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In recent years, effort has beenmade tomake the results of fluid inclusion studies applicable and use them in the
design of the exploration process. It has been tried in this paper to propose a mineralization predictivemodel for
chalcopyrite deposition based on favorable thermodynamic conditions using the 3Dmodeling results of the fluid
inclusion data. To study the applicability and efficiency of the proposedmethod, Sungun porphyry copper depos-
it, East Azarbaijan province, Iran, was studied as a case and the 3Dmodel of the fluid inclusion data was prepared
using the support vector regression method. The model precisions for the estimation of the fluid inclusion data
including homogenization temperature, eutectic temperature and salinity were respectively 76, 71, and 93%.
The predictive model was prepared based on the chalcopyrite deposition's favorable thermodynamic conditions
(a homogenization temperature range of 300–400 °C and moderate-to-high salinity). A comparison of the pre-
dictive model with that of the copper grade shows the efficiency of the proposed modeling and high conformity
of the two models. The drilling pattern was then investigated based on the predictive model and showed that
there would be an almost 6% cost reduction (i.e. elimination of 9 drillholes) if usewasmade of the proposed pre-
dictive model in the design of exploration drillholes.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, fluid inclusion studies have become very popular
with the researchers and quite common in economic geology studies
and mineral exploration. The fluid inclusion data modeling literature
can be divided into three points: 1) physicochemical modeling of the
fluid inclusion data (e.g., Jadhav et al., 1993; Bakker, 1999; Hezarkhani,
2006b; Moritz, 2006; Thiery, 2006; Zhang et al., 2007; Canet et al.,
2011), 2) alteration zones modeling based on the fluid inclusion data
(Hezarkhani, 1997; Tahmasebi and Hezarkhani, 2009; El-Makky, 2011;
Abbaszadeh et al., 2013; Abbaszadeh et al., 2015), and 3) the 3Dmodel-
ing of the fluid inclusion data (Sun et al., 2011). The first group of liter-
ature on fluid inclusion data modeling has been more favored because:
a) the related studies are numerous and the date goes back to the 1900s
(e.g., Jadhav et al., 1993; Bakker, 1999) or earliear, and b) due to differ-
entfluid inclusion thermodynamic conditions, this type ofmodeling has
been done on a variety of such mineral deposits as porphyry copper
(Rusk et al., 2004; Landtwing et al., 2005; Hezarkhani, 2006b;
Hezarkhani, 2006a; Hezarkhani, 2008b; Hezarkhani, 2009), epithermal
zadeh).
(Moritz, 2006; Canet et al., 2011), polymetallic (Zhang et al., 2007),
intrusion-related gold (Abdollahi et al., 2009), and hydrocarbon de-
posits (Thiery, 2006). The main method of modeling and identification
of alteration zones is through petrography and mineralography where
the identification and discrimination of alteration zones are done
through direct observations and identification of the index minerals.
So far, few research studies have been done on indirect modeling of al-
teration zones. In these studies, the identification and discrimination of
alteration zones have been done based on indirect observations
(i.e., parameters obtained from fluid inclusion or whole rock geochemi-
cal studies (Hezarkhani, 1997)) using numerical modeling methods
such as neural networks (Hezarkhani et al., 2010), support vector ma-
chines (Abbaszadeh et al., 2013, 2015), principal component analysis
(Tahmasebi and Hezarkhani, 2009), and discriminant analysis (Asghari
and Hezarkhani, 2008). Since identification of alteration zones, as a
grade control parameter, is a key process in preliminary anddetailed ex-
ploration of porphyry deposits (Beane and Bodnar, 1995), the major
part of these studies is related to such deposits (Lowell and Guilbert,
1970; Beane and Titley, 1981).

In 3Dmodeling of fluid inclusion data (homogenization tempera-
ture, eutectic temperature, salinity, etc.), the only study worth men-
tioning is that of Sun et al. (2011) wherein a 3D model of fluid
inclusion data of China's Caixiashan Pb and Zn deposit has been pre-
pared using inverse distance weighting (IDW) and compared with
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the ore-forming anomaly elements. Sun et al. (2011) have shown
that such 3D models can be used in ore genesis and mineral explora-
tion studies. Although IDW is a simple and common estimation
method, it is not considered as robust and effective because it con-
siders only the distance between the samples and the point being es-
timated. Effort has been made in this paper to enhance the
estimation quality through machine learning algorithms and to use
the results in such exploratory decision making as locating addition-
al drillholes. The general characteristic of such algorithms is to em-
phasize the fact that they can estimate any multivariable nonlinear
relationship among variables through their black-box-like perfor-
mance. Another merit of such methods is their high capability in
dealing with small data sets and error-tainted data (Zhang et al.,
1998; Dutta, 2006).

