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a b s t r a c t

The distribution of chemical elements at and near the Earth's surface, the so-called critical zone, is
complex and reflects the geochemistry and mineralogy of the original substrate modified by environ-
mental factors that include physical, chemical and biological processes over time.

Geochemical data typically is illustrated in the form of plan view maps or vertical cross-sections,
where the composition of regolith, soil, bedrock or any other material is represented. These are pri-
marily point observations that frequently are interpolated to produce rasters of element distributions.
Here we propose the application of environmental or covariate regression modelling to predict and
better understand the controls on major and trace element geochemistry within the regolith. Available
environmental covariate datasets (raster or vector) representing factors influencing regolith or soil
composition are intersected with the geochemical point data in a spatial statistical correlation model to
develop a system of multiple linear correlations. The spatial resolution of the environmental covariates,
which typically is much finer (e.g. ~90 m pixel) than that of geochemical surveys (e.g. 1 sample per 10-
10,000 km2), carries over to the predictions. Therefore the derived predictive models of element con-
centrations take the form of continuous geochemical landscape representations that are potentially
much more informative than geostatistical interpolations.

Environmental correlation is applied to the Sir Samuel 1:250,000 scale map sheet in Western Australia
to produce distribution models of individual elements describing the geochemical composition of the
regolith and exposed bedrock. As an example we model the distribution of two elements e chromium
and sodium. We show that the environmental correlation approach generates high resolution predictive
maps that are statistically more accurate and effective than ordinary kriging and inverse distance
weighting interpolation methods. Furthermore, insights can be gained into the landscape processes
controlling element concentration, distribution and mobility from analysis of the covariates used in the
model. This modelling approach can be extended to groups of elements (indices), element ratios, iso-
topes or mineralogy over a range of scales and in a variety of environments.

Crown Copyright © 2015 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The compilation of regional, national, continental and ulti-
mately global multi-purpose geochemical atlases, based on the
systematic sampling and analysis of soils or sediments, has been
recognized as a strategic research priority since the pioneering
work of JohnWebb in the UK in the 1960s (e.g. Darnley et al., 1995;
Garrett et al., 2008; Plant et al., 2001; Thornton, 2012). It has
demonstrated the pivotal role of geochemical surveys and
).
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geochemical data in the exploration for mineral resources, opti-
misation of land use, efficient production of crops and livestock,
conservation of wildlife, management of pollution and develop-
ment of sustainable environmental policies, at a range of spatial
scales. Mapping of elemental baselines can be used to monitor land
degradation and pollution in the context of natural geochemical
variations and future environmental change.

Reimann (2005) reviewed and discussed various methods used
for the production of geochemical maps. Initially and perhaps most
faithfully to the original data and spatial distribution, geochemical
data is represented as point source maps, using an appropriate
(black and white or colour) symbology to indicate concentration
(e.g. Caritat and Cooper, 2011). Interpolated or contour maps
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(models) are often used as the final publication of geochemical
atlases because they are easier to read to the non-specialist. The
process of interpolation, which attempts to fit a function to the data
to estimate values between data points, can follow different ave-
nues (inverse distance weighting, kriging, spline, etc.) with
different results (Lam, 1983). Interpolation methods based on
kriging (e.g. Caritat and Grunsky, 2013; Reimann et al., 1998) and
inverse distance weighting (e.g. Cohen et al., 2012; Smith et al.,
2014) are among the most common and reliable methods (Li and
Heap, 2011; Reimann, 2005). Recently, spatial regression trees
and random forest methods, which are predictive modelling and
mapping methods used in digital soil mapping (e.g. McBratney
et al., 2003), have been applied to soil pollution analysis (Bou
Kheir et al., 2014) and lithological mapping (Cracknell and
Reading, 2014; Harris and Grunsky, 2015; Lacoste et al., 2011).
Adhikari et al. (2013) compared the performance of ordinary krig-
ing, stratified ordinary kriging, regression trees and rule-based
regression kriging for mapping soil clay content over the Mid-
western part of Denmark.

The composition of surface soil and sediment (regolith) is the
result of complex processes occurring at the intersection of the
geosphere, biosphere, atmosphere and hydrosphere (Scott and
Pain, 2008; Taylor and Eggleton, 2001). Not only are bio-physico-
chemical processes paramount, but time adds a further degree of
complexity. Understanding the composition and evolution of the
regolith is a fundamental scientific pursuit. The regolith (‘every-
thing between fresh rock and fresh air’; Eggleton et al., 2001) is a
key component of the critical zone (‘everything between un-
weathered bedrock and treetops’; Brantley et al., 2007) and sup-
ports plants and crops, sustains ecosystems, filters groundwater,
stores carbon, supports infrastructure, and can conceal or host
mineral deposits.

