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ABSTRACT

Short-wave infrared (SWIR) reflectance spectroscopy is a quick and effective method of detecting and char-
acterising hydrothermal alteration associated with ore deposits, and can identify not only mineral species but
also changes in the major element composition of minerals. Porphyry deposits represent large accumulations of
valuable metal in the Earth's crust and have extensive alteration signatures making them an attractive target for
exploration, particularly by remote sensing which can cover large areas quickly. Reflectance spectroscopy has
been widely applied in sericitic (phyllic), argillic and advanced argillic alteration domains because it is parti-
cularly effective in discriminating bright clay minerals. However, the propylitic domain has remained relatively
unexplored because propylitic rocks are typically dark and produce relatively poorly-defined spectra.

This study utilised an ASD TerraSpec 4 handheld spectrometer to collect SWIR spectra from rocks surrounding
the Batu Hijau Cu-Au porphyry deposit in Indonesia, where previous work has identified systematic spatial
variations in the chemistry of chlorite, a common propylitic alteration mineral. Spectra were collected from 90
samples and processed using The Spectral Geologist (TSG) software as well as the Halo mineral identifier to
characterise mineralogy and extract the positions and depths of spectral absorption features, which were then
correlated with major element geochemistry. Two diagnostic chlorite absorption features located at around
2250 nm and 2340 nm correlate with the Mg# (Mg/[Mg + Fe]) of chlorite, both in terms of wavelength position
and depth. As the Mg# increases, the wavelengths of both features increase from 2249 nm to 2254 nm and from
2332 nm to 2343 nm respectively, and absorption depths also increase significantly. In the spatial dimension,
these feature variations act as reasonably strong vectors to the orebody, showing systematic increases over a
transect away from the porphyry centre, peaking at distances of around 1.6 km, which matches the spatial trend
displayed by Mg#, as well as various trace element indicators in chlorite. The hull slope in spectra between
1400 nm and 1900 nm is also shown to increase with Mg#, and the position of an absorption feature at 1400 nm
increases with the Al:Si ratio, a parameter that also tends to increase with proximity to porphyry deposits.

Feature depth variations in particular appear to represent a new finding in chlorite reflectance spectroscopy;
however, the causes are not entirely clear and require further investigation. Nonetheless, the systematic beha-
viour provides a potentially useful new tool for exploration in propylitic alteration zones.

1. Introduction

Porphyry deposits represent some of the largest accumulations of
metal in the Earth's crust and are the primary source of the world's Cu
and Mo, and an important source of Au and other metals (Sillitoe,
2010). Deposits are formed as a result of hydrothermal fluids that ex-
solve from intrusive magmatic bodies, precipitating metals into the
surrounding rocks. The outward movement of these hydrothermal

fluids creates distinct alteration zones recognised by the occurrence of
specific mineral assemblages (Sillitoe, 2010; Cooke et al., 2014a). The
propylitic alteration zone represents the most distal signature of mi-
neralisation, detectable kilometres away from the main orebody (Cooke
et al., 2014a) and, as such, is an important target for exploration. Al-
teration zoning is not only expressed in mineralogy, but in whole-rock
and mineral geochemical trends which can act as vectors towards or-
ebodies (e.g. Emmons, 1927; John, 1978; Norman et al., 1991; Cooke
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Fig. 1. Principal tectono-magmatic features of Indonesia. The major subduction zone is shown as well as the Sunda-Banda magmatic arc. Subduction of the Indo-Australian plate beneath

the Eurasian plate produces the calc-alkaline magmatism that characterises the Cenozoic Sunda-Banda arc. Batu Hijau is located on the island of Sumbawa in the south-west (inset map).
Modified after Garwin et al. (2005).
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Fig. 2. Alteration map of the Batu Hijau district showing both early-stage (greyscale) and late-stage (colour) alteration. Modified after Garwin (2000). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Technical specifications of the TerraSpec 4 spectrometer and Hi-Brite Contact
Probe accessory that were used to collect infrared-spectra (ASD Inc., 2015).

ASD TerraSpec 4 Standard-Res Mineral Analyzer

350-2500 nm

(350-1000 nm) 512 element silicon array
(1001-1800 nm) & (1801-2500 nm) Graded Index
InGaAs Photodiode, TE Cooled

3 nm (VNIR range)

10 nm (SWIR 1 & 2 range)

Wavelength range
VNIR detector
SWIR 1 & 2 detectors

Spectral resolution
(smallest detectable
absorption feature)

Wavelength accuracy

Signal-to-noise ratio

0.5nm

9000:1 (VNIR & SWIR 1 range)
4000:1 (SWIR 2 range)

2151

Indico® Pro

Number of channels
Acquisition software

Hi-Brite Contact Probe

Light source
Spot size

Halogen bulb, 2901 °K ( = 10%)
10 mm

et al., 2014b; Wilkinson et al., 2015).