A machine learning algorithm, famous in different scientific
branches for estimation and prediction, is the support vector ma-
chine which, despite its newness, has gained widespread acceptance
in a short period of time due to its robust mathematical background
(Smola and Scholkopf, 1998; Kecman, 2000, 2004; Smola and
Scholkopf, 2004).

The history of research on using modeling techniques for locating
drillholes goes back to the research of Drew (1974) on drillholes' net-
work design (drilling pattern and drillholes spacing) aimed at enhanc-
ing exploration probability. Then, based on that research, extensive
research was performed in 2D (Savinskii, 1965; Koch and Link, 1974)
and 3D (Malmqvist et al., 1980; Schuenemeyer et al., 1980) space for ex-
ploration of petroleum (Drew, 1974) andmineral (Koch and Link, 1974)
reserves. With the development of geostatistics, many of the subse-
quent studies on locating additional drillholes tried to minimize the es-
timation variance (Kim et al., 1981; Chou and Schenk, 1983). The main
difference between these methods is in defining the objective function
(Gershon, 1983; Szidarovszky, 1983; Soltani and Hezarkhani, 2011;
Morshedy andMemarian, 2015; Morshedy et al., 2015) and in the solu-
tion method (Soltani et al., 2011; Soltani Mohammadi et al., 2012). The
proposed objective functions are all functions of kriging variance as the
total kriging variance (Chou and Schenk, 1983; Gershon, 1983;
Szidarovszky, 1983), weighted average kriging variance with respect
to grade (Hassani Pak and Sharafodin, 2004; Soltani Mohammadi
et al., 2012;Morshedy andMemarian, 2015;Morshedy et al., 2015), sta-
tistical value of information (Soltani and Hezarkhani, 2013a) and real
value of information (Soltani-Mohammadi and Hezarkhani, 2013b).
The solution methods used in this regard include the branch and bond
algorithm (Szidarovszky, 1983), simulated annealing algorithm
(Soltani and Hezarkhani, 2013a), and genetic algorithm (Soltani et al.,
2011). The common weak point of all these locating algorithms is that
their outputs depend only on the locations of the initial drillholes and
the parameters of variogram model; they are incapable of utilizing
other data gathered in the process of exploration. Emphasizing the ne-
cessity of utilizing other available relevant data in locating drillholes,
Qahwash (1987) presented a method for defining optimal location
and depth of drillholes based on geophysical data. Moncada (2008)
has also pointed out the possibility of using fluid inclusion data in the
exploration process management. In this paper, effort has been made
to propose the locations of the additional drillholes based on a 3D
model of fluid inclusion data.

2. Study area

The Sungun porphyry copper deposit (PCD) is located in East
Azarbaijan province, northwest of Iran (Fig. 1). The magmatic suites in
this area are part of the NW–SE trending Cenozoic magmatic belt of
Iran and the porphyries occur as stocks and dikes (Hezarkhani, 2002;
Calagari, 2003; Hezarkhani, 2003). This PCD is hosted in a diorite/grano-
diorite to quartz-monzonite stock that intrudes Eocene volcano-
sedimentary and Cretaceous carbonate rocks (Hezarkhani et al., 1999).
The porphyry stocks are divided into groups I and II. The latter, which
hosts the Sungun PCD, ranges in composition from quartz monzonite
through granodiorite to granite (Hezarkhani, 2002; Calagari,
2003; Hezarkhani, 2003) and has experienced multiple intense
hydrofracturings manifested by numerous and varied crosscutting vein-
lets and microveinlets (Calagari, 2004). The main vein groups identified
in Sungun are (Hezarkhani and Williams-Jones, 1998): 1) quartz +
molybdenite + anhydrite ± K-feldspar with minor pyrite, chalcopyrite,
and bornite, 2) quartz + chalcopyrite + pyrite ± molybdenite,
3) quartz + pyrite + calcite ± chalcopyrite ± anhydrite (gypsum) ±
molybdenite, and 4) quartz ± calcite ± gypsum ± pyrite. In Sungun,
three distinct types of hydrothermal alteration and mineralization are
recognizable (Calagari, 2004): 1) hypogene, 2) contact metasomatic,
and 3) supergene. The hypogene alterations developed in Sungun por-
phyries are: 1) potassic, 2) potassic–phyllic (transition), 3) phyllic, and
4) propylitic. The early hydrothermal alterations had been dominantly
potassic and propylitic, which were then followed by later transition
and phyllic alteration zones. The hypogene copper mineralization was
introduced during the potassic, and to a lesser extent phyllic, alteration,
and exists as disseminations in a veinlet form. During the potassic alter-
ation, the hypogene coppermineralization consisted first of chalcopyrite
and minor bornite and later mainly of chalcopyrite (Hezarkhani and
Williams-Jones, 1998).