The geochemical composition of the regolith is inextricably
linked to the makeup of its component solid particles (minerals,
organic matter, …) and fluids (water with its dissolved species,
complexes and colloids, and gases). The nature, abundance,
composition, grain size, Eh, pH, pCO2 and other characteristics of
the regolith depend strongly on the geological substrate, climate,
biota and landscape processes through time. Despite this
complexity some profound understanding of soil, regolith and
weathering has been achieved over several decades (from Jenny,
1941; to Drever, 2014), yet we are far from possessing a holistic,
deterministic, 4D predictive capability of soil properties. Thus,
every effort that can enhance this capability, at any scale, is
important. This is why a method of quantitatively modelling the
composition of surface regolith between observations that tests
the dependency on fundamental variables can be more
instructive than fitting a smoothing function with no regards to
what controls the variability of conditions between the data
points.

In this paper we demonstrate the application of decision tree-
based modelling using points with measured elemental
geochemistry coupled with environmental covariates at those
points to predict and then extensively map the distribution of
major and trace element geochemistry of the surface regolith of a
1:250,000 scale map sheet in Western Australia. Decision tree-
based modelling is one of several environmental correlation ap-
proaches used in digital soil mapping that aim to quantitatively
predict individual soil properties or classes with statistically
determined uncertainty (Henderson et al., 2005; McBratney et al.,
2003; McKenzie and Ryan, 1999). Here we compare this predic-
tive modelling approach to more traditional methods of data
interpolation including Ordinary Kriging (OK) or Inverse Distance
Weighting (IDW) and discuss more broadly its merits for mapping
and understanding the environmental controls on regolith
geochemistry.

2. Study area e climate, geology, geomorphology and
vegetation

The study area is the Sir Samuel 1:250,000 scale map sheet
(from 27.0� to 28.0� S and 120.0�e121.5� E) in central Western
Australia, which covers an area of approximately 16,000 km2 on the
Yilgarn Craton (Fig. 1 e inset). The climate is arid to semi-arid with
hot summers and cool to mild winters (Liu et al., 2002). Average
annual rainfall of 239 mm at Yeelirrie (27.28� S and 120.09� E)
(http://www.bom.gov.au/climate/averages/tables/cw_012090.
shtml) is greatly exceeded by average potential evaporation
(>3200 mm). The heaviest rainfall events tend to occur as summer
thunderstorms; otherwise rainfall is fairly evenly distributed
through the year. Elevation varies from 425 to 609 m above sea
level.

The geology of the study area (Fig. 1) comprises Archean
greenstone belts consisting of metamorphosed mafic and ul-
tramafic igneous rocks (mostly volcanic), sedimentary rocks,
felsic volcanic and volcaniclastics rocks, minor cherts and
banded iron formations (Bunting and Williams, 1979; Liu et al.,
2002). Mafic and ultramafic lithologies include peridotite,
komatiite dunite and high Mg basalt. These greenstone rocks are
deformed and folded along north-northwest to north-northeast
trending axes. Younger Archean granitoid rocks separating the
greenstone belts include granodiorite, monzonite, quartz sye-
nite, tonalite, gneiss and adamellite. Rock exposures are poor
and generally occur over local bedrock rises. Most of the area is
covered by Cenozoic regolith that masks the geological and
topographic complexity of the basement with a gently undu-
lating surface (Anand and Paine, 2002). The regolith includes
deeply weathered (up to 100 m) in situ bedrock profiles and
transported materials comprising colluvial, lacustrine and
aeolian sediments (Anand and Paine, 2002). Cenozoic sediments
are preserved in paleochannels, which are largely coincident
with the present drainage system and are up to 125 m thick
(Johnson, 2004). The upper part of the weathering profiles can
be indurated with iron and silica to form ferruginous duricrust
(also referred to as laterite) and silcrete. These indurated ma-
terials typically occur over local basement highs/ridges and form
the cap rock of breakaways or erosional scarps (for regolith
terms see Eggleton et al., 2001).

Overall the area has very low relief with rises and low hills
defining local drainage divides. The greenstone belts typically are
expressed as low hills with local prominent ridges formed by more
resistant chert and banded iron formations. Granitoid rocks can
form tor mantled rises and low domed hills (Bunting andWilliams,
1979). Bedrock rises are often delineated by erosional scarps or
breakaways that mark a boundary betweenmore highly weathered
materials above the scarp and less weathered materials immedi-
ately below. Down slope from these erosional features sheet-flood
fans and floodplains form extensive low relief depositional plains.
The floodplains tend to be saline with salt lakes associated with the
larger drainage systems.