Remote sensing is a valuable tool in mineral exploration, providing
a quick way to identify and map hydrothermal alteration products over
large areas. Much work has been done on characterising the hydro-
thermal alteration associated with ore deposits in terms of spectral
signatures (Yang and Huntington, 1996; Herrmann et al., 2001; Sun
et al., 2001; Jones et al., 2005) including porphyry deposits specifically
(Cudahy et al., 2001; Chang et al., 2011; Dilles, 2012; Zadeh et al.,
2014; Halley et al., 2015). However the focus of these studies is on the
clay-dominated, argillic and sericitic alteration assemblages. In relation
to a particular exploration application, Chang et al. (2011) showed that
it is possible to use spectral features of alunite in the advanced-argillic
alteration zone as pointers towards porphyry ore deposits.

Investigations into the SWIR spectroscopy of chlorite and epidote,
two of the most prevalent propylitic alteration minerals, are few.
However, sensitivity of SWIR spectra to mineral chemical changes that
are recognisable both in the laboratory (King and Clark, 1989;
Liebscher, 2004; Bishop et al., 2008) and in hyperspectral imaging
(Cudahy et al., 2001; Roache et al., 2011) have been recognised. This
indicates that spectral characteristics might be able to act as a vector to
orebodies in the propylitic domain as well as the more proximal al-
teration zones.

The large footprint of propylitic alteration should present an at-
tractive target for remotely sensed mineral exploration. However, the
rocks that typify propylitic alteration zones are often dark (low re-
flectance) making their characterisation exceedingly difficult.
Fortunately, the availability of increasingly sensitive portable field
spectrometers has opened up the possibility of tackling this problem.
These spectrometers are an ideal tool for detailed investigations into the
spectral features of rocks; they can produce high-resolution spectra, free
from the effects of atmospheric scattering and absorption, and have
absorption features clearly detectable even at reflectance values as low
as 1%.

This study utilised an ASD TerraSpec 4 spectrometer to collect in-
frared spectra of rocks from the Batu Hijau porphyry copper system in
Indonesia. It builds on previous research done as part of the AMIRA
P765A research project (AMIRA International Ltd., 2008) which in-
cluded studies of spatial variation in the geochemistry of chlorite
(Wilkinson et al., 2015) and epidote (Cooke et al., 2014b). Most im-
portantly, the work utilised the same samples analysed by Wilkinson
et al. (2015) so that extensive prior knowledge of whole-rock geo-
chemistry and mineral chemistry was available. The primary aims were
to characterise the infrared spectra of propylitic rocks throughout the
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Batu Hijau alteration footprint, and to identify any spectral features
that might reflect systematic geochemical variation in the spatial do-
main which could therefore act as vectors towards economic miner-
alisation. Longer term, it is hoped that such features could be targeted
by airborne hyperspectral or even satellite remote sensors, such as
ASTER or WorldView-3, allowing a relatively quick way to search large
areas of propylitic alteration for contained porphyry deposits.

2. Background geology

Batu Hijau is a giant Cu-Au porphyry deposit located in the south-
western part of Sumbawa island, Indonesia (Fig. 1). It is situated in the
Sunda-Banda Arc which is host to numerous magmatic-hydrothermal
deposits (Garwin et al., 2005), related to calc-alkaline magmatism re-
sulting from subduction of the Indo-Australian Plate beneath the Eur-
asian plate. Prior to the start of open pit mining, Batu Hijau contained
an estimated 1644 Mt of ore with copper and gold grades of 0.44% and
0.35 g/t respectively (Cooke et al., 2005).

The Batu Hijau district is largely made up of an Early to Middle
Miocene volcaniclastic sequence which comprises volcanic lithic brec-
cias and volcanic sandstones with local limestone layers. This is cut by
several intrusive phases dating from the Early to Middle Miocene on-
wards which include andesites and andesite porphyries, quartz diorites,
and porphyritic tonalites (Garwin, 2002). Mineralisation is strongly
associated with tonalite porphyries in four main centres: Batu Hijau,
Sekongkang, Arung Ara and Katala (Fig. 2). Batu Hijau is significantly
larger and higher grade than the rest (Garwin, 2002). At least three
intrusive episodes occurred in the Batu Hijau tonalite porphyry com-
plex at the core of the system, with mineralisation and alteration in-
tensity decreasing with each subsequent intrusion (Clode et al., 1999).

Potassic alteration, in the core of the Batu Hijau system, is typified
by the replacement of hornblende groundmass in the host tonalites by
biotite and magnetite. The surrounding propylitic alteration can be split
into three subzones which, in order of increasing distance outwards,
comprise: (1) actinolite + epidote * chlorite; (2) epidote + chlorite;
and (3) chlorite (replacing mafic minerals) = calcite + albite (Fig. 2;
Garwin, 2002; Clode et al., 1999). A transitional chlorite-sericite (in-
termediate argillic zone) developed after the propylitic and potassic
alteration stages, overprinting the biotite (potassic) and actinolite zones
(Idrus et al., 2009). Late-stage, structurally-controlled, argillic and ad-
vanced argillic alteration are widespread and overprint earlier altera-
tion (Fig. 2; Clode et al., 1999; Garwin, 2002; Idrus et al., 2009).

