strong anomalies with values ≥1122.1 ppm for Pb and ≥416.9 ppm for
Zn indicate that themainmineralization is located near pre-mineraliza-
tion areas such as Chichaklo and Ayghalesi deposits as well as silicified
marbles and volcano-sedimentary rocks. The areas with strong Pb and
Zn anomalies are greater than those with Au anomalies, indicating the
Pb and Zn are more mobile than the Au in the surface environment of
the study area.

The spatial distribution of Cu anomalies based on the thresholds ob-
tained from C-A log-log plots indicate negative correlation with Au, Pb
and Zn anomalies but coincides with background for Au, Pb and Zn
over limestone and marble rock units. Moderate and strong anomalies
of Cu have strong correlation with greenschist and diorite.

Comparison of the spatial distributions of stream sediment anoma-
lous areas for Au, Pb and Zn with those of the lithogeochemical samples
indicates that 23% of lithogeochemical samples with lower values of Au
defined byC-Amethod are located in areas of strong anomaly. However,
31% of the lithogeochemical samples with high values of Au are located
in background areas. Moderate and strong anomalies are targets for
more explorationwork. Strong anomalies aremostly associatedwith si-
licified marbles and volcano-sedimentary rocks.

Comparison of the spatial distributions of stream sediment Pb
anomalies with those of the lithogeochemical samples indicates that
68% of the lithogeochemical samples have Pb values lower than the Pb
threshold defined from C-A analysis, and these lithogeochemical sam-
ples are located in areas with background and moderate anomalies for
Pb in stream sediments. In contrast, 32% of the lithogeochemical
samples with Pb values greater than the Pb threshold defined from C-
A analysis, and these lithogeochemical samples are located in areas
with moderate stream sediment Pb anomalies and just one
lithogeochemical sample with high Pb value falling in strong stream
sediment Pb anomalies.

Comparison of the spatial distributions of stream sediment Zn
anomalies with those of the lithogeochemical samples indicates that
90% of the lithogeochemical samples have Zn values lower than the Zn
threshold defined from C-A analysis, and the remaining 10% of
lithogeochemical samples with high Zn values coincide with moderate
stream sediment Zn anomalies. Comparison of the spatial distributions
of stream sediment Au anomalies with those of the lithogeochemical
samples indicates that N98% of the lithogeochemical samples have Au
values greater than the Au threshold defined from C-A analysis, and
these lithogeochemical samples fall in areas with strong stream sedi-
ment Au anomalies.

5.3. Mapping of multi-element anomalies by robust PCA and C-A methods

For further evaluation of multi-element geochemical anomalies, by
considering the major rock types in the Takab area, data for Cu, Pb, Zn,
Au, Ag, Sn, Mo, W, Ni, Mn, Hg, As and Sb were subjected to RPCA. The
PC1 and PC2 obtained from RPCA of the ilr-transformed stream sedi-
ment geochemical data account for 22% and 16% of total variation, re-
spectively (Table 3; Fig. 4A). The PC1 showed positive loadings for Au,
Ag, Pb, Zn, Mn and As (Fig. 6A). PC1 scores were then subjected to C-A
fractal modeling and the obtained thresholds were used for



Fig. 4. C-A log-log plots for Au, Pb, Zn and Cu. The vertical axis represents cumulative area A(ρ) occupied by elemental concentrations values greater than ρ, and the horizontal axis is the
concentration value ρ.
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classification of the PC1 raster map. The reclassified map of PC1 scores
indicate that positive loadings are linked to gray marbles and andesitic
volcano-sedimentary rocks. Possible represents hydrothermal sediment
hosted Pb–Zn mineralization, which is similar to the mineralization in
Angouran Pb–Zn giant deposit in the neighboring region. The second as-
semblage composed of positive loadings of Cu, Mo, Sb, Hg and Ni.