The vegetation type and distribution is strongly associated
with the type of regolith, bedrock and landform. The area is
largely dominated by acacia (mulga) and mixed eucalypt
(mallee) scrub (Beard et al., 2013). Mulga and mallee plants are
commonly found over mafic rocks and associated ferruginous
soils. Granitic landscapes are associated with mulga and other
Acacia sp. whilst extensive sand plains typically support spinifex
grasses with scattered mulga and eucalypt species. Salt tolerant
halophytes dominate the valley floors and playa lakes (Beard
et al., 2013).

http://www.bom.gov.au/climate/averages/tables/cw_012090.shtml
http://www.bom.gov.au/climate/averages/tables/cw_012090.shtml


Fig. 1. Location of the Sir Samuel 1:250,000 scale map sheet (inset) and major geology and regolith units (Bunting and Williams, 1979).
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3. Methods

3.1. Geochemical data and statistical analysis

The geochemical data analysed here is part of the Geological
Survey ofWestern Australia's geochemistry program, which carried
out ~4 km � 4 km grid sampling of surface regolith over several
1:250,000 scale map sheets between 1994 and 2001 (Morris et al.,
1999). The program's aim was to provide baseline information on
the distribution and composition of regolith for the mineral
exploration industry. Over the Sir Samuel map sheet (Fig. 2), 1026
samples of sheetwash (n ¼ 421), stream (397), and lake (52) sedi-
ments, as well as soil (156) were collected from just a few cm below
the surface (to avoid incorporation of any windblown material,
vegetation or other organic material) down to 10e40 cm depth
(Kojan et al., 1996). The resulting average sample density is one site
per ~16 km2.

Each sample was sieved with the 0.45e2 mm fraction
retained (to avoid wind deposited fines), milled and analysed for
47 elements as well as Loss on Ignition (LOI), pH and electrical
conductivity. Analysis was carried out by commercial labora-
tories under strict quality assurance/quality control protocols
including laboratory and in-house standards, duplicates and
blanks (Kojan et al., 1996; Morris, 2000). Samples were analysed
using a suite of analytical methods including multi-acid (HF/
HClO4/HNO3) digestion followed by Inductively Coupled Plasma-
Emission Spectrometry (ICP-ES) for Ca, Na, P, Cu, Ni, S, Sc, V and
Zn, or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)
for Ag, As, Ba, Be, Bi, Ce, Co, Ga, In, La, Li, Mo, Nb, Pb, Rb, Sb, Sn,
Sr, Ta, Te, Th, U, W, Y and Zr; alkaline oxidative fusion with Na2O2
followed by ICP-ES for Si, Ti, Al, Fe, Mn, Mg, K and Cr; fire assay
lead collection followed by ICP-MS for Au, Pd and Pt; alkaline
fusion followed by Ion-Specific Electrode (ISE) measurement for
F; aqua regia digestion followed by ICP-MS for Se; and finally
gravimetry for LOI (Kojan et al., 1996). Data originally reported
as oxides was transformed to elemental concentrations, with all
concentrations expressed as parts per million (ppm;
1 ppm ¼ 1 mg/kg).

We selected chromium (Cr) and sodium (Na) to illustrate the
application of environmental correlation for predictive modelling
of geochemical patterns. The distribution, geochemical associations
and mobility of these elements differ markedly and therefore this
choice provides complementary datasets for investigation. Only
few results (8 for Cr, 1 for Na) were below the lower detection limit
and those censored values were imputed using the robComposi-
tions R package of Hron et al. (2010) before statistical analysis. Raw
distributions of both Cr and Na (in ppm) were heavily skewed
(Table 1, Fig. 3) and thus were logarithmically (Log(10))



Fig. 2. Sample sites (718 training samples, green dots; 308 validation samples, yellow dots) overlain on a digital elevation model. Drainage and salt lakes are shown in blue and
erosional scarps as thick black lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Summary statistics of the selected raw (Cr_ppm, Na_ppm) and Log(10) transformed
(Cr_Log, Na_Log) regolith geochemistry data from the Sir Samuel study area. Values
below the lower detection limit were imputed (see text).

Cr_ppm Cr_Log Na_ppm Na_log

Detection limit (DL) 20 1.30 74 1.87
N 1026 1026 1026 1026
N < DL 8 8 1 1
Minimum 14.98 1.18 54 1.74
Median 127 2.10 964 2.98
Mean 320 2.21 2998 3.06
Maximum 9714 3.99 49,040 4.69
Standard deviation 596 0.45 4744 0.61
Kurtosis 74.01 0.42 15.79 �0.74
Skewness 6.70 0.80 3.21 0.25
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transformed. Fig. 3 and Table 1 show that considerable improve-
ment in distribution was obtained by the transform.

3.2. Predictive modelling approach

We apply the Cubist data mining package (Quinlan, 1992; www.
rulequest.com) to establish predictive relationships between site
geochemical concentrations and the environmental covariates (see
next Section). The Cubist model structure consists of decision tree
splits defined by conditional statements coupled with multiple
linear regression models operating at the leaves. Continuous as
well as categorical variables can be used in the decision tree to split
the data into more homogeneous sub-regions. Values within these
sub-regions are then predicted by the linear regression models.
Many linear models are generated in any one prediction and where
model predictions overlap an average prediction value is calculated.
This modelling approach enables local linear correlations of the
data to be made within sub-regions defined by the decision trees.
Detailed explanation of the Cubist modelling approach is described
by Henderson et al. (2005), Bui et al. (2009) and Kuhn and Johnson
(2013).