3. Methodology

Short-wave infrared (SWIR) spectra were collected for 90 samples
from the Batu Hijau deposit (Table 2). Samples were scanned in dark
laboratory conditions using an ASD TerraSpec 4 reflectance spectro-
meter with the Hi-Brite Contact Probe accessory that acts as an illu-
mination source and collects reflected light. Technical specifications are
outlined in Table 1. Samples consisted of resin-mounted, polished rock
slices, providing an ideal flat surface for the contact probe. Spectral files
were created as an average of 3 scans at different points on each
sample. Double the recommended scan time was used (10 s, following
the recommendation of Chang and Yang, 2012 for dark, low reflectance
rocks) to increase signal-to-noise ratios. Two sets of spectral files were
generated via this process for each sample, acquired on different days,
to assess the impact of differences in ambient lighting. In general, there
is excellent agreement between the replicates (Table 2).

Spectra were primarily analysed using The Spectral Geologist (TSG)
software, and selected for further investigation based on classification
and mineral identification by The Spectral Assistant (TSA), a matching
algorithm which identifies a linear mixture of two minerals in the li-
brary that best match the spectrum (CSIRO, 2010). Only spectra de-
termined to contain either chlorite or epidote as the principal SWIR-
active mineral phase (Table 2) were used in the subsequent analysis.
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Fig. 3. A standard reflectance spectrum (top) compared to a spectrum with the hull-
quotient correction applied (bottom) which removes the continuum caused by broader
background variation. The feature depth and the wavelength position at minimum, two
important spectral characteristics, are also illustrated for one absorption feature.
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Fig. 4. Abundance of primary and secondary mineral groups as determined by: (A) The
Spectral Assistant (TSA); and (B) the Halo mineral identifier. Invalid refers to samples
where no mineral could be identified from the spectrum.

Wavelength positions and depths of features were calculated from the
two average spectra for each individual sample. The average of these
results are given in Table 3. These values were extracted from the

Journal of Geochemical Exploration 184 (2018) 179-198

profiles of hull-quotient corrected spectra; this correction accentuates
absorption features by removing broad background variation (Fig. 3).

Analysis of the spectra was also undertaken by ASD Inc.
(PANalytical) utilising the Halo mineral identifier in order to compare
results obtained using a different matching algorithm. The considerably
larger library of mineral spectra that Halo incorporates also enabled the
identification of additional minerals that TSG could not.

Geochemical data were previously collected as part of the AMIRA
P765A project. These data include whole-rock geochemistry, electron
microprobe analyses (EMP) of chlorite and epidote grains, and laser
ablation inductively-coupled-plasma mass spectrometry (LA-ICP-MS)
analyses of chlorite grains (Table 3). EMP data were primarily used to
define the major element compositions of minerals; this was acquired
on multiple spots on multiple grains in each sample, with an average of
10 measurements per sample. These were validated based on stoi-
chiometry prior to inclusion in the database. Chlorite LA-ICP-MS data
were used to define major element chemistry in four samples where
EMP data were not available. Outliers in the EMP data were identified
as any measurements where at least one major element (Fe, Al, Si, O,
Mg, Ca) fell outside the bounds of the mean of the dataset + 20 for each
mineral. Multiple spot analyses for each sample were averaged and =

1o standard error used as a practical measure of combined analytical
uncertainty and natural, within-sample variability.

4. Results
4.1. Spectrally-determined mineralogy

The Spectral Assistant identified chlorite and epidote as the most
abundant SWIR-active mineral groups in the samples, with white-mica
and carbonates also making up significant contributions (Figs. 4A, 5A,
B). Chlorite, where identified, was almost always the primary mineral.
Epidote was common as the second most abundant SWIR-active mineral
in chlorite-domincary mineral. The results from Halo (Figs. 4B, 5B)
were generally similar, but identified clays (primarily smectites and
vermiculites) as dominant in the biotite and actinolite zones, with
chlorite commonly attributed as the secondary mineral. Although the
identification of these phases should be treated with caution, their
presence would be consistent with the later argillic overprint that has
been well mapped in the proximal parts of the alteration system
(Fig. 2). Halo also classified many spectra that TSA could not, with most
being zeolite-dominant, particularly in the very distal samples. Minerals
contained in each group are shown in Table 4.

Of the 90 samples, 46 produced spectra with the primary mineral
identified by TSA as either chlorite or epidote (Fig. 5C). Of this subset,
30 were attributed to containing primarily chlorite, 10 to containing
primarily epidote, and 6 where it was unclear (likely containing
roughly equal amounts of each). Separate spectra collected on different
areas of the same sample were very consistent (Fig. 6) indicating that
the SWIR response is reproducible and varies more between samples (as
a function of spatial position and mineral abundance) than within
samples.

