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Abstract

The authors investigated statistical distributions for concentrations of chemical elements from the National Geo-
chemical Survey (NGS) database of the U.S. Geological Survey. At the time of this study, the NGS data set encom-
passes 48,544 stream sediment and soil samples from the conterminous United States analyzed by ICP-AES
following a 4-acid near-total digestion. This report includes 27 elements: Al, Ca, Fe, K, Mg, Na, P, Ti, Ba, Ce, Co,
Cr, Cu, Ga, La, Li, Mn, Nb, Nd, Ni, Pb, Sc, Sr, Th, V, Y and Zn. The goal and challenge for the statistical overview
was to delineate chemical distributions in a complex, heterogeneous data set spanning a large geographic range (the
conterminous United States), and many different geological provinces and rock types. After declustering to create a uni-
form spatial sample distribution with 16,511 samples, histograms and quantile–quantile (Q–Q) plots were employed to
delineate subpopulations that have coherent chemical and mineral affinities.

Probability groupings are discerned by changes in slope (kinks) on the plots. Major rock-forming elements, e.g., Al,
Ca, K and Na, tend to display linear segments on normal Q–Q plots. These segments can commonly be linked to pet-
rologic or mineralogical associations. For example, linear segments on K and Na plots reflect dilution of clay minerals
by quartz sand (low in K and Na). Minor and trace element relationships are best displayed on lognormal Q–Q plots.
These sensitively reflect discrete relationships in subpopulations within the wide range of the data. For example, small
but distinctly log-linear subpopulations for Pb, Cu, Zn and Ag are interpreted to represent ore-grade enrichment of
naturally occurring minerals such as sulfides.

None of the 27 chemical elements could pass the test for either normal or lognormal distribution on the declustered
data set. Part of the reasons relate to the presence of mixtures of subpopulations and outliers. Random samples of the
data set with successively smaller numbers of data points showed that few elements passed standard statistical tests for
normality or log-normality until sample size decreased to a few hundred data points. Large sample size enhances the
power of statistical tests, and leads to rejection of most statistical hypotheses for real data sets. For large sample sizes
(e.g., n > 1000), graphical methods such as histogram, stem-and-leaf, and probability plots are recommended for rough
judgement of probability distribution if needed.
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1. Introduction

Like other geochemical survey projects of large scope
(e.g., Darnley et al., 1995; Darnley, 1997; Plant et al.,
2001), the National Geochemical Survey (NGS) of
U.S. Geological Survey had its origin in either baseline
investigation or mineral resource surveys. In recent years
the NGS data set has been further augmented (USGS,
2004), better quality-controlled, and has targeted new
applications, including regional characterization of toxic
elements and other environmental management issues.

The purposes of this study were to: (1) create a uni-
formly gridded set of the NGS database; (2) provide a
brief overview of the elemental distribution and descrip-
tive statistics for the latter set; and (3) attempt to delin-
eate the presence of normal and lognormal
subpopulations by display of probability plots. A chal-
lenge for a concise statistical overview lies in the fact
that the NGS spans the entire conterminous United
States and reflects many different geological substrates,
as well as transport and depositional processes. It in-
cludes elemental enrichments from both mineralized
areas as well as sites reflecting anthropogenic influences.

Because of the severe deviation from normality to be
expected in data from such spatially extended, heteroge-
neous data (Reimann and Filzmoser, 2000) it was con-
cluded that it would be best to use graphical,
descriptive methods to visualize the elemental distribu-
tions. The authors attempt to ‘‘let the data speak’’ in
ways that delineate meaningful relationships. Probabil-
ity plots are powerful tools for this purpose because they
are able to compress large numbers of data representing
broad ranges of concentration and complex relation-
ships into relatively simple curves whose variability in
shape can reflect geochemical relationships in systematic
but nuanced ways. Quantile–quantile (Q–Q) plots yield
significant detail on the behavior of subpopulations at
both the high and low end of the frequency spectrum,
as well as those having a central tendency. The applica-
bility of Q–Q plots to delineation of clustered properties
in even very large data sets has been recently illustrated
by its use in data mining in space research (e.g., Manku
et al., 1999).

Major elements in rocks were already well analyzed
and linked to their mineral associations by the early
20th century (Clarke, 1924). Led by the pioneering Nor-
wegian geochemist, V.M. Goldschmidt (1954 and refer-
ences cited therein), a first-order understanding of the
role and distribution of minor and trace elements was
achieved by the middle of the 20th century. Statistics
were first applied about this time, in large part to pro-
vide better prediction and quantification (mapping) of
the distribution of mineral deposits (Krige, 1951, 1960,
1966; Sichel, 1952; Miesch and Riley, 1961; and refer-
ences in Ahrens, 1965). Ahrens (1954) stimulated debate
among geochemists by asserting a geochemical ‘‘law’’
that postulated the lognormal distribution of trace ele-
ments in igneous minerals and rocks about a geometric
mean. ‘‘Dispersion’’ of the data was described by the
standard deviation of the logarithms of values. Geo-
chemists soon presented objections to the universality
of the lognormal scientific law. For example, Aubrey
(1956) found that the abundance and distribution of
host minerals for trace elements, as well as mode of clas-
sification of rocks could be key factors in determining
dispersion of the elements. Vistelius (1960) proposed, in-
stead of the lognormal law, a ‘‘fundamental law of geo-
chemical processes’’. This was defined as ‘‘The joint
probability distribution function of the concentration
of the minor chemical element deposited by natural
chemical reactions has a large positive skewness’’, i.e.,
a long tail toward high concentrations that reflects rarer
but higher degrees of enrichment. Zhang and Selinus
(1998) considered the lognormal distribution as a special
case of skewed distributions in studies of trace elements
in a suite of tills from Sweden. Post World War II con-
tributions by leading Soviet earth scientists like A.B.
Vistelius (Vistelius, 1960) and A.P. Vinogradov (Vinog-
radov, 1959) introduced western geochemists to exten-
sive geochemical surveys conducted earlier in the
Soviet Union (e.g., Razumovsky, 1940) but obscured
by language and political barriers.

In the 1960s and 70s the advent of mainframe com-
puters stimulated more elaborate analyses of statistical
relationships in the chemical composition of sediment
and rock samples. These analyses included use of prob-
ability plots that facilitated visualization of normal and
lognormal distributions as straight-line segments (Sin-
clair, 1974, 1976; Chambers et al., 1983). Mandelbrot
(1982) introduced the concept of fractal distributions
(plots of frequency/log concentration) as a descriptor
of a wide range of earth properties. Mandelbrot�s work
stimulated study of fractal distributions in describing
elemental enrichments in earth materials (Bölviken
et al., 1992; Cheng et al., 1994, and references cited
therein). The advent of computers greatly expanded
use of statistical techniques to define genetic affinities
in geochemical populations. However, Reimann and Fil-
zmoser (2000) point out that some of the most popular
techniques, like correlation analysis, principal compo-
nent analysis, and factor analysis, as well as ANOVA
methods, are based on the assumption of normality.
They criticize use of such methods for all but especially
heterogeneous data sets because of the almost invariable
presence of outliers and hence absence of normality in
the data sets.