The Cubist model structure consists of many rules. An example
is shown below (where c1, c2 and c3 are constants; see Table 2).

Rule 1:

If (conditional statement; decision tree splits)

Relief < 50 m
Gamma-ray K > 2.1%
Lithology ¼ granite

Then (linear model)
Property ¼ c1 � Topographic wetness
index þ c2 � Slope þ c3 � Gamma-ray K
3.3. Environmental covariates

In digital soil mapping environmental covariates are selected to
broadly reflect the soil-forming factors as described by Jenny
(1941):

S ¼ G (cl,o,r,p,t)
where the soil in its current state (S) is a function G of the following
soil-forming factors: climate (cl), biological organisms (o), relief (r),
parent material (p) and time (t). These factors are also important in
predicting surface geochemistry, particularly in highly weathered
landscapes where pedogenic/weathering and geomorphic pro-
cesses exert a strong control on element distribution and
concentration.

The major environmental covariate themes used in the
geochemical prediction are briefly summarised below and are
individually listed in Table 2 and in the Supplementary Data.

3.3.1. Climate
Key climate attributes of rainfall and temperature do not show

http://www.rulequest.com/
http://www.rulequest.com/


Fig. 3. Histograms of the selected raw (A e Cr_ppm, C e Na_ppm) and Log(10) transformed (B e Cr_Log, D e Na_Log) regolith geochemistry data from the Sir Samuel study area.
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significant changes over the study area. We only included grids of
average annual rainfall and the Prescott index, a leaching index that
takes into account rainfall and evaporation (Gallant and Austin,
2012; Prescott, 1950). The leaching index is an estimate of excess
water that can potentially percolate through the soil profile.

3.3.2. Soil and geology
Soil map units were derived from a digital version of the Atlas of

Australian Soils at 1:2 million scale (Northcote et al., 1960e1968).
Geology polygons were derived from the 1:1 million Surface Ge-
ology of Australia (Raymond, 2012). Geological units were classified
into consolidated (bedrock) and unconsolidated materials (e.g.
colluvium and alluvial sediments). Bedrock units were classified on
their silica content (based on chemical compositions of common
rock types; Gray and Murphy, 1999).

3.3.3. Terrain
Information on surface morphology was derived from an

improved version of the 3 arc second (~90 m) Shuttle Radar
Topographic Mission (SRTM) digital elevation model. The improved
version has vegetation features removed and is smoothed to reduce
noisy artefacts present in the original data (Gallant et al., 2011). The
elevation model was used to generate a suite of terrain attributes
which are listed in Table 2.

3.3.4. Satellite imagery
Advanced Spaceborne Thermal Emission and Reflectance Radi-

ometer (ASTER) imagery provided information on surface miner-
alogy and vegetation. Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite imagery was processed to
derive 12 coefficients based on Enhanced Vegetation Index (EVI)
time-series data from 2000 to 2008 (Tan et al., 2009; Lymburner
et al., 2011). These coefficients relate to a range of phenological
parameters reflecting changes in greenness over that time period.
These MODIS derived greenness coefficients are listed in Table 2
and a more detailed explanation of the coefficients is described
by Tan et al. (2009). The coefficients were included to explore re-
lationships between vegetation type and dynamics on the one hand
and surface geochemistry on the other.

3.3.5. Geophysics
Available geophysical datasets included airborne magnetics,

gamma-ray radiometrics and ground station gravity surveys. The
magnetic intensity and the first vertical derivative of the magnetics
were used as part of the covariate datasets. Airborne gamma-ray
spectrometric data measures the surface concentration of three
gamma-ray emitting radioelements 40K, 208Tl (used to estimate the
abundance of Th ¼ eTh) and 214Bi (used to estimate the abundance
of U ¼ eU) (Wilford and Minty, 2007). The distribution of these
elements varies in response to bedrock type and secondary
weathering processes and soil formation (Wilford, 2012). Individual
and ratio grids for K, eTh and eU were compiled from the Radio-
metric Map of Australia (Minty et al., 2009). Bouguer gravity
anomaly data were extracted from the Australian National Gravity
Database (Murray, 1997).

3.4. Model implementation, evaluation and comparison with
geostatistical approach

The modelling approach involved randomly withholding a
subset comprising 30% of the geochemical site data (N ¼ 308) for
external validation and using the remaining 70% (N ¼ 718) as



Table 2
Environmental covariate predictive variables used in the Cr and Na Cubist models (see Supplementary Data for more detail).