4.2. Chlorite

Chlorite chemistry from throughout the propylitic zones at Batu
Hijau shows significant variation in terms of Fe and Mg which have a
strong inverse correlation (Fig. 7A) related to the well-established solid
solution between the iron and magnesium end-members (Deer et al.,
2009). The Mg/(Mg + Fe) mass ratio (Mg#) ranges from 0.30 to 0.62
which translates to Mg/Fe molar ratios between 0.78 and 0.51 with a
mean of 0.68 * 0.01 (10). Comparison of chlorite Mg# to the whole-
rock Mg# shows no correlation (Fig. 7B) suggesting a lack of protolith
control of chlorite composition. Si content shows an inverse correlation
with Al (Fig. 7C), probably as a result of the Tschermak substitution:
ABT + ABRY =Si* T + M2 (Deer et al, 2009). Ca is also strongly



L.C. Neal et al.

Journal of Geochemical Exploration 184 (2018) 179-198

—9012 000 N

[~ 9008 000 N

LIMIT OF MAP

Primary Mineral

® Amphibole
Carbonate

@ Chlorite

©® Clay

® Epidote

® Biotite

® White-mica
Fe-minerals
Zeolite

@ Invalid

T
486 000 E

Secondary Mineral
P Amphibole
®e Biotite
== Carbonate
4 Chlorite
¥V Clay
M Epidote
A White-mica
$ Zeolite
1 Other
@ None

AR
BRI
RN M'OOQ’Q'«
st BRI
RN
KRR
X

—9012 000 N

- 9008 000 N

B

T
486 000 E

=

SRR
REXRLIRTN
AN

Late-stage alteration

Early alteration

@ Strong biotite (>90%
of mafics replaced)

@ Biotite present (weak/relict) E

Actinolite present

Moderate epidote (>20%
plag. replaced; veins)

D Epidote present (weak)

D Chlorite present, no epidote

1 Advanced argillic {7 Intermediate argillic

o
f

1 Sericitic/paragonitic litic
3

Fig. 5. Spectrally-determined mineralogy of the samples overlaid on alteration maps of Batu Hijau. Colour corresponds to the primary mineral group and shape corresponds to the
secondary mineral group. (A) Classification of spectra by The Spectral Assistant. (B) Classification of spectra as determined by The Halo mineral identifier. (C) Samples classified according
to their dominant mineral (from TSG). ‘Chlorite/Epidote’ refers to samples classified as chlorite in one instance, and epidote in the other — it is probable that they contain roughly equal
amounts of each. Samples classified as ‘Other/Invalid’ were not used in any analysis involving spectral features. Base map modified after Garwin (2000).

correlated with Si and inversely correlated with Al (Fig. 7D).
Chlorite-dominated spectra are characterised by two key absorption
features centred around 2250 nm and 2340 nm (Fig. 8), caused by
Fe—OH and Mg—OH bond stretching respectively (Herrmann et al.,
2001). A third feature occurs at around 2000 nm but this is masked by a
large feature at 1910 nm, present in all samples, that is attributable to
the presence of molecular water. A feature at around 1400 nm is also

188

consistently present, caused by OH™ (Clark et al., 1990; Bishop et al.,
2008), but is not diagnostic of chlorite. In many samples, an absorption
feature at around 2195 nm is probably a result of the presence of clay
minerals containing Al-OH groups (Clark et al., 1990; Herrmann et al.,
2001). There is also a notable slope (hull) that descends from
~1900 nm to ~ 1400 nm with variable gradient.

Within the spectra classified as chlorite-dominant, the most
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Table 4
Classification of minerals (as identified and named by TSG and Halo) into mineral groups used in Figs. 4, 5A, 5B.
Amphibole Biotite Carbonate Chlorite Clay Epidote Fe-minerals White-mica Zeolite Other
Hornblende Biotite Calcite Chlorite Mg-illite Epidote Hematite Muscovite Chabazite Brucite
Phlogopite Aragonite Corrensite Vermiculite Clinozoisite Jarosite Paragonite Heulandite Prehnite
Dolomite Beidellite Zoisite Paragonitic illite Philippsite-Ca
Ankerite Palygorskite Phengitic illite Harmotome
Siderite Kaolinite Laumontite
Montmorillonite Clinoptilite
Iron saponite
Rectorite
Ammonio-clay
Stilpnomelane

Sample ID: BH-20

Sample ID: SBD143-41

Reflectance (Stacked)

Sample ID: BH05-73

2400

1800 2100

Wavelength (nm)

1200 1500

Fig. 6. Comparisons between two, separately obtained spectra taken for the same sample
(shown in three examples). Spectra are very consistent despite being obtained separately
on different days, at different points on each rock sample.

noticeable variation occurs in the position and depth of absorption
features centred around 2250 nm and 2340 nm, which are strongly
coupled (Fig. 9). For the absorption centred around 2250 nm, the exact
wavelength position of the feature minimum varies between 2255 nm
and 2248 nm. For the absorption centred around 2340 nm this varies
between 2343 nm and 2328 nm. The maximum depth of both features
varies between 0.03 and 0.55 (fraction of reflectance range).