The C-A fractal model was applied to PC1 from robust PCA of stream
sediment geochemical data and three line segments, fitted to the C-A
log-log plot, were generated (Fig. 6B). Breaks between the straight
lines segments and the corresponding values of PC1 loadings have
been used as threshold values, to reclassify cell values in the raster geo-
chemical anomaly maps (Fig. 6C). The thresholds on this anomaly map
are indicative of three populations, which are interpreted as geologic
background, moderate and strong anomalies of multi elements. Strong
anomalies of PC1 of robust PCAmainly also coincidewith knownminer-
al deposits, silicified marbles and outcrops of hydrothermal alterations.
Most low values in the C-A fractal model defined as background and
moderate anomalies occur within areas underlain by greenschist and
mafic rock outcrops. Comparison of strong anomalies obtained from
Table 2
Interpretation range of values (ppm) except Au (ppb) of geochemical elements defined by
threshold values obtained via concentration-area fractal model.

Element Concentration value Interpretation

Au (ppb)
≤11.3 Background
N11.4 High background

Pb (ppm)
≤19.95 Background
19.96–1122 Anomaly
≥1122.1 High anomaly

Zn (ppm)
≤95.4 Background
95.5–416.8 Anomaly
≥416.9 High anomaly

Cu (ppm)
≤35.48 Low background
35.49–62 Background
≥62.1 Anomaly
spatial distribution of PC1 form logratio transformation and C-A fractal
model indicate that the later provides a smaller areas for follow-up
works and better coincidencewith knowndeposits and alteredmarbles.

5.4. Stepwise regression

As discussed above, we kept predictor variables (X) for which the
error (P-value) is b0.05 that gives us a 95% level of statistical signifi-
cance. Table (4) presents the stages of the stepwise regression processes
for deriving a multiple regression equation of each of the target ele-
ments/metals. The final regression equations for each element/metal
are:

Aui ¼ 5:7þ 0:9� SiO2i þ 0:6� Al2O3i−1:2�MnOi ð10Þ

Pbi ¼ 89þ 1:54� SiO2i−0:51� Fe2O3i−0:14�MnOi ð11Þ

Zni ¼ 291:4þ 2:61� SiO2i þ 2:41� Al2O3i þ 3:26�MnOi ð12Þ

Cui ¼ 69:1−0:8� SiO2i þ 8:95� Al2O3i þ 11:2� Fe2O3i ð13Þ

Agi ¼ 0:18−1:01� SiO2i þ 0:9� Fe2O3i þ 2:1�MnOi ð14Þ

Sni ¼ 5:1−0:9� SiO2i þ 3:2� Al2O3i þ 0:26� Fe2O3i ð15Þ

Moi ¼ 21:1−0:45� SiO2i þ 9:21� Al2O3i þ 7:58� Fe2O3i ð16Þ

Wi ¼ 1:9−0:09� SiO2i þ 0:1�MnOi þ 1:4� Al2O3i ð17Þ

Nii ¼ 100þ 0:4� SiO2i−12:3�MnOi þ 13:17� Fe2O3i ð18Þ

Hgi ¼ 1:7−0:001� SiO2i−2:6�MnOi þ 0:05� Fe2O3i ð19Þ

Asi ¼ 16:4−1:06� SiO2i þ 6:2� Al2O3i−2:2� Fe2O3i ð20Þ



Fig. 5.Maps of spatial distributions of Au, Pb, Zn and Cu based on C-A fractal modeling.
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Sbi ¼ −4:9þ 0:22� SiO2i þ 18:3� Al2O3i þ 0:35� Fe2O3i ð21Þ

The above equations were used to calculate predicted values for
each of the trace metals at every sample location. The residual values
of metals (i.e., measured value minus predicted value) were subjected
to PCA and then PCs of interest were subjected to C-A fractal modeling
to classify andmapmulti-element anomalies. The PC1 andPC2of the re-
sidual values account for 45% and 18% of the total variance, respectively
(Table 5). The relationship between PC1 and PC2 is shown in the biplot
Table 3
PCs loadings of the ilr logratio transformed stream sediment geochemical data.

PC1 PC2 PC3

Au 0.409 0.159 0.236
Cu −0.218 0.199 0.522
Pb 0.422 0.326 −0.323
Zn 0.229 0.415 −0.404
Ag 0.426 0.227 0.457
Sn −0.357 0.262 0.13
Mo 0.158 0.349 0.24
W −0.264 0.151 −0.109
Ni −0.401 −0.204 0.136
Hg −0.155 0.317 −0.332
As −0.417 0.381 −0.144
Sb 0.147 −0.515 0.231
Variance (%) 22 16 11
Cumulative variance 22 38 49
in Fig. 7A. The distribution of samples in biplot form of PC1 and PC2 in-
dicate that the geochemical data do not have closure behavior. Results
show positive loadings of Au, As, Pb, and Zn for PC2. The C-A fractal
model indicates presence of multiple geochemical anomalies in the
PC2 scores of the residual values (Fig. 7B).