Theme No Covariate Description

Terrain 1 Elevation Digital elevation model ~90 m resolution
2 Regional elevation Low band pass filtered elevation
3 Multi-resolution valley bottom flatness Defines low lying area, i.e. valley floors
4 Aspect Relief aspect
5 Saga wetness index Wetness index based on a modified catchment area
6 Wetness index Topographic wetness index
7 Relief Relief defined as the elevation range within a circular window of 300 m
8 Local relief Relief defined as the elevation range within a circular window of 100 m
9 Regional relief Relief defined as the elevation range within a circular window of 2000 m

10 Slope Degree of elevation fall of the topographic surface
11 Local slope Median slope within a 300 m radius
12 Erosional-Depositional Geology split on bedrock and transported units

Climate 13 Prescott index The Prescott Index is a measure of water balance
Geology/geochemistry 14 Potassium (%) Airborne gamma-ray derived from radioelemental potassium

15 Thorium (ppm) Airborne gamma-ray derived from radioelemental thallium-208
16 Uranium (ppm) Airborne gamma-ray derived from radioelemental bismuth-214
17 Ratio Th/K Ratio of gamma-ray measured thorium/potassium
18 Gravity Image based on ground based gravity measurements
19 Magnetic intensity Airborne magnetic survey
20 Regional magnetic Average magnetic intensity within a 1000 m circular window
21 Weathering intensity Index representing intensity of surface weathering
22 Lithology type Surface Geology of Australia 1:1 million scale
23 Lithology silica Lithology classified on silica content
24 Soil units Australian Soil Classification (ASC)
25 Distance from outcrop Euclidean distance from outcrop
26 Gravity gradient Measures rate of change in the earth's gravity field
27 aASTER regolith 1 ASTER satellite ratio bands 3/2
28 ASTER regolith 2 ASTER satellite ratio bands 3/7
29 ASTER regolith 3 ASTER satellite ratio bands 34/7
30 ASTER Ferrous Fe ASTER satellite ratio bands 5/4

Vegetation 31 bMODIS 1 Mean of cEVI values of the time period
32 MODIS 2 Standard deviation of EVI values over the time period
33 MODIS 3 Flatness e measure of low EVI values
34 MODIS 4 Rate of rise (average rate of rise within the time period)
35 MODIS 5 Rate of drop (average rate of drop within the time period)
36 MODIS 6 Global minimum (lowest value within the time period)
37 MODIS 7 Mean length of a cycle between peaks and troughs of the EVI
38 MODIS 8 Global maximum (highest value within the time period)
39 MODIS 9 Max ratio (global maximum/annual maximum)
40 MODIS 10 Mean of the timing of the maximum
41 MODIS 11 Standard deviation of the timing of the maximum
42 MODIS 12 Annual minimum

a ASTER ¼ Advanced Spaceborne Thermal Emission and Reflectance Radiometer.
b MODIS ¼ Moderate Resolution Imaging Spectroradiometer
c EVI ¼ Enhanced Vegetation Index.
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training data (Fig. 2). The Cubist model was then run 30 times using
bootstrapwith sample replacement to produce a unique rule set for
each run. Sample replacement insured that approximately 30% of
the sites were randomly left out of the analysis for eachmodel since
any given site could be selected more than once. This procedure
improved the stability and uncertainty of the model and allowed
calculation of model uncertainty. The Cubist rule sets generated
were then evaluated and applied spatially calculating a median
predicted value (i.e. the final model). The difference between the
Table 3
Parameters of the Ordinary Kriging Cr and Na interpolations with 718 sites.

Cr
Model type: exponential
Nugget variance: 0.0293
Sill: 0.1674
Range or lag distance: 45,584.64 m
Na
Model type: exponential
Nugget variance: 0.0427
Sill: 0.3348
Range or lag distance: 18,905.88 m
95th and 5th quantiles (Q95-Q5) of the 30model runs was used as a
measure of statistical dispersion. This dispersionwas normalised to
the median value (Q95-Q5/Q50) as an estimate of the model un-
certainty (Arrouays et al., 2014). Higher uncertainties reflect a
greater spread of the predicted values (relative to the median).

In contrast a geostatistical approach to geochemical mapping
relies on the construction of variograms to establish the predict-
ability of values from place to place (Clark and Harper, 2000). The
constructed semi-variogram models the relationship between a



Fig. 4. A e Cubist prediction map for Cr; B e Cubist prediction uncertainty map (Q95-Q5/Q50) for Cr; C e Cubist prediction map for Na; D e Cubist prediction uncertainty map
(Q95-Q5/Q50) for Na.