The positions of these two features show a relatively strong inverse
correlation with the Mg# of chlorite in the samples (Fig. 10). Samples
containing more Mg-rich chlorite correspond to spectra where both the
2250 nm and 2340 nm features are shifted to lower wavelengths.
Spectra with absorption feature minima at the lowest wavelengths ap-
pear to be anomalous, with wavelength values more in fitting with the
samples not classified as chlorite-dominated.

The depth of both features also shows a negative correlation with
the Mg#, which is considerably stronger at depths below ~0.34
(Fig. 11). Data points with greater depth values appear to be more in
the range of depths shown by epidote-dominated samples.

Changes in the slope of the hull between 1900 nm and 1400 nm are
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Fig. 7.Plots of element concentrations for
chlorite grains. Data are averaged for each
sample and 1o standard error bars are shown.
EMP and LA-ICPMS data are shown in different
symbols. (A) Mg concentration plotted against Fe
concentration showing a positive correlation. (B)
Whole rock Mg# plotted against chlorite Mg#
showing no correlation (R* = 0.017). Si con-
centration plotted against Al concentration for
chlorite grains. A negative correlation is seen
between Si and Al content. (D) Si concentration
plotted against Ca concentration showing a po-
sitive correlation. Data derived from AMIRA
P765A project database.
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Fig. 8. SWIR spectrum of a sample predominantly made up of chlorite (according to The
Spectral Assistant). Diagnostic features include the Fe-OH and Mg-OH absorption features
at ~ 2250 and ~ 2340 nm, the weak (masked) feature at ~2000 nm and the hull between
~1900 nm and ~1400 nm. Red labels indicate features in the spectrum caused by the
presence of other minerals. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

also observed, with more Fe-rich samples having a steeper slope
(Fig. 12). The aforementioned features are illustrated in selected
spectra (Fig. 13).
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Ca (Wt%)

The position of the OH™ absorption feature at around 1400 nm also
shows systematic variation which correlates fairly strongly with the
AlL:Si ratio of chlorite in the samples, with Al-rich chlorite producing
spectra with the feature shifted to higher wavelengths (Fig. 14).

4.3. Epidote

Epidote geochemistry shows most variation with respect to Fe and
Al (Table 3) representing the solid solution between epidote and clin-
ozoisite. Molar Fe:Al ratios range from 0.50 to 0.24, meaning all sam-
ples (except one) fall into the classification of epidote (Franz and
Liebscher, 2004). Other major elements, including Ca, show remarkably
little variation.

In epidote-dominated spectra (Fig. 15) two absorptions are once
again observed at around 2250 nm and 2340 nm, caused by Fe—OH
bonds (Clark et al., 1990). However, the most diagnostic feature occurs
at ~1550 nm and the presence of epidote in a sample is most readily
identified by this. Once again, absorptions are seen at ~1400 nm and
~1910 nm.

The range in wavelength positions of the 2250 nm and 2340 nm
absorption features (2251-2255 nm and 2336-2342 nm respectively) is
significantly less than in chlorite. The depth of the 2340 nm feature is
generally greater than in chlorite (mean = 0.3 compared with 0.2) but
that of the 2250 nm absorption is about the same (Table 3). No sig-
nificant variations in absorption features were observed that correlate
with chemical composition (e.g. the Fe:Al ratio), however this may be
due, in part, to a paucity of data.
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Fig. 9. Plots showing the coupling of absorption features at 2250 nm and 2340 nm. (A)
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absorption depths showing a positive correlation.

4.4. Spatial patterns in chlorite spectral response and chemistry

A number of spectral and chemical features of chlorite vary spa-
tially, relating primarily to distance away from the Batu Hijau porphyry
centre and from the Sekongkang prospect.

4.4.1. 2250 and 2340 absorption positions

The wavelength position of the features at 2250 nm and 2340 nm
are lowest near the centre of the Batu Hijau system, and show a sys-
tematic shift to longer wavelengths away from the centre, providing a
strong vector to the orebody (Fig. 16). Plotting the data as a function of
radial distance from the centre reveals a general increase of the wa-
velength positions from the centre to ~1.2 km, beyond which the va-
lues generally plateau (Fig. 17), approximately coincident with the
edge of the actinolite subzone. The 2340 nm feature also follows this
trend in the northwest with respect to the Sekongkang porphyry centre
(Fig. 16B).
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Fig. 10. Chlorite Mg# plotted against the wavelength position at absorption feature
minimum for: (A) the 2250 nm absorption; and (B) the 2340 nm absorption. Both features
show a reasonably strong negative correlation. Outliers are present at lower wavelengths
(shown in grey). Linear regression lines are shown (excluding outliers). Vertical error bars
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4.4.2. 2250 and 2340 absorption depths