Major advances were made possible since the 1980s
by availability of ever more powerful desktop computers
and statistical and mapping software. These tools made
working with and displaying larger data populations
much easier than in earlier periods. Additional stimuli
for the compilation of large regional data sets were inter-
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est in toxic elements in surface sediment and water, as
mentioned previously, and advent of powerful new ana-
lytical tools for trace element analyses. Recently, the
probability distribution of trace elements in very large
numbers of ground-water samples in the STORET data-
base (U.S. Environmental Protection Agency, 2002) was
investigated by Newcomb and Rimstidt (2002). In spite
of the convergence of enabling factors, preparation
and documentation of large regional sediment data sets
remains a large task, and such data sets are only begin-
ning to become readily accessible. Their statistical treat-
ment remains an area that includes many unresolved
problems.
2. Basic data and methods

2.1. Sampling and analyses

The NGS program of the U.S. Geological Survey
(USGS, 2004) comprises chemical analyses of samples
collected over a period of about 30 a. The majority of
the samples were collected during the National Uranium
Resource Evaluation (NURE) Program, sponsored by
the Department of Energy as a search for U resources.
As part of the NURE program, the Hydrogeochemical
Stream Sediment Reconnaissance (HSSR) collected sev-
eral hundred thousand samples, principally stream sedi-
ments, from about 2/3 of the area of the US, and
analyzed them for trace elements by a wide variety of
methods; most of these samples were collected between
1976 and 1980. Approximately 40,000 of these NURE
samples, spanning the full areal extent of the program,
were selected for reanalysis by modern (post-1998)
methods for the NGS. The NGS also contains data for
several thousand samples of the same types, collected
by the USGS between 1970 and 1990. Finally, several
thousand new samples were collected in areas not cov-
ered by the NURE or USGS sample archives. Approx-
imately 2% of the samples were analyzed in duplicate.

Because the NGS was assembled from multiple
sources and covers the diverse terrains and sample media
(stream sediments, lake sediments, soils, etc.) present in
the US, sample collection protocols were not the same
for all samples. The majority of samples, about 80%,
represent stream sediments sieved to below 100 mesh
(<150 lm grain size). Approximately 12% of the samples
are soils, principally from areas where stream sediments
were difficult to obtain; these were also sieved to 100
mesh. The remainder of the samples were lake, pond,
playa, and spring sediments, mostly representing geo-
graphic areas where those sample media were dominant.

The NGS sampling density (samples/km2) is some-
what variable across the US as the result of the differing
protocols of the component studies responsible for col-
lecting the samples. The original NURE HSSR program
collected sediment samples at an average density of 1
sample per 17 km2. The NGS subsampled the NURE
collection for reanalysis by superimposing a grid of
17 · 17 km cells, and choosing one NURE sample at
random from each cell; thus, the NGS sample density
is generally 1/289 km2. In some study areas, the NURE
collection was sampled more intensively, resulting in
densities of up to 1/100 km2 (e.g., New England and
the northern Great Basin; Fig. 1(a)), and the entire
NURE suite was reanalyzed in southeastern Kentucky
(Fig. 1(a)). Non-NURE sampling areas in the NGS have
densities ranging from 1/100 km2 (e.g., Florida and Mis-
sissippi) to 1/289 km2 (e.g., Michigan); a few small areas
were sampled at high densities (e.g., 1/2.5 km2 around
Tallahassee, Florida).

All NGS samples were analyzed by a consistent set
of techniques, mostly at a single laboratory facility,
XRAL Laboratories (Canada). Among these methods
is one using inductively coupled plasma-atomic emis-
sion spectrometry (ICP-AES) after acid digestion for
which statistics are calculated in this report. Sample
aliquots of 200 mg were decomposed using a mixture
of HCl, HNO3, HClO4, and HF at low temperature.
The digested samples are aspirated into the ICP-AES
discharge where the elemental emission signal is mea-
sured simultaneously for 40 elements. Calibration is
performed by standardizing with digested rock refer-
ence materials and a series of multi-element solution
standards. Analytical data for an experimental run
are deemed acceptable based on results determined
for two in-house quality-control standards: recovery
for all elements present at >5 times the detection limit
must be within 15% of the certified value, and the cal-
culated relative standard deviation of duplicate sam-
ples is no greater than 15%.

2.2. Descriptive statistical summary

Table 1 provides a summary of the chemical data for
the original data set. Of note are several elements with
variable detection limits (e.g., Cd, Nb) and wide ranges
of concentrations, and thus calculation for the percen-
tiles that are below detection limits is arbitrary. It should
be noted that other NURE data sets exist, performed by
alternative analytical methods, in which lower detection
limits permit much larger proportions of trace metals
like Ag, As, Cd, etc. to be quantitatively estimated.
The current study is limited to the largest coherent data-
base and to those elements for which sufficient data
above the limit of detection are available. Improved
and more uniform analytical quality was a goal of
reanalysis of the present data set by common techniques
(see next section).

The NGS data set encompasses much of the con-
terminous United States and many heterogeneous rock
and sediment distributions. Besides heterogeneity in



Fig. 1. Sampling locations in the conterminous US for the NGS program of the U.S. Geological Survey: (a) original samples
(n = 48,544); (b) re-sampled samples based on a 17 · 17 km grid system (n = 16,511).
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the NGS data set, potential sources of variability that
affect probability distribution include sampling meth-
ods, the precision and accuracy of analytical methods,
and samples below detection limits. Approximations
can be used to estimate means in the presence of val-
ues below detection limit (Helsel and Hirsch, 1992).
However, in this study medians are used rather than
means in the descriptive statistical table. For the pur-
pose of calculating graphical display the authors have
used the common convention of assigning the value of
concentrations below detection limits to half the detec-
tion limits.

2.3. Declustering by subsampling

Due to the uneven spatial distribution of the sam-
pling locations, the dataset were subsampled to create
a more uniform distribution across the whole conter-
minous US. Since the majority of the areas were sam-
pled at a density of one sample per 17 · 17 km grid



Table 1
Percentiles of 40 elements analyzed by ICP-AES following a 4-acid near-total digestion for the original data set (n = 48,544; Al–Ti are
reported in wt%; Ag–Zn units are lg/g)