Results of the PCA of residual values portrayed in a biplot (Fig. 7A)
and spatial distribution of PC2 (Fig. 7C) indicate that rays of Au, Pb
and Zn in the secondquadrant are indicator of ground features (silicified
lime stone, hydrothermal alteration and volcano sedimentary deposits),
which are the primary hosts of Au and Pb–Zn deposits. The third quad-
rant, which is associated with Cu, Ag, Sn, W and Hg, corresponds to
metamorphic and mafic rocks in the study area. The C-A model was
employed for further analysis of PC2 (Fig. 7B). Breaks between the
straight line segments have been used as threshold values to reclassify
the spatial distribution of PC2 (Fig. 7C). Thresholds are indicative of
three populations, which are interpreted as background, moderate
anomaly and strong anomaly. Similar to the two previous methods ap-
proaches, this map also shows strong anomalies are associatedwith an-
desitic, trachyandesitic, gray marbles and volcano-sedimentary rock
types, also Chichaklo and Ay-Ghale-Si, also hydrothermal zones.

5.5. Validation of stream sediment geochemical anomalies

In order to evaluate the efficiency of the methods used to map
stream sediment geochemical anomalies, these anomalies were com-
pared with the lithogeochemical data. Result indicate that there is
100% overlap between Au anomalies delineated using the



Fig. 6.Results of robust PCA and C-A fractal modeling ofmulti-element anomalies: (A) biplots of PC1 vs PC2 ofmulti-elements; (B) C-A log-log plot of PC1 scores; (C) spatial distribution of
PC1 scores.
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median + 2MAD method and lithogeochemical samples containing
N7 ppb Au. However, because of the low Au threshold value obtained
using the median + 2MAD method, the anomalous areas cover more
than half of study area and so the anomalies are unreliable. Delineated
Pb anomalies also indicate 57% overlap for lithogeochemical samples
containing N80 ppm Pb, 50% overlap between Zn anomalies and
lithogeochemical samples containing N190 ppm Zn, and 77% overlap
between Cu anomalies and lithogeochemical samples containing
N45 ppm Cu. These results indicate that the presence of stream sedi-
ment geochemical anomalies does not always mean the presence of
mineral deposits, and as therefore it is necessary to apply certain criteria
or the other methods for screening or prioritization of anomalies prior
to any follow-up work.

Low values of robust PC1 scores of the stream sediment geochemical
data are mainly depicting Cu, Mo, Sb, Hg and Ni, in areas underlain by
serpentinite and amphibolite greenschists, whereas high values of ro-
bust PC1 scores depict Au, Ag, Pb, Zn,W and As in areaswith known de-
posits or with altered carbonaceous and marble rocks, which are a key
geological factor for the formation of sediment-hosted Au and Pb–Zn
deposits in the Takab district (Nazarpour et al., 2014). The association
of Au, Ag, Pb and Zn thus indicates the most prevalent ground features
(i.e., silicified limestones associated with hydrothermal alteration and
volcano-sedimentary rocks), which are the primary hosts of Au–As
and Pb–Znmineralization in the study area (Ghorbani, 2002). Therefore,
the PC1 of the stream sediment geochemical data represent multiple
geological processes such as the lithology, landforms, and mineraliza-
tion so that further study of the spatial distribution of PC1 scores is
needed. The spatial distribution of PC1 scores (Fig. 6C) indicates that
high values exist in smaller areas and have good spatial associations
with knownmineral deposits and outcrops of hydrothermal alterations.