The depths of the 2250 nm and 2340 nm absorptions show similar
patterns, deepening systematically away from the porphyry centre
(Fig. 18). The vector to mineralisation remains strong, albeit less clear
than in the case of wavelength positions. The Sekongkang prospect is
not picked out by feature depth variation which is interesting as a po-
tential discriminator between well-mineralised and poorly mineralised
systems. Unlike the wavelength positions, absorption depths con-
tinually deepen away from the centre (Fig. 19), although values are
unusually elevated at around 1 km to 1.5 km.

4.4.3. Major element chemistry

The chlorite Mg/Fe substitution, as reflected by the Mg#, is likely to
be the principal control on absorption position and possibly depth. This
also shows systematic, but slightly more complicated, changes from the
centre outwards (Fig. 20). Chlorite, within approximately 1 km of the
centre, is enriched in Mg and then shows a rapid decrease in Mg:Fe ratio
to around 1.5 km; beyond this, the relative content of Mg increases
progressively to the limit of sampling at about 4.5 km. Samples at
distances less than 500 m from the centre (which correspond to tonalite
and carbonate-hosted chlorite) are anomalous, as previously identified
in chlorite trace element chemistry (Wilkinson et al., 2015).

The Al:Si ratio in chlorite shows a fairly strong inverse correlation
with distance, particularly at distances beyond 3 km from the centre
(Fig. 21). However, this is not reflected in any obvious spatial variation
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in the position of the 1400 nm feature (which is thought to be corre-
lated with Al/[Al + Si]). This may be due, in part, to that fact that no
samples beyond 3 km displayed chlorite-dominated spectra.

5. Discussion

The results from this study support the effectiveness of reflectance
spectroscopy in discriminating alteration zones (e.g. Sun et al., 2001;
Jones et al., 2005; Zadeh et al., 2014). In detail, the minerals identified
in spectra are generally consistent with the documented alteration
mineralogy around Batu Hijau (Clode et al., 1999; Garwin, 2002). The
dominance of clay minerals in the central biotite zone likely represents
a sensitive response to the late-stage sericite/paragonite and inter-
mediate argillic alteration overprints (Fig. 2; Garwin, 2002). It is un-
surprising that biotite was not identified in the spectra given its re-
markably low reflectance (Cudahy et al., 2001) especially when
occurring alongside highly reflective smectites. However, vermiculite,
which can form from hydrothermal alteration of biotite, was identified.
The presence of chlorite in the biotite zone, and its dominance
(alongside epidote) in the propylitic zone are consistent with expected
propylitic alteration assemblages (e.g. Cooke et al., 2014a). Actinolite,
where present, generally occurs in proportions too low to be detected.
Zeolite minerals identified in distal samples have been previously noted
and attributed to a final, low temperature, alteration stage (Clode et al.,
1999).

Geochemical variation in chlorite has previously been recognised as
an effective vector to mineralisation in the Batu Hijau system
(Wilkinson et al., 2015). The major element geochemistry derived from
electron microprobe analysis unsurprisingly matches that previously
reported by LA-ICP-MS (Wilkinson et al., 2015) and shows that Mg#
and Al:Si ratios in chlorite vary spatially with respect to the orebody.
The lack of correlation between chlorite and whole-rock Mg# suggests
that bulk rock composition is not a primary control of chlorite chem-
istry. An increase in chlorite Fe content away from the porphyry centre
to a distance of ~1.5 km has been proposed to occur as a result of the
outward advection and cooling of hypersaline brines enriched in Fe
(Wilkinson et al., 2015). Al:Si ratios in chlorite vary as a result of
substitution in the tetrahedral site (Deer et al., 2009) and are linked to
fluid temperature (Cathelineau, 1988). Ca concentrations may be con-
trolled by this reaction, and other major 2™ ions are also likely to be
involved including Mg®* and Fe?*, as well as trace elements such as
Sret.

These mineral chemical patterns are reflected in SWIR spectral
features, especially those centred around 2250 nm and 2340 nm. It is
well established that the chlorite Mg# influences the wavelength po-
sitions of these features, with more Fe-rich chlorites causing shifts to
higher wavelengths (Yang and Huntington, 1996; Herrmann et al.,
2001; Jones et al., 2005; Bishop et al., 2008), and this study confirms
this relationship. Features in this region are all attributed to overtones
of metal-OH bond stretching and bending (Hunt, 1977) which will be
affected by the mass and/or ionic radius of the cations involved.