n > DL Min 5% 10% 25% Median 75% 90% 95% Max

Al 48,544 48,539 <0.005 0.45 0.99 3.11 5.40 7.10 7.99 8.36 17.0
Ca 48,520 48,284 <0.005 0.02 0.04 0.31 1.58 2.86 4.59 6.52 39.6
Fe 48,544 48,375 <0.005 0.30 0.60 1.47 2.40 3.50 4.90 6.20 64.4
K 48,544 47,895 <0.005 0.05 0.17 0.88 1.61 2.05 2.40 2.64 17.0
Mg 48,532 48,100 <0.005 0.02 0.04 0.22 0.62 1.03 1.51 2.00 20.7
Na 48,536 47,083 <0.005 0.01 0.02 0.23 0.92 1.67 2.20 2.50 8.16
P 48,500 47,444 <0.005 0.01 0.01 0.03 0.06 0.09 0.12 0.15 9.00
Ti 48,544 48,538 <0.01 0.13 0.17 0.25 0.35 0.52 0.73 0.91 4.50
Ag 46,895 840 <0.2 <0.5 <2 <2 <2 <2 <2 <2 342
As 46,661 12,412 <5 <10 <10 <10 <10 8 14 20 5870
Au 46,663 102 <4 <8 <8 <8 <8 <8 <8 <8 27
Ba 48,542 48,540 <1 40 91 278 556 750 951 1100 16,000
Be 48,544 29,496 <1 <1 <1 <1 1 2 2 2 53
Bi 48,544 3368 <2 <5 <10 <10 <50 <50 <50 13 816
Cd 48,544 3425 <0.4 <2 <2 <2 <2 <2 <2 0.6 130
Ce 48,544 48,382 <5 23 33 49 65 86 130 183 12,000
Co 48,544 42,624 <2 <2 <2 5 8 13 19 25 695
Cr 48,544 46,646 <2 3 6 15 34 63 111 170 12,000
Cu 48,544 48,544 0.5 1 3 7 13 23 34 47 3800
Eu 43,171 42,200 <2 1 1 1 1 1 1 2 51
Ga 46,895 40,656 <4 <4 <4 8 14 18 21 23 65
Ho 43,183 1611 <4 <4 <4 <4 <4 <4 <4 <4 32
La 48,544 48,362 <2 11 16 25 33 44 67 95 8700
Li 48,544 46,882 <2 3 5 12 20 28 36 43 910
Mn 48,539 48,484 <4 62 121 289 540 830 1130 1399 41,970
Mo 48,544 14,225 <2 <2 <2 <2 <2 2 5 6 431
Nb 48,544 43,113 <2 <4 <4 7 12 17 23 28 468
Nd 44,832 41,902 <4 <9 12 20 28 39 59 84 3200
Ni 48,544 43,918 <2 <3 3 8 15 23 35 49 2420
Pb 48,544 47,374 <20 6 8 13 19 25 33 42 27,394
Sc 48,544 43,595 <2 <2 <2 4 7 11 15 18 53
Sn 46,895 5742 <2 <5 <5 <5 <50 <50 2 17 743
Sr 48,531 48,087 <2 7 15 59 177 330 449 540 7500
Ta 43,183 15 <40 <40 <40 <40 <40 <40 <40 <40 301
Th 48,544 41,093 <2 <6 <6 7 10 15 24 38 1180
U 46,895 269 <1 <10 <100 <100 <100 <100 <100 <100 882
V 48,544 48,418 <2 10 17 38 65 96 140 184 2991
Y 48,544 47,379 <2 4 6 12 17 23 32 41 433
Yb 43,183 35,405 <1 <1 <1 1 2 3 3 4 30
Zn 48,542 48,147 <2 7 13 32 59 82 104 129 27,040
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cell, a 17 · 17 km grid system was created in a GIS
layer to cover the whole conterminous US. The clos-
est sample to each grid node was selected and
marked. A ‘‘join’’ function in GIS database manage-
ment was employed to relate the selected samples
and the raw data set in order to avoid duplicate selec-
tion. In this way, a total of 16,511 samples out of
48,544 samples were selected (Fig. 1(b)). Basic results
for the declustered data are shown in Table 2. A ca-
veat should be noted about the declustering step.
Geological/regional geochemical data are collected
from sample space that may have structure that even
detailed field mapping may miss.
2.4. Graphic display

Histograms are time-tested tools for displaying fre-
quency distributions and rely on dividing the data into
classes (or bins). The data following a normal distribu-
tion will show a symmetric bell-shaped histogram,
whereas a tail towards high values implies that the data
are positively skewed. Fig. 2 shows the histograms of a
computer-generated data set following the standard nor-
mal distribution and another following a lognormal
distribution.

Offsetting their popularity and value in providing
visual approximations to distributions like the bell



Table 2
Percentiles of 40 elements analyzed by ICP-AES following a 4-acid near-total digestion for the re-sampled data set (n = 16,511; Al–Ti
are reported in wt%; Ag–Zn units are lg/g)

n n > DL Min 5% 10% 25% Median 75% 90% 95% Max

Al 16,511 16,508 <0.005 0.60 1.25 3.07 4.78 6.16 7.41 8.00 13.0
Ca 16,511 16,446 <0.005 0.03 0.06 0.37 1.33 2.76 4.78 7.23 38.0
Fe 16,511 16,459 <0.005 0.38 0.67 1.38 2.12 2.97 4.16 5.21 64.4
K 16,511 16,319 <0.005 0.08 0.29 0.94 1.59 1.97 2.30 2.58 17.0
Mg 16,511 16,385 <0.005 0.02 0.06 0.24 0.57 0.96 1.45 1.88 19.6
Na 16,510 16,088 <0.005 0.01 0.05 0.25 0.71 1.19 1.81 2.18 8.16
P 16,504 16,176 <0.005 0.01 0.01 0.03 0.05 0.08 0.10 0.13 2.77
Ti 16,511 16,511 0.01 0.13 0.17 0.22 0.30 0.44 0.66 0.84 3.19
Ag 16,359 102 <0.2 <2 <2 <2 <2 <2 <2 <2 53
As 16,329 3822 <5 <10 <10 <10 <10 <10 14 17 5870
Au 16,329 24 <4 <8 <8 <8 <8 <8 <8 <8 16
Ba 16,509 16,508 <1 56 130 300 506 673 836 974 12,330
Be 16,511 8652 <1 <1 <1 <1 1 1 2 2 53
Bi 16,511 1028 <2 <10 <10 <50 <50 <50 <50 12 816
Cd 16,511 427 <0.4 <2 <2 <2 <2 <2 <2 <2 103
Ce 16,511 16,458 <4 22 32 47 64 84 124 177 4880
Co 16,511 14,799 <2 <2 <2 5 8 11 16 20 695
Cr 16,511 15,888 <1 3 5 12 25 45 78 96 4340
Cu 16,511 16,511 1 1 3 6 11 17 26 35 3050
Eu 16,109 15,467 <2 1 1 1 1 1 2 3 51
Ga 16,359 14,225 <4 <4 <4 8 13 17 22 25 65
Ho 16,109 999 <4 <4 <4 <4 <4 <4 <4 4 32
La 16,511 16,453 <2 10 15 23 32 42 63 90 2920
Li 16,511 16,072 <2 3 5 12 20 27 36 43 501
Mn 16,507 16,485 <4 73 133 269 442 705 1050 1357 19,190
Mo 16,511 7037 <2 <2 <2 <2 <2 3 5 6 431
Nb 16,511 14,839 <2 <4 <4 8 12 17 24 30 410
Nd 16,261 15,199 <4 <9 12 19 28 38 56 79 2610
Ni 16,511 14,972 <2 <3 3 7 13 20 30 39 2130
Pb 16,511 16,282 <4 7 9 14 20 26 35 44 24,310
Sc 16,511 14,980 <2 <2 2 4 7 9 13 16 53
Sn 16,359 1281 <2 <5 <5 <50 <50 <50 <50 19 392
Sr 16,510 16,369 <2 10 21 65 142 243 389 489 4700
Ta 16,109 4 <40 <40 <40 <40 <40 <40 <40 <40 301
Th 16,511 13,345 <2 <6 <6 7 10 15 24 38 1180
U 16,359 27 <1 <100 <100 <100 <100 <100 <100 <100 882
V 16,511 16,481 <2 13 19 37 60 84 118 150 782
Y 16,511 16,198 <2 4 7 11 16 21 29 38 433
Yb 16,109 13,539 <1 <1 <1 1 2 2 3 4 30
Zn 16,509 16,395 <2 9 14 30 52 73 97 118 27,040
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shape of a normal distribution, histograms have limi-
tations. The number of bins affects the shape of the
curve. Too few bins may conceal important subpopu-
lations or create apparent truncation of the low end of
the distribution. Too many bins may create ragged
plots. In this study, histograms for the raw datasets
were plotted using about 20–30 bins, a compromise
range chosen for effectiveness in displaying the major
features of the data and revealing skewness. A curve
representing the normal distribution corresponding to
the mean and standard deviation of the data set is
superimposed on the histogram for the purpose of
comparison. Separated extreme values frequently occur
at the high end and may be identified as outliers. In
this study, due to the wide range of the raw data,
the extremely high values were truncated in order to
show the majority of the data better. The limitations
of the histograms are offset by probability plots de-
scribed below.