In general, fluid inclusions are classified, based on the number, na-
ture, and proportion of the existing phases at room temperature, into
three main types. The LV inclusions contain liquid + vapor ± solid
phases (with the liquid phase dominating volumetrically). These fluid
inclusions contain considerable mineralization in all quartz veins with
the most plentitude in vein groups 2 and 3. The VL inclusions contain
vapor + liquid ± solid phases (with the vapor phase dominating volu-
metrically). The LVHS inclusions are multiphase and consist of
liquid + vapor + halite + other solids, and are divided into three sub-
groups (LVHS1, LVHS2 and LVHS3), based on the number and type of
solids (Hezarkhani and Williams-Jones, 1998).

Fluid inclusions in Sungun copper deposit can be classified into
three populations. Population I includes LVHS1, LVHS2, and VL
types, which are formed mainly in quartz veins of groups 1 and 2 of
the potassic alteration zone (35 to 500 m below the existing erosion
surface), but are rare in shallow levels in the phyllic alteration zone.
These inclusions express the earliest episode of fluid entrapment in
Sungun deposit. Population II inclusions pertain to shallower levels,
where is a close spatial association of solid-rich LVHS3 and VL fluid
inclusions in the phyllic alteration zone. These fluids, found together
in growth zones, are generally formed along the healed fractures.
Population III includes LV fluid inclusions formed in all vein groups,
but the phyllic and propylitic alteration zones have the highest plen-
titude in the veins of groups 2 and 3; they lie, quite clearly, along the
fracture planes and are secondary in origin (Hezarkhani and
Williams-Jones, 1998).

3. Materials and methods

3.1. Support vector regression (SVR)

The SVR, which is based on the statistical learning theory and the
structural risk minimization, was first introduced by Vapnik (1995).
So far, few research studies have been done regarding the application
of SVR with spatial data, amongwhichmapping of natural radioactivity
(Pozdnoukhov, 2005), estimation of the arsenic concentration in stream
sediments (Twarakavi et al., 2006), classification of lithology from well
logs (Al-Anazi and Gates, 2010), mineral prospectivity mapping (Zuo
and Carranza, 2011; Geranian et al., 2015) and grade and ore reserve es-
timation (Dutta et al., 2010; Chatterjee and Bandopadhyay, 2011) are
worth mentioning.

Based on SVR, for the given training sample D={(xi,yi)|x∈Rd,
yi ∈ R, i=1,2,… ,n}, through the non-linear mapping function φ(x), the
sample data x is mapped to another high dimensional feature space;



Fig. 1. Geological map of Iran (modified from (Shahabpour, 1994)) showing major lithotectonic units.
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Table 1
Common kernel functions for SVM (Hsu et al., 2010)

Type Kernel function

Linear K(xi,xj)=γxixj
Polynomial K(xi,xj)=(γxixj+r)d ,γ N 0
Radial Basis K(xi,xj)= exp{-γ∥xi-xj∥2} ,γ N 0
Sigmoid K(xi,xj)= tanh(γxixj+r) ,γ N 0
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therefore, a regression function can be defined in this feature space as fal-
lows (Zhang et al., 2011):

f xð Þ ¼ wT :φ xð Þ þ b ð1Þ

where w is the weight and b is a constant threshold.
If the insensitive loss function ε is adopted, the aim of SVR is to look

for an f(x) which can make the difference between the true and the
training values less than the given error ε. Thus, function f solution can
be expressed as the following quadratic programming problem:

Min
1
2
wTwþ C

Xl

i¼1

ξi−ξ�i
� �

s:t: yi−w:φ xið Þ−b ≤ ε þ ξi
w:φ xið Þ þ b−yi ≤ ε þ ξ�i

ξi ≥ 0
ξ�i ≥ 0

8>>>>>>><
>>>>>>>:

ð2Þ

where C is the error penalty parameter.
Introducing Lagrange multiplier and using the kernel function