Maps of spatial distribution of uni-element anomalies obtained by
median + 2MAD and C-A model of raw geochemical values indicate
that the anomalous parts correspond to the andesitic, trachyandesitic
lava, gray marbles and volcano-sedimentary rock types. Obtained re-
sults indicate thatmedian+2MADmap for Au separate large area of in-
terest, on the other hand the anomaly map of Au by C-A method
coincident with high intense area, where that 23% of lithogeochemical
samples with lower values of Au defined by C-A method are located in
areas of strong anomaly. Uni-element anomalies of Pb and Zn based
on median + 2MAD are approximately similar and cover the areas
with andesitic and trachyandesitic lava lithological types. On the other
hand, based on C-A method, strong anomalies of Pb and Zn show



Table 4
Stages of the stepwise regression per element/metal.

Coefficients Au Coefficients Pb

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

P-value P-value P-value P-value P-value P-value

Intercept 5.70 0.01% 0.01% 0.03% 89.00 0.0% 0.0% 0.1%
SiO2 0.90 3% 0% 0.04% 1.54 0.0% 4.0% 2.1%
Fe2O3 0.87 4.5% 14% 0.51 1.4% 1.1% 0.5%
MgO 0.91 59% 1.39 33.5%
Al2O3 0.60 0.41% 0.01% 0.01% 0.47 23.0% 21.4
MnO 1.20 0.04% 0.07% 0.00% 0.14 4.1% 3.2% 1.1%

Coefficients Zn Coefficients Cu

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

P-value P-value P-value P-value P-value P-value

Intercept 291.40 0.01% 0.08% 0.00% 69.1 0% 0% 0%
SiO2 2.61 3% 4.1% 0.3% 0.80 0.05% 0.01% 0.00%
Fe2O3 22.67 36% 11.2 3.1% 5% 0.05%
MgO 17.50 17% 29% 28.00 29%
Al2O3 2.41 3.4% 1.1% 0.5% 8.95 0.00% 0.00% 0.04%
MnO 3.26 4.1% 3.1% 1.4% 11.20 10%

Coefficients Ag Coefficients Sn

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

P-value P-value P-value P-value P-value P-value

Intercept 0.18 1.1% 2.1% 0.4% 5.10 0% 0% 0%
SiO2 1.01 1.10% 2.2% 1.4% 0.90 0.05% 0% 0%
Fe2O3 0.90 4.5% 0.0% 0.0% 0.26 3% 0.14% 0%
MgO 13.40 29% 4.50 29%
Al2O3 12.24 0.00% 0.00% 0.04% 3.20 0.00% 0.00% 0.04%
MnO 2.10 16% 7.40 4% 15%

Coefficients W Coefficients Mo

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

P-value P-value P-value P-value P-value P-value

Intercept 1.90 0% 0% 0% 21.10 0% 0% 0%
SiO2 0.09 0.05% 0.01% 0.08% 0.45 3.1% 2.1% 0%
Fe2O3 0.70 4.1% 17% 7.58 4.5% 8.4%
MgO 0.10 29% 1.40 29%
Al2O3 1.40 0.00% 0.00% 0.04% 9.21 0.00% 0.10% 0.04%
MnO 0.10 3.2% 1.5% 0.05% 4.61 10% 0% 0%

Coefficients Ni Coefficients Hg

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

P-value P-value P-value P-value P-value P-value

Intercept 100.0 0% 0% 0% 1.70 0% 0% 0%
SiO2 0.40 2.4% 0% 0% 0.001 0.05% 0% 0%
Fe2O3 13.17 15% 0.05 2.4% 14%
MgO 28.00 29% 12.40 29%
Al2O3 8.95 0.00% 0.0% 0.04% 6.70 2.40% 0.15% 0.10%
MnO 12.30 10% 0% 0% 2.60 0.0% 1.1% 2.2%

Coefficients As Coefficients Sb

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

P-value P-value P-value P-value P-value P-value

Intercept 16.40 0% 0% 0% −4.90 0% 0% 0%
SiO2 1.06 0.05% 3% 2.4% 0.22 4% 0.04% 0.00%
Fe2O3 2.20 0% 0% 3.1% 0.35 3.8% 2% 0%
MgO 28.00 29% 28.00 29%
Al2O3 6.20 0.00% 0.00% 0.04% 18.30 0.00% 0.00% 0.04%
MnO 11.20 4.1% 14.6% 6.74 9.8%
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small areas of interest. The strong anomaly of Pb shows that 32% of
lithogeochemical samples have greater values than defined threshold
that located in moderate zone and just one sample with high value of
Pb falls in strong anomalies, while correlation between the Zn anoma-
lies by C-A method and lithogeochemical samples shows that 90% of
lithogeochemical samples have lower values than defined threshold
and remaining 10% of sampleswith high values correlatewithmoderate
anomalous area.