Normal quantile–quantile (Q–Q) plots, familiar to
physical scientists as cumulative probability plots, are
created by plotting observed values of a variable against
the corresponding normal quantiles. A popular way to
display such a plot is to plot the normal quantiles (or
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Fig. 2. Histograms for simulated distributions: (a) normal, (b) lognormal (n = 10,000).
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scores) of the standard normal distribution on the x-axis
with values usually between �4 to 4, and the variable
under study on the y-axis. In this study, the observed
values (in lg/g or %) are plotted on the x-axis, and val-
ues expected for a normal distribution are plotted on the
y-axis because the function was displayed in this manner
in the software package available (SPSS� for Windows,
version 11.0). If the samples are from a normal distribu-
tion, points will cluster along a straight line.

The steps in constructing the normal Q–Q plot used in
this study are as follows: First, the raw data were ranked
in ascending order (duplicated values were assigned with
different ranks as their expected values are different in
this plot). The expected normal values are calculated by
taking the z-scores of (i � 0.375)/(n + 0.25) cumulative
probability (Blom, 1958), where i is the rank in increasing
order, and n is the number of samples. Then, the scores
are converted to the expected normal values based on
the mean (l) and standard deviation (r) using the func-
tion of (z · r +l). Commonly used normal Q–Q plots
do not carry out this conversion, but the conversion is
applied in this study to offer visual comparison of the
‘‘expected normal value’’ at the same scale as the original
data. It avoids using the abstract concept of ‘‘normal
scores’’ on the figures. Curvature in the trend of points
indicates departures from normality.

Fig. 3 demonstrates normal Q–Q plots for computer-
simulated data sets following standard normal and log-
normal distributions. All samples of the normal data set
are located on the diagonal line, whereas the lognormal
data exhibit a convex shape.

In this study, the normal Q–Q plot is used for both
raw and logarithmically transformed data. In the raw
data plot normal distributions will follow a straight-line
behavior, whereas log-transformed data will display
straight-line segments for lognormal distributions. In or-
der to permit comparisons, the normal Q–Q plots for all
the elements were plotted on one page.

2.5. Selective random sampling and tests for normality

The effect of changing sample size on standard
hypothesis tests for normality were studied, using the
Kolmogorov–Smirnov (K–S) test (Chakravarti et al.,
1967). The K–S test measures the degree to which a gi-
ven data set follows a specific theoretical distribution
(such as normal, uniform, or Poisson). The test statistic
of K–S is based on the largest absolute difference
between the observed and the theoretical cumulative dis-
tribution functions. The K–S test assumes that the para-
meters (e.g., mean and standard deviation) of the test
distribution are specified in advance, whereas the Lillief-
ors correction (Lilliefors, 1967) for the K–S test is ap-
plied when means and variances are not known and
must be estimated from the data.

The K–S test is chosen over others because it is
widely applied and considered conservative. The Ander-
son–Darling test (Stephens, 1974) is an example of an
alternative test that gives more weight to the tails than
the K–S test which tends to be more sensitive near the
center of the distribution. The authors therefore prefer
the K–S test to minimize the effect of outlier populations
for many of the elements. During comparison studies,
discrepant results were obtained for K–S test values per-
formed by SPSS� and S-Plus� statistical software. The
problem was resolved when it was found that the K–S
results obtained with the S-Plus� application automati-
cally utilized the Lilliefors correction. For comparison,
the Lilliefors significance correction for the K–S test
using SPSS� was also applied in the following experi-
ments for effect of sample size.
2.6. Computer software1

The raw data were stored in a dBASE file (dbf for-
mat), and basic calculations were performed using
Microsoft Excel�. Most of the statistical calculations
were accomplished with SPSS� software (version 11.0).
The sampling location maps were produced with Arc-
View� GIS software (version 3.3).



Fig. 3. Normal Q–Q plots for simulated distributions: (a) normal, (b) lognormal (n = 10,000).
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3. Results

3.1. Basic statistics and element selection

The number of samples re-sampled from the NGS
database was 16,511. Table 2 shows the estimated per-
centiles for the elements. It may be mentioned that the
NGS database includes some samples that were ana-
lyzed by other methods that may have lower detection
limits (DLs) for some elements, and provide measure-
ments of constituents not included here (e.g., SiO2, loss
on ignition, etc.).

Table 2 provides information about both element
concentrations and data quality. Elements with too
few values above detection limits can provide only lim-
ited information, e.g., for mineral exploration surveys
seeking high values. Inadequate detection limits are ob-
served for 11 elements: Ag, As, Au, Be, Bi, Cd, Ho, Mo,
Sn, Ta and U. The 25th percentiles for all these elements
are below the detection limits. Some other elements do
not have a good precision (either analytical resolution
or the use of only one significant figure). This yields
many values in low integers, such as Eu and Yb. For
example, 5–75th percentiles of Eu are all equal to
1 lg/g, i.e., at least 70% of the values for Eu are 1 lg/
g. Accordingly, these 13 elements were regarded as hav-
ing inadequate data quality, and were not used in the
ensuing statistical analyses. Among the remaining ele-
ments, the 10th percentile levels for Co, Ga, Nb and
Th were below the detection limits. However, their pre-
cision appeared much better than those of Eu and Yb,
and they were selected. The 10th percentiles for all the
other elements were above the detection limits, and thus
they were regarded as of adequate quality for this inves-
tigation. Altogether, a total of 27 elements were selected
for detailed statistical analyses: Al, Ca, Fe, K, Mg, Na,
P, Ti, Ba, Ce, Co, Cr, Cu, Ga, La, Li, Mn, Nb, Nd, Ni,
Pb, Sc, Sr, Th, V, Y and Zn.

The uppermost ranges of concentration for several
elements, including Fe, Cu, Zn, Pb, Ag, Ti, and rare
earths, approach ore grade or byproduct metal extrac-
tion grade, although high concentrations of elements
like Cu, Pb, and Zn can also be influenced by pollution.

3.2. Histograms

Histograms for the raw data of the elements are
shown in Fig. 4. On the x-axis of these plots, mid-values
of the bins are shown once every two bins to facilitate a
clear display for all the elements on one page.

None of the elements show the bell-shaped distribu-
tion expected of a normal distribution pattern, but many
approach a lognormal distribution as illustrated in
Fig. 2. Most elements have high values, which are not
well reflected in the histograms because extreme values
form only a part of the highest concentration bins. How-
ever, the extreme values are especially well visualized on
the later Q–Q plots. Many elements have values below
(e.g., Co, Ga, Sr and Th) or close to (e.g., Ca, K, Mg,
and Na) the detection limits (see also Tables 1 and 2),
resulting in the high frequencies for the lowest value
group.

Except for Al, the frequency distributions of most
of the other 26 elements under study are positively
skewed and include some very high values. Mixed
populations, that are expected to be prevalent in the
current dataset, are likewise not well displayed on his-
tograms, and are discussed under the other graphical
methods later.

Some extreme values appear separated from the
majority of the samples, i.e., do not appear to be part
of a continuous distribution (e.g., Fig. 4, Table 2). The
term ‘‘outlier’’ depends on the purpose of a statistical
investigation, but these very high samples would nor-
mally fit such a description, and in exploration geochem-
istry might be regarded as evidence of mineralization or
other rare processes.