K(xi,xj)=φ(xi) .φ(xj) to replace the inner product operation of feature
space, the optimization problem of Eq. (2) can be translated into a
dual problem as follows:

Max −
1
2

Xl

i¼1

Xl

j¼1

αi−α�
i

� �
α j−α�

j

� �
K xi; xj
� �

−ε
Xl

i¼1

αi−α�
i

� �þXl

i¼1

yi αi−α�
i

� �2
4

3
5

s:t:
Xl

i¼1

αi−α�
i

� � ¼ 0; i ¼ 1;…; l

0 ≤ αi ≤ C
0 ≤ αi

� ≤ C

8>>>>>>>>><
>>>>>>>>>:

ð3Þ

Solving the dual problem yields the solution of Eq. (1) as follows:

f xð Þ ¼
X
xi ∈ SV

αi−α�
i

� �
K xi; xð Þ þ b ð4Þ

where αi andαi
⁎ are LagrangeMultipliers, and the non-zeroweight sam-

ples αi and αi
⁎ are called Support Vectors. More common kernel func-

tions are given in Table 1; γ,r, and d in this Table are the kernel
parameters. The kernel function selection depends on both the problem
nature and type of the data (Hsu et al., 2010); in this study RBF (radial
basis function) has been selected as the kernel function because it can,
compared with other kernel functions, appropriately analyze high
Table 2
Descriptive statistics of fluid inclusion data sets.

Type LVHS1

Origin P S

Parameters Th Te S Th Te

Median 387 −48.4 44.8 260 −46.8 3
Average 382.8 −48.0 44.2 266.7 −48.2 3
Minimum 294.4 −58 35.9 211 −58 3
Maximum 499.4 −37.7 56.5 352.6 −44 4
Variance 2000.5 26.4 21.4 2548.0 26.2
Std 44.7 5.1 4.6 50.5 5.12
dimensional data sets. Also, compared with other functions (e.g. poly-
nomial functions), it has fewer parameters (γ is the only kernel param-
eter) resulting in less model complexity (Lin et al., 2008; Che and Hu,
2008; Hsu et al., 2010). In the SVR method, the model parameters in-
clude γ (kernel parameter), C (error penalty), and ε (insensitive loss);
selection anddetermination of the optimumvalue of each one highly af-
fects the SVRmodel efficiency (Momma and Bennett, 2002; Bao and Liu,
2006). In this research, use was made of the standard SVR method ex-
plained in Vapnik (1995).

3.2. Data set

A number of researchers have done detailed studies on fluid inclu-
sion characteristics at Sungun PCD. Hezarkhani and Williams-Jones
(1998); Calagari (2004) and Asghari and Hezarkhani (2008) have stud-
ied the physico-chemical conditions, mineralization and alteration
zones based on fluid inclusion data. In this study, a total of 173 fluid in-
clusion data sets including attributes as geographic coordinates (longi-
tude, latitude, altitude), thermodynamic parameters (homogenization
temperature, eutectic temperature, salinity), type and origin of fluid in-
clusions were obtained from 59 locations. Table 2 shows the statistical
parameters of the fluid inclusion data sets and Fig. 2 shows the histo-
grams of the homogenization temperature, eutectic temperature and
salinity. To maintain statistical consistency, the data were divided into
training and testing sets, whereby 138 sets (approximately 80%) were
used for training and 35 sets (approximately 20%)were chosen for test-
ing. The statistical parameters of the training and testing data sets for
thermodynamic parameters (homogenization temperature, eutectic
temperature and salinity) are given in Tables 3, 4 and 5, respectively.

4. Results and discussion

4.1. Results of SVR modeling

In this paper, the RBF has been considered as the kernel function for
estimating the thermodynamic parameters using the SVR method. To
determine the optimum values of γ, ε, and C, use has been made of
the grid search method (Hsu et al., 2010) in two steps based on the 4-
fold cross validation. In the grid search method, first a coarse grid is
formed in the parameter space and then, by getting closer to the opti-
mumpoint, the grids becomefiner, and,finally, it gets closer to the glob-
al optimum point in the space of the parameter being searched
(Momma and Bennett, 2002; Hsu et al., 2010; Lee and Chern, 2013).
Therefore, based on this method, first the value of parameter γ is as-
sumed to be constant and then the optimum values of parameters ε
and C are calculated in the coarse and fine grids using the grid search
method. Next, one of the values found for ε and C in step one is assumed
constant, and the optimum value for parameter γ is calculated through
the same procedure. Table 6 shows the search range for everymodel pa-
rameter in estimating the homogenization and eutectic temperatures
and salinity.