Fig. 5. A e Ordinary Kriging map for Cr; B e Corresponding variogram (distance in m); C e Ordinary Kriging map for Na; De Corresponding variogram (distance in m).
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Fig. 6. A e Inverse Distance Weighting map for Cr; B e Inverse Distance Weighting for
map Na.
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value at one location and the value at another as a function of the
distance and direction between them, accounting for spatial auto-
correlation. Ordinary Kriging (OK) with an exponential semi-
variogram model was used to predict the value of Cr and Na
concentrations at unsampled points. We also compared the co-
variate model with the IDW interpolation method. Both these
spatial interpolation methods are based on the assumption of
spatial autocorrelation (samples closer together are more likely to
be similar than those further apart). Inverse distance weighted
interpolation is a local deterministic method where the weighting
factor diminishes with increasing distance. Both methods were
implemented in ARCMap 10.2 e Geospatial Analyst (www.esri.
com). Kriging parameters are shown in Table 3; parameters used
for IDW included ‘power2’ interpolation with a searching neigh-
bourhood of 15 (at least 10), major and minor semiaxis of 46,749
m.

Measures of model performance based on the 30% out-of-
sample subset included the coefficient of determination (R2), root
mean square error (RMSE) and goodness-of-prediction (G) esti-
mate. The R2 values were calculated from the Pearson correlation
coefficient (R) and indicate how well predictions and observations
match. The closer R2 is to unity the better.

The RMSE gives an indication of the accuracy of the model or
how well the model is able to predict observed values, according
to:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ð zðxiÞ � bzðxiÞÞ2
vuut

where zðxiÞ is the observed value at location i, bzðxiÞ the predicted
value at location i, and n is the sample size. The smaller the RMSE
the better.

The G estimate assesses how good the prediction or interpola-
tion is compared with just using the sample mean (Karydas et al.,
2009), according to:

G ¼
 
1�

Pn
i¼1 ½zðxiÞ � bzðxiÞ�2Pn
i¼1 ½zðxiÞ � zðxiÞ�2

!
� 100%

where all symbols as per above, and zðxiÞ is the sample mean. If
predictions are more reliable than the use of the sample mean, G
values are positive and range up to 100% (which is a perfect model).
4. Results and discussion

4.1. Maps/models and uncertainties

The Cr and Na maps generated using the Cubist, OK and IDW
methods are shown in Figs. 4e6. All maps were evaluated with the
same 30% out-of-sample sites. Eachmethodwas compared in terms
of the R2, RMSE and G estimate (Table 4). Both interpolation
methods (OK and IDW) were similar in terms of their accuracy and
mapping effectiveness. The Cr interpolation maps had significantly
higher R2 and G with corresponding lower RMSE compared to Na
(Table 4). The Cubist maps for Cr and Na are shown in Fig. 4A,C and
model uncertainty maps in Fig. 4B,D. The Cubist models for Cr and
Naweremore robust in terms of R2, RMSE and G comparedwith the
interpolation methods, particularly for the Na predictions (Table 4).

Comparison of the range of concentration values (Fig. 3, Table 1)
to the predictive model outputs (Fig. 4A,C) suggests that Cubist
tends to under predict the target variable. Both Cubist uncertainty
maps (Fig. 4B,D) show the largest uncertainty at two circular
anomalies in the northwest quadrant of the study area. This is the
Mt Keith open pit nickel mine and its tailings, an environment that
was not directly targeted by the regolith sampling. As a result
Cubist struggles to fit consistent rules and predicted values in this
unsampled environment, yielding the largest variation/noise
among the 30 model runs generated here. Outside of the Mt Keith
mine site, the Cubist uncertainty is generally much lower.

4.2. Element distributions and insight into processes from the
environmental predictors

4.2.1. Predictive maps
The Cubist models presented here are based on statistical cor-

relations between the Cr and Na values and the covariate datasets.
The resolution of the prediction grids therefore reflects that of the
covariates, approximately 90 m. The accuracy of the model will
depend on the strength of the correlation between the element and
the covariates. In contrast, OK and IDW grids of element concen-
trations are only interpolations between points ignoring changes in
any other property between them. The accuracy of the interpola-
tion reflects the degree of correlations between points and how
well these points represent the area. Geochemical variations be-
tween points will largely reflect the scale at which landscape pro-
cesses operate. For example, sample density and landscape
processes scale are likely to explain the differences in prediction
accuracy between Cr and Na.

The distribution of Cr is spatially clustered and genetically
related to the mafic and ultramafic rocks forming the north-
northeast and north-northwest trending greenstone belts
(Fig. 1). Chromium is relatively immobile in the weathering
environment and elevated Cr tends to be largely restricted to
these lithologies (Figs. 1 and 7A). The sampling density of 718

http://www.esri.com
http://www.esri.com


Table 4
Model performance based on 30% out-of-sample validation (see maps on Figs. 4e6).

Cubist Cr OK Cr IDW Cr Cubist Na OK Na IDW Na

R2 0.70 0.66 0.65 0.67 0.32 0.30
RMSE 0.25 0.27 0.28 0.34 0.49 0.50
G 70% 66% 65% 65% 31% 29%

Table 5
Model performance based on 90% out-of-sample validation (sensitivity analysis).