3.3. Q–Q plots

On normal Q–Q plots (Fig. 5), elements that are
building blocks of major rock-forming minerals, Al,



Fig. 4. Histograms of raw data (n = 16,511, values larger than shown are truncated; units: Al–Ti in wt%; Ba–Zn in lg/g; a normal
distribution curve for all the values is superimposed for comparison).
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Fig. 5. Normal Q–Q plots for raw data (n = 16,511; units: Al–Ti in wt%; Ag–Zn in lg/g). Negative values on the x-axis (observed
values) are included in order to preserve symmetry for the expected values (y-axis).
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Fe, Mg, K, and Na, tend to show straight-line seg-
ments. In the case of Fe and Mg straight segments that
approximate the modeled normal line are obscured by
the steepness of the plots. Straight segments are also
observed for some trace elements, including Ga and
Sc. Samples below detection limit form the vertical line
on the left side of the diagram. For ore-forming ele-
ments, departures from normality occur toward the
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highest values, located on the right side of the straight
normal distribution line. The result is referred to as the
positively skewed or convex distribution feature for
most elements shown on the histograms. It should be
noted that the slopes of the plots cannot be directly
compared, as axial scales vary to encompass the wide
disparity in concentrations. Most of the trace elements
do demonstrate some form of convex shapes as in
Fig. 3, showing that they are composed of multiple
phases and have closer overall similarities to lognormal
distributions.

The plots provide useful information for outlier
detection. For example, single samples of Fe and K
are separated from the distribution curve. Similar outli-
ers can be identified for other elements.

The plots for log-transformed data sets (Fig. 6)
show improved normal (straight-line) probability fea-
tures for most elements, except Al and K. They also
indicate mixtures of populations by identified kinks
or changes in slope for many elements including Ca,
Fe, Ba, Ce, La, Li, Nd, Ni, Pb, Sr, Th and Zn. The ele-
ments P, Ti, Co, Cr, Li, Nb, Ni, V and Y approach
lognormal distributions most closely. Owing to the
magnification of values in low ranges, the logarithmic
transformation renders multiple values due to detection
limits as vertically stacked points more clearly than in
the normal plots. Nondetects were all assigned values
of half the detection limits. Samples recorded as being
below detection limits may extend below their assigned
values. In cases where lognormal behavior appears or is
independently known to be consistent throughout the
concentration range, a more realistic distribution of
values may be predicted by extending the slope of the
straight line.

The logarithmic transformation ‘‘overtransforms’’
some elements, changing the overall curve shape from
convex to concave, especially for major elements such
as Al, K, Mg and Na. This feature is expected where
the elements in question have significant populations
that tend towards normal distributions, such as ele-
ments that are the major components of common
rock-forming minerals. The curves for Ca, Ba, and
Fe depart from those of other major constituents as
discussed later. A tendency to approach the modeled
slope on the left side of the plot may be associated
with dilution effects likewise detailed in the Discussion
section. This feature may be observed for Cu, Pb, P,
Ga, Sc, Th, and the rare earth elements, Ce, La, Y,
and Nd.

The plots reveal a number of consistent and inter-
esting slope segments. Elements like Cu, Zn and Pb
show a sharp reduction in slope (a ‘‘fat tail’’) at
high concentration values. The ‘‘ferrides’’, Co, Cr,
Ni, Co and V, show the most consistent tendencies
toward lognormality throughout their concentration
range.
3.4. Shape parameters and tests for normality

To quantify the probability features of the data sets,
the shape parameters of skewness and kurtosis were cal-
culated and are listed in Table 3. The K–S test was per-
formed to test hypotheses of data normality. The
significance levels (K–S p) are also listed in the table.
In this table, the kurtosis values are calculated relative
to a normal distribution that has a kurtosis of 3.

The results from the K–S test show that none of the
27 elements pass the test for either normality or log-nor-
mality, in line with previous expectations. However, in
this study, raw data for Al and Ga seem to approach
a normal distribution as both their skewnesses and kur-
toses are close to ‘‘0’’. Some of the log-transformed data
also approach lognormality based on their shape
parameters.

Widely recognized factors related to thenon-normality
and non-lognormality, such as mixture of populations,
outliers, analytical precision and detection limits, can
all be identified in this study. However, another prob-
lem, large sample size, may also be a factor affecting
statistical treatment. To investigate the effect of sample
size on probability distribution, 100 randomly chosen
independent selections of 50, 100, 200, 500, 1000, 2000,
and 5000 samples were taken from the declustered sam-
ple set (16,511 samples). The K–S test for normality and
log-normality was applied to all these re-sampled data
sets. For each sample number and element, a total of
100 significance values of K–S p were obtained. The per-
centage of p-values higher than the widely used 0.05 sig-
nificance level provides a measure of the likelihood that
the data pass the test for normality or lognormality.
Meanwhile, the Lilliefors correction for the K–S test
was also applied in this study. To evaluate the re-sampling
strategy and for comparison, a computer simulated nor-
mal distribution data set with n = 16,511 was tested using
the same procedure. Table 4 shows the results of these
experiments.

The results show that when the sample size is 50,
departure from normality is seldom detected, and it is
easy for a data set to pass the test for normality at the
0.05 significance level. With increase in sample size, the
statistical test gains power. When the sample size reaches
2000, only one experiment (for Al) passes the K–S test for
normality, and none of the other elements pass. This re-
sult is in agreement with the results shown in Table 3, that
none of the elements pass the K–S test for normality
when all the 16,511 samples were used. The element clos-
est to normal distribution is Al, which is also consistent
with the observations from the above methods. Other ele-
ments that are close to normality include K, Ba and Ga.

Similar results for the effect of sample size on proba-
bility distribution are observed for the log-transformed
data. With smaller sample sizes of 100 or less many ele-
ments tend to pass the test for lognormality. However,



Fig. 6. Normal Q–Q plots for data after logarithmic transformation with the base of 10 (n = 16,511; units of raw data: Al–Ti in wt%;
Ba–Zn in lg/g).
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when the sample size reaches 1000, only one experiment,
for Ti, passes the K–S test. When the sample size is lar-
ger than 2000, none of the elements under study pass the
test for lognormality.
The results also show that most of the major elements
(Al–Ti) tend toward a normal distribution, whereas
trace elements (Ba–Zn) tend to follow a lognormal dis-
tribution when the sample size is smaller than 100. When



Table 3
Skewness and kurtosis in the data sets with results of Kolmogorov–Smirnov test

Element Raw data Log-transformed data

Skewness Kurtosis K–S p Skewness Kurtosis K–S p

Al �0.13 �0.54 0.00 �2.39 7.65 0.00
Ca 3.93 22.34 0.00 �0.94 0.50 0.00
Fe 5.55 109.07 0.00 �1.84 6.77 0.00
K 0.49 10.39 0.00 �2.58 7.42 0.00
Mg 4.83 66.27 0.00 �1.32 1.80 0.00
Na 1.09 2.11 0.00 �1.54 2.04 0.00
P 13.67 498.08 0.00 �0.89 1.01 0.00
Ti 2.50 10.11 0.00 �0.09 1.69 0.00
Ba 6.37 131.03 0.00 �1.87 4.61 0.00
Ce 14.05 316.36 0.00 0.15 4.80 0.00
Co 31.19 2200.25 0.00 �0.75 0.50 0.00
Cr 31.11 1916.58 0.00 �0.70 0.83 0.00
Cu 41.40 2125.10 0.00 �0.46 1.22 0.00
Ga 0.56 0.91 0.00 �1.01 0.13 0.00
La 15.08 390.02 0.00 0.00 4.82 0.00
Li 4.42 92.40 0.00 �1.28 2.06 0.00
Mn 6.73 137.51 0.00 �1.23 3.60 0.00
Nb 9.00 210.23 0.00 �0.72 0.60 0.00
Nd 15.46 420.92 0.00 �0.95 3.27 0.00
Ni 39.61 2097.99 0.00 �0.81 1.07 0.00
Pb 75.36 6883.48 0.00 0.45 8.55 0.00
Sc 1.82 6.58 0.00 �0.79 0.47 0.00
Sr 4.70 61.70 0.00 �1.19 1.86 0.00
Th 14.28 349.69 0.00 0.03 0.74 0.00
V 2.83 16.84 0.00 �0.99 2.40 0.00
Y 7.22 130.82 0.00 �1.13 3.74 0.00
Zn 92.16 10183.61 0.00 �1.04 3.60 0.00
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the sample size is larger than 1000 few samples pass the
K–S test for normality or lognormality.