After determining the optimum values of C, γ and ε for the thermo-
dynamic parameters (Table 7) through the grid searchmethod based on
LVHS2

P S

S Th Te S Th Te S

7.2 423.2 −53.7 45.1 342.5 −44.1 31.8
7.3 407.1 −54.3 43.7 342.5 −44.1 31.8
4 250 −66 20 290 −51.2 27
1.0 466.6 −49.6 54.5 395 −37 36.7
7.5 5390.8 30.2 136.0 5512.5 100.8 46.8
2.7 73.4 5.5 11.6 74.2 10.0 6.8



Fig. 2. Histograms of fluid inclusion thermodynamic parameters in Sungun PCD. a) homogenization temperature, b) eutectic temperature and c) fluid salinity.
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the 4-fold cross-validation, they were utilized to train the SVR model.
Training was performed using the LIBSVM function (Chang and Lin,
2011) in the Weka software based on the optimum parameters, and
then the SVR model performance and efficiency were evaluated based
on the test data set. Table 8 shows the SVR model results of salinity
and temperature parameters for the training and test data sets. As
shown, the correlation coefficient for these sets in every mentioned pa-
rameter has a favorable value meaning that the model is quite efficient.

The 3D wireframe model of the study area was created using geosci-
ence datasets collected fromgeological objects andmetallogenic features,
including a 1:1000 geological map, 1:2500 geological exploration cross-
sections, a 1:1000 digital elevation model, 49786 m logs from 156
boreholes (Fig. 3). 3D block model was constructed by filling the
wireframe model by 50 m × 50 m × 50 m cells. Then, based on the SVR
trained model for different fluid inclusion types and origins, the homog-
enization and eutectic temperatures and salinity parameters have been
estimated.
Descriptive statistics of fluid inclusion data sets.

LVHS3 LV

P S P

Th Te S Th Te S Th Te S

381.5 −46.2 44.6 292.5 −47.3 37.4 361.4 −36.5 7.9
378.9 −46.6 43.1 299.3 −47.6 37.7 370.8 −35.8 8.5
285.4 −67.4 35.7 215 −65 31 180 −53 2.9
504 −33.7 52.2 376.5 −33 44.9 527.5 −20.45 18

3153.3 42.6 23.7 2605.5 83.7 15.7 6199.9 68.8 16.3
56.1 6.5 4.8 51.0 9.1 3.9 78.7 8.3 4.03
Fig. 4 shows the SVRmodel results for the estimation of homogeniza-
tion and eutectic temperatures and the salinity parameters in the study
area using data for fluid inclusions of type LVHS1 with a primary origin.

4.2. Definition of predictive model

Favorable conditions for chalcopyrite deposition in Sungun PCD are
300–400 °C temperature and moderate-to-high salinities (Hezarkhani
andWilliams-Jones, 1998). Considering favorable thermodynamic con-
ditions for copper deposition, and studying fluid inclusions with differ-
ent origins and types, the chalcopyrite deposition possibility index in
any arbitrary block v based on the fluid inclusion type A and origin B
can be defined as follows:

KAB vð Þ ¼ 1 if 300 ≤ ThAB vð Þ ≤ 400& SalinityAB vð Þ ≥ 27
0 otherwise

�

ð5Þ
VL

S P S

Th Te S Th Te S Th Te S

277.4 −23 7.3 408.7 −34.9 8.5 299.5 −30.4 5.4
275.1 −27.7 7.9 420.1 −35.2 10.5 298.4 −31.5 6.6
162 −55 1.5 334 −56.6 2 219 −43.7 3.5
340.4 −19 18.3 614.5 −23.2 48 375.5 −21.6 12.1

1362.1 79.0 12.1 3924.5 62.7 74.7 7683.9 84.0 14.5
36.9 8.8 3.48 62.6 7.9 8.6 87.6 9.2 3.8



Table 5
Statistical summary of training and test data sets salinity.

Parameters Average Standard deviation

Train Test Train Test

X 8718.617 8731.599 258.1663 264.259
Y 4876.087 4882.514 192.6572 187.9957
Z 1739.741 1789.34 107.3948 105.4968

Type 3.434783 3.628571 1.584397 1.535573
Origin 0.652174 0.628571 0.478016 0.490241
Salinity 22.80229 22.68831 17.50262 17.61572

Table 6
The search range for every model parameter in estimating the homogenization
and eutectic temperatures and the fluid salinity taken from (Frohlich and Zell,
2005; Hsu et al., 2010).

the SVR model parameters Range search

C {215,………,25}

Table 3
Statistical summary of training and test data sets for homogenization temperature.