The apparent increase in absorption depths with decreasing Mg# in
chlorite is not documented in any other study and may represent a new
finding, but caution should be exercised with this interpretation. It is
important to consider whether or not the Mg# is linked to increases in
absorption depths, or if both factors are independently controlled by
another variable that shows the same spatial pattern. If Mg# does di-
rectly control the absorption depth, this is postulated to be a result of
the higher mass Fe cations having a stronger effect on the metal-OH
bond stretches and vibrations.

An alternative explanation is that an increase in the abundance of
chlorite in a sample causes an increase in the depth of its unique ab-
sorption features. This is because in any mixed (polymineralic) spec-
trum the prominence of a feature attributable to one mineral directly
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Fig. 13. Chlorite-dominated (hull-quotient corrected) spectra selected to illustrate changes in features. Spectra are stacked in order of the 2340 nm position and coloured according to
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references to colour in this figure legend, the reader is referred to the web version of this article.)
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depends on its proportion in the sample (Thompson et al., 1999;
Herrmann et al., 2001). However, this explanation would contradict
studies that have found chlorite abundance to decrease away from
porphyry centres (Norman et al., 1991) rather than increase. In the Batu
Hijau samples, the proportion of chlorite has not been accurately de-
termined so that this possibly cannot currently be tested.
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Fig. 15. SWIR spectrum of a sample predominantly made up of epidote. Diagnostic fea-
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The effect of mixed mineral assemblages on the SWIR spectra of
rocks is perhaps the biggest problem encountered in this study.
Although both spectral analysis techniques employ spectral unmixing at
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Fig. 16. Spatial variation of (A) the 2250 nm; and (B) the 2340 nm absorption feature positions in chlorite. Larger red circles correspond to shorter wavelengths. A systematic shortening
of wavelength position is seen towards the centre of the Batu Hijau deposit along the south-west transect for both absorption features. This is also exhibited more weakly in the west
towards the Sekongkang porphyry centre for the 2340 nm absorption feature. The ‘strong biotite’ alteration zone at Batu Hijau is outlined in black. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

their core, the effectiveness is limited — especially when the number of
contributing minerals is high and when minerals have overlapping
features. For example, the chlorite-epidote-calcite assemblage, which is
common in porphyry systems, will have overlapping features in the
region of 2340 nm (Dalton et al., 2004). At Batu Hijau, calcite is rela-
tively rare and so presumably has little effect, however epidote is
abundant, especially as the secondary mineral in chlorite-dominated
spectra. This is likely to affect both of the important chlorite features at
2250 nm and 2340 nm.

In terms of wavelength positions, the narrower range of wavelength
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positions that epidote-related absorptions occupy (Table 3) could create
a bias in chlorite spectra towards more central positions in such sam-
ples. However, the fact that chlorite Mg# correlates with feature po-
sitions (Fig. 10) with the same trend as observed in previous studies on
epidote-free samples (Yang and Huntington, 1996; Herrmann et al.,
2001; Jones et al., 2005; Bishop et al., 2008) indicates that any epidote
interference is limited. In terms of depth, the presence of epidote should
deepen the 2340 nm absorption feature, which might explain the
anomalously high absorption depth values in the plots demonstrating
correlations between absorption depth and chemistry (Fig. 11). With
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position is less than 10 m from GPS and the distance to ore estimate is thought to be
accurate to within ~25 m). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

this considered, the absorption feature at 2250 nm is likely to be a
better indicator of chlorite composition than that at 2340 nm. This
point is also made in Herrmann et al. (2001) because the secondary Al-
OH feature in white mica also overlaps the chlorite feature at 2340 nm.
However, use of the 2250 nm feature may be limited in some deposits
because it has been shown to completely disappear where there is
pervasive weathering (Suryantini, 2003).

Two other spectral features were shown to vary with chlorite
chemistry — the slope of the hull between 1400 nm and 1900 nm, and
the position of the 1400 nm absorption feature. The increase in hull
slope in more Fe-rich chlorite has been recognised previously
(Thompson et al., 1999) and is attributable to the strong, broad ab-
sorption caused by electronic (charge transfer) effects in Fe?* in the
VNIR (Hunt, 1977; Clark et al., 1990). However, this feature occurs in
many Fe-bearing minerals and so may just reflect an abundance of these
in the rock, rather than a specific response to chlorite, thus explaining
the lack of any strong systematic spatial variation. The 1400 nm wa-
velength position appears to relate to the Al:Si ratio in chlorite. Shifts in
this absorption have been previously observed in chlorite (King and
Clark, 1989) and are likely due to modification of the O—H vibration
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frequencies as a result of the Tschermak substitution (Duke, 1994).
Unlike the hull slope, this feature appears to offer considerable promise
for use in exploration using field-portable or core-shed-based SWIR
spectrometers. However, both features are inapplicable to satellite re-
mote sensing due to strong atmospheric scattering effects at these wa-
velengths (Duke, 1994).