The above results show that sample size heightens the
effect of minor deviations from normal or lognormal dis-
tribution. To provide a much more lenient measure of
the threshold of deviation, a significance level 0.0001
was chosen, and the results are shown in Table 5. Such
a low significance level is not generally used in practical
applications when a hypothesis is not rejected, but it is
used here to demonstrate the effect of sample size when
using a statistical significance test. The results are similar
to those in Table 4, with only marginally increased
opportunities for the data sets to pass the test for nor-
mality. When sample size is larger than 2000 no data
set except Al passes the test for normality.

The results from Lilliefors correction are generally in
line with the K–S test without the correction. The differ-
ence is that without Lilliefors correction, the K–S test
tends to be conservative, resulting in more datasets pass-
ing the test.

The effect of sample size does not apply to the per-
fectly normal distribution. Almost all the experiments
for the normally distributed data set pass the tests within
all the sample size ranges. The very small proportion of
experiments that does not pass the Lilliefors test is as-
sumed to reflect artifacts of the random re-sampling
and testing processes.
4. Discussion

4.1. Skewness and kurtosis

Skewness measures the presence of a tail deviating
from normal distribution (0) toward lower values
(negative skewness) or higher values (positive skew-
ness). For the raw data sets, only the skewness for
Al is negative, and those of K and Ga are close to
‘‘0’’. The skewnesses for all the other elements are po-
sitive, many of which are very high, with the maxi-
mum value of 75.4 for Pb. This confirms the
strongly skewed distributions displayed in the histo-
grams and normal Q–Q plots. Kurtosis refers to ‘‘fat-
ness’’ of the tails in statistical plots, with positive
kurtosis denoting peakedness, whereas negative kurto-
sis denotes a ‘‘flat’’ distribution. The kurtoses for most
elements are very high, with the highest value of 6883
for Pb caused by the large number of low value



Table 4
Effect of sample size on results of K–S test: percent of 100 random sub-samples showing normality at p > 0.05

n Raw data Log-transformed data

50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000

Al 100(87) 100(72) 98(70) 89(12) 44(1) 1(0) 0(0) 31(2) 3(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Ca 22(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 83(19) 40(1) 1(0) 0(0) 0(0) 0(0) 0(0)
Fe 86(33) 49(10) 12(0) 0(0) 0(0) 0(0) 0(0) 76(16) 33(6) 5(0) 0(0) 0(0) 0(0) 0(0)
K 97(65) 94(38) 70(5) 6(0) 0(0) 0(0) 0(0) 7(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Mg 80(19) 30(0) 0(0) 0(0) 0(0) 0(0) 0(0) 69(8) 21(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Na 99(44) 83(3) 5(0) 0(0) 0(0) 0(0) 0(0) 39(0) 1(0) 0(0) 0(0) 0(0) 0(0) 0(0)
P 89(39) 66(3) 17(0) 0(0) 0(0) 0(0) 0(0) 91(21) 56(3) 5(0) 0(0) 0(0) 0(0) 0(0)
Ti 52(2) 6(0) 0(0) 0(0) 0(0) 0(0) 0(0) 100(70) 96(51) 96(27) 40(0) 1(0) 0(0) 0(0)
Ba 99(82) 90(57) 74(47) 30(6) 4(0) 0(0) 0(0) 50(7) 7(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Ce 22(5) 2(3) 0(0) 0(0) 0(0) 0(0) 0(0) 91(35) 74(11) 14(1) 0(0) 0(0) 0(0) 0(0)
Co 69(14) 22(1) 0(0) 0(0) 0(0) 0(0) 0(0) 75(10) 11(1) 0(0) 0(0) 0(0) 0(0) 0(0)
Cr 55(7) 9(0) 0(0) 0(0) 0(0) 0(0) 0(0) 99(69) 98(43) 73(8) 0(0) 0(0) 0(0) 0(0)
Cu 56(13) 13(2) 0(0) 0(0) 0(0) 0(0) 0(0) 99(50) 85(9) 24(1) 0(0) 0(0) 0(0) 0(0)
Ga 100(82) 100(62) 93(15) 13(0) 0(0) 0(0) 0(0) 65(4) 10(0) 0(0) 0(0) 0(0) 0(0) 0(0)
La 24(8) 3(2) 0(0) 0(0) 0(0) 0(0) 0(0) 96(28) 74(9) 15(0) 0(0) 0(0) 0(0) 0(0)
Li 90(53) 81(39) 47(12) 2(0) 0(0) 0(0) 0(0) 80(11) 29(1) 0(0) 0(0) 0(0) 0(0) 0(0)
Mn 71(22) 25(4) 2(0) 0(0) 0(0) 0(0) 0(0) 95(47) 71(21) 40(5) 2(0) 0(0) 0(0) 0(0)
Nb 83(43) 51(9) 10(0) 0(0) 0(0) 0(0) 0(0) 88(23) 54(2) 4(0) 0(0) 0(0) 0(0) 0(0)
Nd 30(10) 5(2) 0(0) 0(0) 0(0) 0(0) 0(0) 71(5) 12(1) 0(0) 0(0) 0(0) 0(0) 0(0)
Ni 56(21) 21(2) 0(0) 0(0) 0(0) 0(0) 0(0) 93(22) 53(1) 1(0) 0(0) 0(0) 0(0) 0(0)
Pb 53(23) 20(5) 3(0) 0(0) 0(0) 0(0) 0(0) 96(31) 72(10) 24(0) 0(0) 0(0) 0(0) 0(0)
Sc 78(21) 31(0) 0(0) 0(0) 0(0) 0(0) 0(0) 81(12) 19(0) 1(0) 0(0) 0(0) 0(0) 0(0)
Sr 79(14) 31(1) 1(0) 0(0) 0(0) 0(0) 0(0) 89(23) 45(7) 6(0) 0(0) 0(0) 0(0) 0(0)
Th 16(2) 2(0) 0(0) 0(0) 0(0) 0(0) 0(0) 69(1) 3(0) 0(0) 0(0) 0(0) 0(0) 0(0)
V 77(33) 46(6) 10(0) 0(0) 0(0) 0(0) 0(0) 92(39) 72(14) 25(1) 0(0) 0(0) 0(0) 0(0)
Y 57(17) 13(1) 0(0) 0(0) 0(0) 0(0) 0(0) 79(19) 33(1) 0(0) 0(0) 0(0) 0(0) 0(0)
Zn 77(51) 54(21) 23(3) 0(0) 0(0) 0(0) 0(0) 91(28) 54(7) 12(0) 0(0) 0(0) 0(0) 0(0)
Normal 100(96) 100(94) 100(99) 100(97) 100(94) 100(99) 100(100) – – – – – – –

Numbers in brackets are calculated after Lilliefors significance correction.
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samples compared with the wide data range associated
with high outliers. The high positive kurtoses show
that very high values in the data are rare, presumably
associated with rare processes such as mineralization.
Only Al, Na and Ga have fairly small kurtoses, show-
ing that these values are more evenly distributed within
the data ranges, and that special concentration of these
elements is rare.