Parameters Average Standard deviation

Train Test Train Test

X 8715.762 8742.854 261.3352 250.4698
Y 4872.975 4894.786 188.4147 203.7156
Z 1751.323 1743.671 108.6398 109.6259

Type 3.478261 3.457143 1.576365 1.578213
Origin 0.644928 0.657143 0.480279 0.481594
Th 351.1158 354.0206 78.49633 80.55705
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On this basis, for every block v from the 3D blockmodel, 10 KAB indi-
ces can be defined and determined. For example, Fig. 5 shows the 3D
model of chalcopyrite deposition possibility index for fluid inclusion
type LVHS1 with primary origin.

Investigating K-based models is very complicated, if not impossible,
due to the large number of the models presentable on this basis. For
simplicity, the following mineralization possibility indices can be de-
fined based on different fluid inclusion populations:

IPopulationI vð Þ ¼
X

A∈Population I

X
B∈ P;Sf g

KAB vð Þ

IPopulationII vð Þ ¼
X

A∈Population II

X
B∈ P;Sf g

KAB vð Þ

IPopulationIII vð Þ ¼
X

A∈Population III

X
B∈ P;Sf g

KAB vð Þ
ð6Þ

Based on these indices, favorable areas are specified in 3D models,
which are defined as the “predictive models”. Blocks in the predictive
models that have the possibility of chalcopyrite mineralization for at
least one of the populations (IPopulation I+ IPopulation II+ IPopulation III≥1)
were defined as high prospectivity zones and the others as low
prospectivity zones. Fig. 6 shows a cross section of the predictivemodels
for different populations of fluid inclusions.

To evaluate the efficiency of the SVR model, the obtained predictive
models were compared with the 3Dmodel of the copper grade (Fig. 6).
Block grade values were estimated employing ordinary block kriging
technique using the double-structure spherical semi-variogram model
(with the parameters nugget effect = 0, sill of first structure = 0.07,
sill of second structure = 0.05, range of first structure = 71.5 m, and
range of second structure = 208 m). To make the comparison of the
predictive and grademodels possible, the grade blockmodel was classi-
fied, based on the geological cutoff grade, into “ore” and “waste”; results
of the comparison of the predictive and grade blockmodels are given in
Table 9. As shown, the 505 blocks estimated as “low prospectivity” in
the predictive model correspond to the “waste” in the copper grade
model, and the 11799 blocks estimated as “high prospectivity” in the
predictive model correspond to “ore” in the grade block model. There-
fore, in 82% of the cases, classification of low and high prospectivity
zones based on the predictive model (prepared based on 173 fluid in-
clusions data) conforms to that of the grade block model (prepared
based on 25381 assay data).
Table 4
Statistical summary of training and test data sets for eutectic temperature.

Parameters Average Standard deviation

Train Test Train Test

X 8730.504 8742.511 258.4936 259.8533
Y 4880.964 4880.343 191.8663 195.406
Z 1750.223 1750.806 109.758 109.3634

Type 3.449275 3.428571 1.566401 1.650057
Origin 0.644928 0.657143 0.480279 0.481594
Te −38.8101 −38.6299 11.29765 11.2906
To schematically compare the predictive and copper grade models,
cross sections of these models are shown in Fig. 6. As shown, there is
high potential of chalcopyrite mineralization based on the SVR-based
predictive models for populations I and II. The model prepared based
on population III shows mineralization potential only in a small part
but not in a major part of the region. A comparison of the SVR-based
predictive models with the copper grade blockmodel shows acceptable
conformity in low,moderate, and high grade regions. It should be noted,
however, that expecting full conformity is quite strict and almost im-
possible because the number of fluid inclusion data (173) is small com-
paredwith that of the copper grade (25381). For instance, the predictive
model shows high mineralization potential in deep regions of the east-
ern parts but the copper grademodel does not confirm it. Themain rea-
son can be attributed to the fact that the drilling spacing in this part is
large (about 200 m) showing a small number of drillholes compared
to the central and western parts.

4.3. Locating additional drillholes based on predictive models

Considering high drilling costs, the number of additional drillholes is
usually specified based on budget limitations, and the company is will-
ing to drill more drillholes in zones with highmineralization probability
and the fewest possible in the waste.