Cubist Cr OK Cr IDW Cr Cubist Na OK Na IDW Na

R2 0.58 0.35 0.32 0.47 0.07 0.09
RMSE 0.29 0.36 0.37 0.44 0.59 0.58
G 58% 34% 30% 45% 6% 6%
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sites (¼ 70% training) over the map sheet (or 1 site per ~22 km2)
broadly captures the Cr distribution adequately (OK Cr R2 ¼ 0.66,
IDW Cr R2 ¼ 0.65). Sodium on the other hand is less clustered
with local highs corresponding to both primary and secondary
processes (Fig. 7B). The same sampling density poorly captures
the Na variability because the landscape process scale that
controls the distribution of Na is much finer than the sampling
density. In contrast the Cubist models provide considerable
more spatial detail than the OK and IDW maps and are less
dependent on the number of site observations to explain or
predict the distribution of the elements. The predictive power of
correlative modelling approach is particularly evident when
reducing the density of the site observations. Even when only
10% of the sites are used for training and the remaining 90% for
Fig. 7. A e 3D drape of Cubist prediction model for Cr over digital elevation model (a e mod
sheet flood fans and valley floors; c e elevated Cr associated with mafic rocks; d e low Cr co
over digital elevation model (a e low Na corresponding to highly leached regolith profile
moderate to low Na over mafic lithologies; d e high Na associated with evaporitic salts an
exaggeration ~20.
validation (Table 5) the correlative modelling technique is
significantly better than the interpolation methods. Further-
more, the Cubist approach can be used to predict in areas
without site measurements as long as the rules and associated
covariate relationships hold true for the new area (e.g. areas
where the environmental controls on element distribution are
similar).
4.2.2. Process understanding
Explicitly expressed rules generated by the Cubist data mining

approach allow exploration of the factors controlling the distribu-
tion of Cr and Na. Analysis of how the environmental covariates are
used in the model prediction can improve our understanding of the
often complex inter-relationships between environmental/
erate Cr values developed on very highly weathered granite; b e low Cr associated with
rresponding to exposed granitic rocks); B e 3D drape of Cubist prediction model for Na
s; b e elevated Na associated with exposed granitic rocks with Na-plagioclase; c e

d lacustrine sediments). All models looking north, east-west extent ~150 km, vertical



Fig. 8. Percentage covariate usage in both the condition and model components of the Cr prediction.
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landscape processes and element distribution. Furthermore, the
rules provide a framework to test our conceptual models of land-
scape geochemistry and in the case of Cr can be used to target
potential areas of mineralisation.

Chromium in the Yilgarn Craton is mainly found as the oxide
mineral chromite, which is largely associated with mafic lithologies
and the ferruginous weathered materials derived therefrom (Scott,
1990). The Cr prediction model is mostly based on MODIS green-
ness coefficients, gamma-ray radiometrics, particularly the Th/K
ratio, gravity, weathering intensity and to a lesser extent terrain
attributes and ASTER (Fig. 8). The emergence of MODIS 12 green-
ness coefficient e low annual greenness e as the most important
predictor of spatial Cr pattern is interesting and requires further
investigation. Its use may have a plant physiological explanation
because Cr is toxic to growth (Shanker et al., 2005). Alternatively a
geobotanical relationship may exist where a particular vegetation
type is growing preferentially on highly ferruginous soils devel-
oped overmafic rocks. Soil biological processesmay be involved too
since Cr is readily absorbed by organic matter (Bartlett and Kimble,
1976; Scott and Pain, 2008) and can be mobilised by micro-
organisms (McFarlane et al., 1994). Mafic rocks and residual
weathering profiles developed on them tend to be high in Th and
low in K. Hence, high Th/K ratio values are a characteristic feature of
mafic/ultramafic rocks. These lithologies are also denser and
consequently have higher gravity response compared to adjacent
granitic rocks and sediments.

From a mineral exploration perspective the Cr model is delin-
eating elevated Cr values within the exposed mafic greenstone
belts but also high Cr values in areas of shallow cover where mafic
rocks are concealed. This is evident when comparing the Cr model



Fig. 9. Percentage covariate usage in both the condition and model components of the Na prediction.
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(Fig. 4A) with the surface geology map (Fig. 1). Mafic rocks are
generally poorly exposed however high modelled Cr values link
these scattered outcrops through relationships between residual
accumulation of Cr in the regolith and the environmental covariates
(particularly magnetic intensity and MODIS). The result of this
approach is thus more insightful than predictive lithological map-
ping (e.g. Harris and Grunsky, 2015; Martelet et al., 2006;
Schetselaar et al., 2000).
The Namodel prediction is largely based on distance to outcrop,
weathering intensity, Th, K, gravity and to a lesser extend MODIS
greenness coefficients, ASTER and terrain attributes (Fig. 9). Sodium
concentrations are associated with plagioclase in exposed felsic
rocks including granite, rhyolite and syenite. Sheet flood fans
shedding sediments down slope from these felsic lithologies are
also high in Na (Fig. 7B). Sodium is highlymobile duringweathering
and pedogenesis and is associated with evaporitic minerals (e.g.