This study has been unable to conclude anything about potential
mineral chemical controls on spectral variations of epidote due to a
distinct lack of overlapping data: of the 16 samples that could be
classified as epidote-dominated, only five had accompanying geo-
chemical data. This is unfortunate because epidote has shown promise
as a vectoring tool in porphyry deposits (Cooke et al., 2014b) and
spectral variation across the epidote-clinozoisite solid-series is certainly
recognisable (Roache et al., 2011). This is an area where future study
would be useful.

6. Potential application to satellite remote sensing

The results from this study indicate that porphyry deposits could be
targeted by using the absorption features at 2250 nm and 2340 nm
which differ between Mg-rich chlorite that can be dominant in the inner
propylitic zone (Wilkinson et al., 2015) and Fe-rich chlorite that can
predominate further out, or which may be developed above buried
porphyry systems (Halley et al., 2015). The precise wavelength posi-
tions can only be exploited, at present, using field spectrometers or
hyperspectral sensors that are capable of collecting high-resolution
spectra. It should therefore be possible to target porphyry deposits
using hyperspectral imaging, and previous work has demonstrated the
discrimination of Fe-chlorite from Mg-chlorite in hyperspectral data
(Cudahy et al., 2001). However, the small wavelength shifts docu-
mented here are currently impossible to target using the broad band-
widths (0.02-0.2 um) typical of satellite remote sensing.

Fortunately, the relative change in absorption feature depth is po-
tentially recognisable using broad-band multispectral imagery collected
by the ASTER (Advanced Spaceborne Thermal Emission Radiometer)
satellite sensor. ASTER bands 7 and 8 measure surface reflectance in the
ranges of 2235-2285 nm and 2295-2365 nm which individually span
both absorption features of interest. Deeper absorption features should
produce a darker (lower reflectance) response and ASTER band ratio
images could perhaps be used to enhance these features.

7. Conclusions

SWIR reflectance spectroscopy is shown to be a powerful tool for
characterising propylitic alteration associated with porphyry deposits.
The collection of high resolution spectra using handheld spectrometers
such as the TerraSpec 4, combined with matching algorithms such as
those used by TSG and Halo, allows quick identification of spectrally-
active minerals, even in the case of low-reflectance propylitic “green-
rocks”. From the spectra, chlorite and epidote were found to be the
most abundant SWIR-active minerals in rocks from Batu Hijau, and are
in greatest abundance in the more proximal propylitic zone. Spectral
signatures from the biotite zone commonly indicate the presence of
smectites and other phyllosilicates attributable to later stage, inter-
mediate argillic and sericitic overprinting.

Chlorite chemistry can be utilised as a powerful vector to ore
(Wilkinson et al., 2015) and this appears to translate to features in the
SWIR spectra of chlorite-dominated samples. Chlorite from Batu Hijau
varies significantly in terms of Mg#, which is likely the main cause of
shifts in the wavelength position of absorption features at around
2250 nm and 2340 nm, and possibly the cause of depth variation in
these features. The positions and depths of both features act as good
vectors to mineralisation: wavelength positions shift from 2254 to
2249 nm and from 2343 to 2332 nm, and absorption depths decrease
from around 35% to 5% respectively, moving from ~1.6 km to 500 m
away from the orebody. This correlates with a general increase in the
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Fig. 18. Spatial variation of (A) the 2250 nm; and (B) the 2340 nm absorption feature depths in chlorite. Larger red circles correspond to shallower absorption features. A fairly systematic
decrease is seen towards the centre of Batu Hijau along the south-west transect for both absorption features. No clear trend is observed towards the Sekongkang prospect. The ‘strong
biotite’ alteration zone at Batu Hijau is outlined in black. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Mg# of chlorite from about 1.6 km towards the fringes of mineralisa-
tion. Absorption feature depth variations in particular seem to be a new
finding and one potentially more applicable to remote sensing than the
well-established position shifts because absorption depth changes can
potentially be recognised by satellite remote sensing. The exact cause of
changes in absorption depth is not entirely clear, but the fact that this
can act as a vector to mineralisation is significant nonetheless, espe-
cially if these observations can be recognised in other porphyry sys-
tems.
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The degree to which these findings apply to other porphyry deposits
is still unclear. Furthermore, there is limited information at present to
suggest that the variations in alteration mineral geochemistry are spe-
cific to fertile (well-mineralised) systems rather than weakly miner-
alised or barren ones. However, we do note that that the 2250 nm peak
position and both 2340 nm and 2250 nm absorption feature depths do
not appear to highlight the weakly mineralised Sekongkang prospect in
the Batu Hijau district. Future work could include investigating chlorite
spectral variation in other, variably mineralised, porphyry systems, and
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Fig. 20. Chlorite Mg# plotted against lateral distance to the nearest mineralised centre.
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nificant relationship is seen in samples measured away from the Sekongkang centre
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colour in this figure legend, the reader is referred to the web version of this article.)

investigating in more detail the effects of epidote. We conclude that
SWIR spectroscopy offers significant promise as a practical exploration
tool in the “green-rock” environment.
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