Fluid inclusions provide information on the genesis of mineral de-
posits and also is a strong tool applied for mineral exploration. Based
on fluid inclusion homogenization temperatures, it is possible to calcu-
late the exact local pressure (both lithostatic and hydrostatic pressures),
evident for the different zones of mineralization. It also let us know
about the possible location of hidden masses of main mineralization
(Hezarkhani, 1997; Hezarkhani and Williams-Jones, 1998). Therefore,
preparing a predictive model based on these information can be effec-
tive in confining themineralization zone and, hence, in reducing the ex-
ploration budget. Based on these models, it is possible to specify the
places where deeper drillholes are required (or not required at all)
γ {23,………,2−15}
ε {2−1,………,2−8}

Table 7
Theoptimumvalues of parameters C,γ and ε for thehomogenization and eutectic temper-
atures and the fluid salinity.

Optimum values
of parameters

Th Te Salinity

C 9742 90.5 2435.5
γ 0.03125 0.5 0.210224
ε 0.84 0.015625 0.0078125



Table 8
The SVRmodel results of salinity and temperature parameters for the training and test da-
ta sets.

LIBSVM Th Te Salinity

Train Test Train Test Train Test

Correlation
Coefficient

0.7019 0.765 0.7808 0.7142 0.9566 0.9261

RMSE 55.8133 52.4269 7.0585 7.9698 5.1166 6.6454
No. of data 138 35 138 35 138 35
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before drilling; for instance, drillhole BH135 (which is additional) on
cross section 4600N of the predictive model (Fig. 7). Fig. 8a shows the
copper grade variations against depth of the samples taken from
drillhole BH135. As shown, despite costs incurred to drill this drillhole,
most of it has been drilled in parts where the copper grade is quite
low. Based on the predictive model (Fig. 7), this borehole has been
drilled in a low potential zone and drilling operations have been termi-
nated before reaching high potential zones. If drilling pattern was
planned based on the predictive model, the efficiency would increase
with an increase in the borehole depth. On the other hand, studying
the location of borehole BH145 shows that although its initial parts
have been drilled in a low potential zone, it is possible that it will inter-
sect higher potential zones too because it has an appropriate depth
(Fig. 7). According to Fig. 8b, samples taken from this borehole conform
appropriately to the predictive model. Next, effort was made to plan a
pattern of additional drillholes based on the predictive models wherein
the location and especially the proposed depths are determined based
on the extension of high potential zones (Fig. 9). For this purpose, use
was made of the following algorithm:

1—Draw the probable boundaries of the mineralization zone based
on the predictive model.

2—Specify the location of the additional drillholes based on the dril-
ling density and boundaries drawn in step 1.

3—Determine the depth of each additional drillhole based on the
vertical variations of the predictive model.
Fig. 3. Drilling pattern in the Sungun area. Open symbols indicate barren holes and filled indica
been taken (FI-holes) are shown with solid red triangles.
In step 1, in each cross-section of the predictivemodel, the boundaries
of the zones having a potential of mineralization are specified and then
the probable boundary of the mineralization zone is drawn through in-
terpolation between cross-sections (dotted line in Fig. 9). In step 2, if a
regular pattern is desired, its dimensions are specified based on the vast-
ness of the mineralization zone and the number of additional drillholes.
But, if an optimal locating of the drillholes (based on a specific objective
function) is desired, it is possible to use simulated annealing-based or
genetic-algorithm based procedures for the purpose; more details of
such algorithms are provided in Soltani and Hezarkhani (2011 and
Soltani and Hezarkhani, 2013a,Soltani-Mohammadi and Hezarkhani,
2013b). To make the comparison with Sungun drilling results possible,
the additional drillingpatternwas designed and its dimensionswere con-
sidered equal to those of Sungun deposit pattern. Then, based on the ver-
tical variability of the predictive model, step 3 involved approximation of
depth for each additional drillhole. Fig. 9 shows the location and depth
proposed for each additional drillhole based on the above algorithm. Con-
sidering the high mineralization potential in the eastern part (based on
the predictive model), 22 drillholes with minimum depths of 200 m
each, 3 with minimum depths of 300 m each, and 1 with minimum
depth of 400 m have been proposed. The predictive model predicts that
mineralization potential is high in the central parts and increases as the
depth increases. This is why 13 drillholes with minimum depths of
600m each and 33 withminimum depths of 300m each have been sug-
gested. Again, mineralization potential is, according to the predictive
model, low in surface areas of the western part, but with an increase in
depth, this potential increases too; therefore, 4 drillholes with depths
more than 400 m each and 4 with depths more than 300 m each have
been proposed.