Fig. 10. Cubist prediction map for Cr with anomalous values (based on Tukey outliers; see text) highlighted (red pixels), overlain on a hill shaded digital elevation model with
drainage (blue lines). The actual samples identified as outliers are shown as yellow triangles. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

J. Wilford et al. / Applied Geochemistry 66 (2016) 275e288286
precipitation of NaCl) and discharge sites along valley floors and
salt lakes. It is therefore not surprising that the distance-to-outcrop
covariate, which effectively separates bedrock highs from valley
floor deposits, and Saga wetness index are important predictors in
the Na model. Radiometric K dose delineates felsic bedrock with
high Na-plagioclase whilst high weathering intensity highlights
areas where intense leaching has removed Na from the upper part
of the weathering profile. These highly leached, Na depleted zones
occur above local erosional scarps over granitic bedrock (Fig. 7B).

Regolith chemistry is a key attribute of the critical zone, the
layer between unweathered bedrock and the tree tops where the
geosphere, hydrosphere, biosphere, and atmosphere interface
(Jordan et al., 2001). Regolith chemistry will reflect the natural
composition of the bedrock and changes in response to chemical,
physical and biological processes over time (Brantley and Lebedeva,
2011). The application of environmental correlation as described in
this paper provides a mechanism to understand the processes
operating within the critical zone and the interaction between the
multiple factors controlling the nature of regolith geochemistry
over extensive areas. It allows us to go beyond the traditional
approach that relies on univariate functions of soil formation fac-
tors (toposequences, climosequences, lithosequences, bio-
sequences, or chronosequences).

Correlative modelling is likely to be most efficient when various
parts of the landscape have been sampled to capture the full
spectrum of environmental conditions (terrain, climate, geology,
vegetation, etc.). Therefore strictly adhering to a single, well con-
strained geochemical sampling medium is not a prerequisite for
applying correlative modelling. Thus sampling schemes specifically
targeting a range of conditions, such as Latin hypercube (McBratney
et al., 2003), may be particularly well suited to this type of decision
tree modelling. This also means that legacy geochemical datasets
with multi-media geochemical results are potentially amenable to
Cubist-type correlative environmental modelling, with ensuing
interpretative power.

4.2.3. Application to mineral exploration
The ability to model the distribution of a chemical element in

relation to a number of controlling variables offers the potential to
map the distribution of pixels above the local baseline (‘back-
ground’), which could highlight areas worthy of further investiga-
tion. To illustrate this, we identified and mapped the ‘Tukey
outliers’ (Tukey, 1977) within the Cr population. Such outliers are
not arbitrarily chosen, but their presence (or absence) is controlled
by the internal structure of the dataset at hand (specifically, how
tight the box in a boxplot is compared to the data's full range).
Tukey outliers are defined as those samples for which the Log10
(Cr) concentrations exceed the upper fence; the upper fence is
defined as 1.5 times the hinge spread (HS, or Q75-Q25) added to the
75th percentile (Log10 (Cr) > Q75 þ 1.5 � HS). In the present case
study, the upper fence is at Log10 (Cr) ¼ 3.33, resulting in 21 out-
liers. Subsequently, we highlighted every pixel in the Cr Cubist
model with a value exceeding 3.33e0.25 (the RMSE), or 3.08
(Fig. 10). The subtraction operation is justified by the concern that
we did not want to miss any potential anomaly because of the
uncertainty in the Cubist model. The anomalous regions high-
lighted in Fig. 10 are much more extensive than suggested by the
anomalous samples alone and may warrant further exploration
investment (e.g. for nickel, chromium, or platinum group
elements).

5. Conclusions

Generating predictive element compositional maps from
geochemical survey data using environmental correlative model-
ling has significant advantages over traditional geostatistical
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interpolation methods such as kriging and inverse distance
weighting. Application of environmental correlation in our study
area produced quantitative geochemical landscape models with
higher accuracy and higher resolution than the interpolation
methods. The approach is particularly advantageous where the
survey sampling density is not commensurate with the landscape
process scale. This integrated modelling incorporates extensive
high-resolution spatial data (e.g. from satellite and airborne sour-
ces) to value-add to geochemical survey data. The approach has the
potential to model the full range of major and trace element
compositions, principal components of these elements, various
indices or ratios devised for exploration or environmental assess-
ment purposes, and even isotopes. Furthermore, this covariate
modelling approach provides a knowledge-discovery platform to
globally improve our understanding of the complex web of phys-
ical, chemical and biological interactions occurring within the
critical zone that control geochemical landscapes, be it for envi-
ronmental, earth or resource science applications.
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