Logarithmic transformation tends to move both
skewness and kurtosis for most elements towards nor-
mality, i.e., closer to 0. However, for the elements Al,
K, Na and Ga, the logarithmic transformation moves
them further away from normality, i.e., skewness and
kurtosis for the transformed data sets diverge further
from 0. Another feature of the logarithmic transforma-
tion is that most of the transformed data sets have nega-
tive skewness values showing that the log-transformation
has over-transformed the data. It should be pointed out
that the detection limits have some negative effects on
these shape parameters.
4.2. Normal Q–Q plots

Probabilistic display delineates discrete populations
that have genetic or other affinities as line segments
showing changes in slope (i.e., ‘‘kinks’’). The observed
distributions differ significantly from the synthetic distri-
butions modeled by Sinclair (1976) for chemical distri-
butions in rocks. This pioneering author appeared to
superimpose different types of distributions having the
same concentration range, which yielded curved changes
in slope. The present data include elemental distribu-
tions with substantial overlap and curvatures. However,
notable features are, in fact, the prominent role of line
segments showing sharp angular change. Such features
require largely discrete chemical subpopulations.

Flat segments on normal Q–Q plots are most prom-
inent for Al, Na, K, Ga and Sc. An approximate normal
distribution is expected for major chemical constituents
(i.e., Al in aluminosilicates) or elements that are essential
components in rock-forming minerals (e.g., K and Na in



Table 5
Effect of sample size on results of K–S test: percent of 100 random sub-samples showing normality at p > 0.0001

n Raw data Log-transformed data

50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000

Al 100(100) 100(98) 100(99) 100(94) 100(60) 97(1) 0(0) 100(31) 85(2) 8(0) 0(0) 0(0) 0(0) 0(0)
Ca 95(22) 40(0) 0(0) 0(0) 0(0) 0(0) 0(0) 100(83) 100(36) 86(1) 1(0) 0(0) 0(0) 0(0)
Fe 99(85) 95(56) 80(9) 6(0) 0(0) 0(0) 0(0) 100(71) 100(34) 72(3) 2(0) 0(0) 0(0) 0(0)
K 100(98) 100(91) 97(67) 93(9) 20(0) 0(0) 0(0) 98(7) 35(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Mg 99(78) 91(41) 59(0) 0(0) 0(0) 0(0) 0(0) 100(71) 100(20) 64(0) 0(0) 0(0) 0(0) 0(0)
Na 100(99) 100(88) 100(4) 1(0) 0(0) 0(0) 0(0) 100(37) 88(2) 14(0) 0(0) 0(0) 0(0) 0(0)
P 99(88) 91(56) 74(18) 13(0) 0(0) 0(0) 0(0) 100(91) 100(42) 96(4) 0(0) 0(0) 0(0) 0(0)
Ti 100(49) 95(9) 11(0) 0(0) 0(0) 0(0) 0(0) 100(100) 100(97) 100(92) 100(43) 95(3) 10(0) 0(0)
Ba 100(99) 96(86) 86(79) 70(36) 33(1) 1(0) 0(0) 100(51) 96(6) 37(0) 0(0) 0(0) 0(0) 0(0)
Ce 75(24) 20(3) 1(0) 0(0) 0(0) 0(0) 0(0) 100(92) 100(68) 99(15) 47(0) 0(0) 0(0) 0(0)
Co 100(66) 95(29) 58(1) 0(0) 0(0) 0(0) 0(0) 100(71) 100(16) 60(0) 0(0) 0(0) 0(0) 0(0)
Cr 98(52) 77(5) 16(0) 0(0) 0(0) 0(0) 0(0) 100(99) 100(93) 100(72) 91(5) 13(0) 0(0) 0(0)
Cu 89(56) 72(18) 24(0) 0(0) 0(0) 0(0) 0(0) 100(98) 100(80) 100(25) 45(0) 0(0) 0(0) 0(0)
Ga 100(100) 100(100) 100(95) 100(17) 67(0) 0(0) 0(0) 100(62) 98(5) 54(0) 0(0) 0(0) 0(0) 0(0)
La 72(22) 19(4) 2(0) 0(0) 0(0) 0(0) 0(0) 100(94) 100(69) 97(16) 33(0) 0(0) 0(0) 0(0)
Li 100(89) 98(77) 91(43) 62(4) 4(0) 0(0) 0(0) 100(73) 100(17) 64(0) 0(0) 0(0) 0(0) 0(0)
Mn 100(70) 92(32) 66(1) 2(0) 0(0) 0(0) 0(0) 100(92) 100(82) 100(42) 58(0) 3(0) 0(0) 0(0)
Nb 98(82) 92(57) 79(11) 6(0) 0(0) 0(0) 0(0) 100(89) 100(43) 96(3) 1(0) 0(0) 0(0) 0(0)
Nd 78(31) 29(10) 5(0) 0(0) 0(0) 0(0) 0(0) 100(67) 100(17) 50(0) 0(0) 0(0) 0(0) 0(0)
Ni 95(55) 72(27) 31(0) 0(0) 0(0) 0(0) 0(0) 100(87) 100(40) 88(3) 1(0) 0(0) 0(0) 0(0)
Pb 79(48) 52(23) 18(3) 0(0) 0(0) 0(0) 0(0) 100(93) 100(72) 99(31) 41(0) 0(0) 0(0) 0(0)
Sc 100(75) 100(27) 65(1) 1(0) 0(0) 0(0) 0(0) 100(76) 100(16) 67(1) 0(0) 0(0) 0(0) 0(0)
Sr 98(80) 94(29) 60(1) 0(0) 0(0) 0(0) 0(0) 100(87) 100(48) 94(8) 5(0) 0(0) 0(0) 0(0)
Th 69(17) 23(2) 0(0) 0(0) 0(0) 0(0) 0(0) 100(72) 99(0) 36(0) 0(0) 0(0) 0(0) 0(0)
V 100(77) 97(46) 78(10) 4(0) 0(0) 0(0) 0(0) 100(91) 100(65) 100(29) 39(0) 0(0) 0(0) 0(0)
Y 95(54) 80(15) 27(0) 0(0) 0(0) 0(0) 0(0) 100(78) 100(37) 73(0) 3(0) 0(0) 0(0) 0(0)
Zn 90(78) 77(54) 50(21) 13(0) 0(0) 0(0) 0(0) 100(89) 100(48) 99(11) 2(0) 0(0) 0(0) 0(0)
Normal 100(100) 100(100) 100(100) 100(100) 100(100) 100(100) 100(100) – – – – – – –

Numbers in brackets are calculated after Lilliefors significance correction.
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feldspars and their weathering products, and Fe in oxi-
des and with Mg in mafic rocks). Straight (normal) seg-
ments for Ga (and to a lesser extent, Sc) are explained by
the diadochic geochemical behavior of this trace element
with Al, e.g., Ga has similar ionic radius and chemical
properties as Al (Goldschmidt, 1954 and references ci-
ted). Gallium therefore tends to occur in constant ratio
with Al, regardless of the mineral phase.

The lognormal Q–Q plots demonstrate that many
trace metals tend to approach an S-shape where the low-
er (left) part is slightly curved, whereas the right part of
the curve bends over to form a flatter and often linear
slope. If analytical sensitivity is low enough, dispersal
in or dilution of an enriched phase by a more common
phase or phases can produce a lognormal distribution
(flatness) on the left side of log plots. Contaminated sed-
iments enriched in Cu, Zn, Cr, Ag, and other trace met-
als, and variably diluted with clays and sand in harbours
or estuaries demonstrate this kind of relationship (Man-
heim et al., 1999). Separate enrichment processes, how-
ever, may control the right side of the plot. This is
displayed by heavy metals like Cu, Zn, Pb, Ag, and rare
earths which in this data set are represented by Ce, La, Y
and Nd. The slope toward higher concentrations is
much steeper than on the left. Between the two discrete
populations there will be a curved mixing line. Elements
like Calcium, Fe and Ba show ‘‘bumpy’’ or ‘‘kinky’’
irregular curves, consistent with their presence in mixed
populations of diverse mineral phases. Calcium, for
example, is variably enriched in Ca feldspar in metamor-
phic rocks, as well as in sedimentary rocks like lime-
stone, dolomite and phosphorite. The extended flat
segment of Ca toward the right in the normal Q–Q plots
is suggested to be associated with carbonates. This con-
clusion is supported by examination of an independent
NGS data set (‘‘XRF’’) in USGS (2004), where correla-
tion between high Ca and ignition loss as a surrogate for
CO2 can be observed. Titanium follows the pattern of
ferrides (Co, Ni, Cr, V) in higher concentration regions,
and of other major constituents in lower concentrations.
In a large data set of the current type other mixed pop-
ulations that have less obvious expression may be
present.