In Sungun area, 9 actual additional drillholes (1–9 in Fig. 3) have
been drilled in locations that are, according to the predictive model,
low potential zones; 6% of the total drilling cost in this area goes for
these 9 actual additional drillholes. In the proposed drilling pattern
based on the predictive model, no additional drillhole has been sug-
gested in this part, but, instead, 9 additional drillholes have been sug-
gested in high potential zones. It is to be noted that even if these
proposed additional drillholes are drilled, some of them may not
te ore holes. Locations of the initial drillholes fromwhich the fluid inclusion samples have



Fig. 4. The SVRmodel results for the estimation of homogenization and eutectic temperatures and the fluid salinity parameters in the study area for thefluid inclusion of type LVHS1with a
primary origin.

Fig. 5. The 3D model of the chalcopyrite deposition possibility index for fluid inclusion type LVHS1 with primary origin.
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Fig. 6. Comparison of 3D predictive models for different populations of fluid inclusions with the 3D model of the copper grade, a) the 3D model of the copper grade, b) the 3D predictive
model for fluid inclusion population I, c) the 3D predictive model for fluid inclusion population II, d) the 3D predictive model for fluid inclusion population III.
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intersect ore deposit; they can be used to determine the boundary of de-
posit more precisely.

As shown in Fig. 10, locations of some drillholes in both the existing
and proposed patterns almost coincide and sufficient data have been
obtained from those points.

Since grade variability is low in this copper deposit (the range of the
model fitted to the experimental variogram of the copper grade is
208 m), and drilling costs are high, it is possible to avoid the drilling of
those drillholes (in the proposed pattern) 137 m (23� range) from
which there are at least 4 drillholes in the existing pattern or those
the distances of which are less than 10 m. Therefore, it is suggested
that, if conditions are appropriate for the development of the explora-
tion operations, the additional drilling be carried out only in other
points of the proposed pattern (in Fig. 10, letter R has been put over
them). In some other points, the number of drillholes in the existing
pattern is enough, but it is necessary, based on the proposed pattern,
to drill deeper drillholes in their around; in Fig. 10, such cases are
Table 9
Results of validation of prospectivity modeling

Grade block model

Waste Ore

Predictive model Low Prospectivity Zone 505 195
High Prospectivity Zone 2543 11799
marked with L1–L5. For instance, the necessity of increasing the explo-
ration depth at point L5 (next to drillhole BH135) is shown in Fig. 7.

5. Conclusions

Studies carried out so far on fluid inclusion data have mostly dealt
with physicochemical modeling and modeling of alteration zones in
the 2D space and have led to the discrimination of such zones in por-
phyry deposits. Effort has been made in this paper, for the first time,
to do 3Dmodeling of the fluid inclusion data using SVR in order to esti-
mate the thermodynamic parameters that affect mineralization. A com-
parison of the SVR-based predictive model and the copper grade block
model shows an acceptable conformity in low, moderate, and high
grade regions. However, full correlation is quite strict and almost impos-
sible due to the small number of the fluid inclusion data compared to
those of the copper grade. This correlation can be used to evaluate the
existing exploratory drilling in the area and check the effects of using
predictive models on advancing the process of detailed explorations.

Since, in this paper, the efficiency of the predictive model obtained
from the 3D modeling of the fluid inclusion data have been used only
in Sungun porphyry copper deposit, it is suggested that the future stud-
ies may focus on the efficiency of this model in advancing the explora-
tion process of other porphyry copper deposits, lead, zinc, and
hydrocarbon reserves so as to enable more certain decision making re-
garding the model efficiency. The fluid inclusion data are not limited to
only the homogenization and eutectic temperatures and salinity, other
valuable data such as thefluid inclusion composition is also quite useful.



Fig. 7. Cross-section 4600N showing distribution of low and high prospectivity zones in the predictive model and drillholes.

Fig. 8. Variation of Cu grade with Depth for drillholes a) BH135 and b) BH145.

Fig. 9. Proposed drilling pattern based on the predictive model.
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Fig. 10. Comparison of the drilled and proposed patterns based on the predictive model. The proposed, high priority additional drillholes, and those the drilling of which is necessary to
increase the exploration depth are shown with letters R and L respectively.
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Since the latter was inaccessible in Sungun porphyry copper deposit, it
was neglected in the present study. It is suggested that the modeling
input data be increased through the use of the data of the well-known
deposits in the world wherein the number of fluid inclusion samples
is more and the data are gathered uniformly by a team.
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