Results of the stepwise regression for PC2 that is linked with Au, Pb
and Zn reveal that the separated anomalies have good spatial associa-
tion with the andesitic rocks, recrystallized limestone, white-thickly
bedded dolomite, altered dark and light gray marble occurrences,



Table 5
Results of PCA of geochemical residuals of stream sediment geochemical data derived by
stepwise multiple regression.

PC1 PC2 PC3

Au −0.312 0.405 −0.234
Cu −0.312 0.353 0.11
Pb −0.424 −0.272 0.278
Zn −0.46 −0.166 0.174
Ag −0.465 −0.204 0.214
Ni 0.251 0.441 −0.488
Sb −0.367 0.129 −0.158
Mo −0.543 0.197 0.192
W −0.212 0.32 −0.532
Ni −0.522 0.248 0.233
Sn −0.301 −0.476 −0.426
Hg 0.186 0.8 −0.492
As −0.56 −0.155 −0.112
Variance (%) 45 18 10
Cumulative variance 45 63 73
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which are the main host rocks of Pb and Zn occurrences such as
Chichaklo andAy-Ghale-Si and theAngouranmajor giant Pb–Zn deposit
in the Takab district. Validation of delineated multi-element anomalies
Fig. 7. Results of stepwise regression, robust PCA and C-A fractal modeling of multi-element ano
log plot of PC1 scores of estimated values from stepwise regression; (C) spatial distribution of
derived by stepwise regression against the lithogeochemical samples
indicate that approximately 100% of lithogeochemical samples fall
with high Pb, Zn, and Au values into the delineated strong anomaly do-
mains derived from stepwise regression. Therefore, delineation of ro-
bust anomalies of Au and Pb, Zn by stepwise regression, indicate new
target areas for further exploration work. The above results suggest
that the median + 2MAD and C-A methods are significantly impacted
by lithology, although the influence of lithology can be eliminated to a
considerable extent by using the presented method in this paper.

Finally, results indicate that the median + 2MAD and C-A methods
are useful within a region with simple geochemical background, but
they have some limitationswithin a region linkedwith complex geolog-
ical setting. This statement also has been proved by Zuo et al. (2013b) in
comparison of C-A and S-A models. When the study area is regarded a
whole mineral district regardless of different geological background
and different geochemical field in a complex region, the C-A model
could not well identify anomalies. However, comparison of results of
multi-element geochemical anomalies by robust PCA and stepwise re-
gression indicate that multi-element anomalies of stream sediment
geochemical residuals do not only have good correspondence with
100% of lithogeochemical sampleswith highmetal values but also intro-
duce new target areas for further exploration work.
malies: (A) biplot of PC1 vs PC2 of estimated values from stepwise regression; (B) C-A log-
PC1 scores of estimated values from stepwise regression.
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6. Conclusions

In this paper, stepwise multiple regression was used to delineate
anomalies using geochemical residuals of trace metals in an area with
variable lithological types depicting a complex geological setting. For
comparative analysis and reliability control of obtained anomalous
areas derived by using geochemical residuals, we used (i) robust
median + 2MAD as a technique of exploratory data analysis, (ii) con-
centration-area (C-A) fractalmodeling and (iii) robust PCA. Comparison
of delineated geochemical anomalies based ofmedian+2MAD and C-A
modelingwith those obtaining based on robust PCA and stepwisemeth-
od indicates that the first twomethods aremore influenced by lithology
and are inadequate for identifying geochemical anomalies in areas with
variable lithology. The application of robust PCA on geochemical resid-
uals derived by stepwise multiple regression usingmajor oxides as pre-
dictors of trace metals to eliminate lithology effects is powerful tool to
identify geochemical anomalies in areas with variable lithological
types and complex geological setting. This approach also indicate that,
in the study area, mappedmulti-element anomalies are not only associ-
ated with known deposits such as Chichaklo and Ay-Ghale-Si deposits
but also are linked with structural features reflecting the existence of
new target areas of interest.
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