Even though multiple kinks can be attributed to mul-
tiple populations on these Q–Q plots, it may still be a
challenge to properly identify them. One way to do this
is to identify samples that belong to a distinct line seg-
ment using plotting software that allows identification
of individual samples on the slope by brushing with
the mouse. Related chemical or other properties of sam-
ples associated with the points can then be identified.
For example, selecting point data on high-concentration
segments on the right side of either the Cu, Pb or Zn
curves demonstrates that these points are enriched in
all three of these elements, but not in Cr. This pattern
suggests sulfide mineralization. Copper, Pb and Zn can
be enriched in soils highly contaminated with sewage
sludge, but municipal sewage sludge normally contains
enhanced Cr as well and does not reach such high metal
values. Therefore, the authors suggest sulfide ore miner-
alization over pollution as the principle source of the
metal-enriched samples.

Logarithmic transformation ‘‘overtransforms’’ plots
for major and other elements that display flatness in nor-
mal Q–Q plots, changing their skewnesses (deviation
from the straight line delineating normality) from posi-
tive to negative values. Finally, lognormal Q–Q plots
delineate detection limits especially sharply in the form
of vertical overlapping segments separated from the ma-
jor body of analyses. Although the present sample set
has been reanalyzed to minimize systematic error, an-
other capability of probability plotting, which will not
be discussed in this paper, is to suggest both the presence
and nature of analytical errors.

4.3. Effect of sample size

The total data set used here would not be expected to
show normal distributions because of its heterogeneity
as mentioned earlier. However, a pattern of K–S test
values signifying significant tendencies toward normality
or lognormality emerges rapidly as the number of data
points in random re-samplings decreases toward 200
samples or less. At 200 samples the normal sample data
set has 4 elements, Al, Ga, Ba, and K, for which 50% of
data sets pass the K–S test. At 100 samples, 9 elements
pass, and at 50 samples, 22 elements pass. Comparable
numbers for the lognormal computations are 2, 12,
and 24, respectively.

The large sample size issue may not have received en-
ough attention. Many if not most statistical studies have
focused on small sample sizes. However, studies by
Cornfield (1966), Morrison and Henkel (1970, and refer-
ences cited) and Gingerich (1995) suggest that statistical
significance level is related to sample size. Generally, at a
given significance level (p-value), when the sample size is
small, it is hard to reject the null hypothesis; when the
sample size is large, it is easy to reject it. Lindley and
Scott (1984, p. 3) wrote that ‘‘All significance tests are
dubious because the interpretation to be placed on the
phrase �significant at 5%� depends on the sample size:
it is more indicative of rejection of the falsity of the null
hypothesis with a small sample than with a large one’’.
With the increase of sample size, as statistical tests be-
come more powerful, a lower significance level may be
chosen. In this study, results of Table 5 were obtained
based on a very low significance level of 0.01%. How-
ever, even at this level the large data set fails to pass
the K–S test for normality as shown in the table.

The effect of sample size on statistical tests provides
an explanation for Ahrens� (1954, 1965) lognormal data
claims. Ahrens� initial results were based only on about
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100 samples. At this small sample size many elements
could have shown lognormality even though their parent
populations were highly heterogeneous, as demonstrated
in this study. Meanwhile, this result also provides an
explanation for recent studies demonstrating that geo-
chemical data sets follow neither normal nor lognormal
distributions (e.g., Reimann and Filzmoser, 2000), as
sample sizes in geochemical data sets get larger. Of
course, other factors than sample size, like those related
to mixture of populations, existence of outliers, constant
detection limits, and two-sided truncation of concentra-
tion values (between 0 and 100%), may also play a role.

Differences between real datasets and theoretical dis-
tributions always exist. When the sample size is large,
such differences can be more easily detected by statistical
tests. They lead to rejection of most statistical hypothe-
ses. The hypothesis testing framework is essentially de-
signed for inference from small samples. With large
datasets one needs a different mindset: extensive data
can be used to explore complex relationships and delin-
eate interesting features. The probability plot approach
is recommended for preliminary analysis of such data
sets. Meanwhile, probabilistic approaches combined
with random sampling such as was utilized in these stud-
ies, or employing other partial data selection based on
specific criteria, may offer experimental approaches for
larger geochemical data sets in the future.
5. Conclusions

Re-sampling of the NGS database (n = 48,544) of the
U.S. Geological Survey yielded 16,511 samples on a
17 · 17 km grid. This re-sampling removed the effect of
clustering of the base data set, providing a more repre-
sentative data set for the whole area under study. The
base data themselves represent a selection of a much lar-
ger raw data repository that USGS has subjected to
reanalysis by uniform methods in recent years.

Histograms show widely distributed skewness in min-
or and trace elements in the data set. This skewness is
partly due to mixed populations and some highly en-
riched phases, such as near ore-grade enrichment in
Cu, Zn, Pb, Ag, and rare earth elements. High maxi-
mum concentrations and lack of association of the latter
elements with elements often related to pollutants (e.g.,
Cr) suggest that these enrichments are due to sulfide
mineralization rather than contaminated sediments.

Major chemical constituents of rocks and chemical
building blocks of major mineralogical components of
rocks (e.g., Na and K in clay minerals) tend to display
straight-line segments on normal Q–Q plots. Except
for values below detection, Al concentrations conformed
most closely to normal, straight-line distribution.

Dispersal and dilution of enriched chemical constitu-
ents by phases like quartz sand produces lognormal dis-
tributions and straight-line segments on lognormal Q–Q
plots. Elements that show flat segments attributed to
mineralization processes include Cu, Zn and Pb as sul-
fides, and rare earth elements, especially Ce. Relatively
high detection limits curtailed detailed observations of
contaminant metals and elements. Elements whose
curves show more complex kinks include Ca, Fe and
Ba, attributable to enrichment in multiple mineral
phases.

Randomly selected samples ranging in size from 50 to
5000 were taken from the parent population of 16,511
used in this study. At small sample sizes all elements
showed test scores indicating either normal or lognormal
behavior, whereas at sample sizes exceeding 1000 few
elements passed the K–S and Lilliefors tests for statisti-
cal normality at the 0.05 significance level. Statistical
tests are designed for relatively small sample sizes. With
large sample sizes alternative graphical methods are
recommended.

The probability plots permitted useful characteriza-
tion of outlier populations, allowing visual comparison
among elemental groups, as well as quick assessment
of quantitative relationships for element-rock associa-
tions. The combination of concentration and cumulative
frequency in the form of normal Q–Q plots offer useful
features for displaying large data sets encompassing
complex mixtures and a wide range of concentrations.
Extremes, both on the low concentration side, as well
as on the high side, as in heavy metals, are well dis-
played. Outlier subpopulations and their genetic affini-
ties can be identified, and analytical factors and
limitations like detection limits are conveniently obser-
vable without distorting the display.
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