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Abstract-Some mathematical algorithms for supervised classification problems are presented in 
this paper. These algorithms are based on fuzzy partial precedents, and they allow us to work with 
nonclassically described objects, i.e., mixed data. These types of descriptions frequently arise in 
soft sciences. As a rule, the most used methods for solving such classification problems are oriented 
towards one type of feature, most often quantitative. They do not allow the use of different kinds of 
features, ss a consequence, all variables must be quantitative, or exclusively qualitative. In fact, those 
methods use, in some way, a distance measure between object descriptions, which follows from the 
hypothesis of compactness of classes. The proposed models allow the handling of quantitative and 
qualitative features together, and missing values. They are based on partial evaluation of similarity 
between objects in a fuzzy environment. They do not use a distance. @ 1999 Elsevier Science Ltd. 
All rights reserved. 

Keywords-Fuzzy pattern recognition problems, Fuzzy supervised classification, Partial prece- 
dence. 

INTRODUCTION 

Supervised classification problems, on which objects are described by mixed data, are frequently 
found in soft sciences. In this case, specialists often consider the problem as a collection of sub- 
problems, each one viewed from a different point of view. They analyze separately some sets of 
features converging to partial conclusions to finally make a decision. Some mathematical tech- 
niques for modeling this procedure are called “mathematical models based on partial precedents”. 
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A practical problem, solved in this way, can be found in [l]. In (21, the authors mention one of 

these models as: “combinatorial-logic method . . . which construct informative fragments of the 

objects descriptions”. In this paper, we propose some mathematical models, based on fuzzy 

partial precedents, to solve supervised classification problems in a fuzzy environment, 

Let U be a finite set of objects structured in K1, . . . , K,. classes. r 2 2, described 

in terms of a finite set of features R = {xi,. . . , zn}, each of which has associated a 

set of admissible values Mi. Given M = (01, . . . , 0,) C U, which is the union of (1) 
Ki,..., KS, Ki’ c Ki, i = 1,. . . , r and 0 E (U\M), the membership relation between 

0 and KI,..., Kr has to be found. 

In general terms, this is the supervised classification problem to be solved. The following set of 

assumptions is frequently implicit. 

a) Mi C Iw, or exclusively, Mi = (0, 1) for every i = 1,. . . , n, which means that we are 

working on a subspace of R”, or of the n-dimensional Boolean space Bn. 

b) A metric d is defined on Mi x . . * x M,. 

c) d induces a metric on every Mi, which means that comparisons between values of the 

same variable, as well as those between objects descriptions, are made regarding their 

“closeness”, and performed by distances on Wn or Bn. 

d) K1,... , K,, are crisp sets. 

e) The classes are disjoint sets. 

f) The similarity relations between objects of the universe are determined through compar- 

isons of their complete descriptions. 

g) The response of the classifiers is, at most, one class. 

h) Some statistical behaviors are assumed on the value distribution of the variables, and 

missing values are not allowed. 

To overcome this last situation, interpolation techniques with implicit restrictions regarding the 

nature and behavior of their value are applied. 

In practice, it is easy to find problems in soft sciences on which most of these assumptions are 

not true, and therefore, many authors build their models following assumptions which we do not 

accept to be right (see, for example, [3]). Therefore, the development of correct mathematical 

tools which allow us to obtain a reasonable solution to the above-mentioned problems, without 

misrepresenting or forcing their true nature, is a goal worthy of many additional efforts. This 

paper concerns one effort in this direction. 

FORMAL STATEMENT OF THE 
PROBLEM IN FUZZY ENVIRONMENT 

Let us consider a supervised classification problem in the following terms. 

Let U be the same as before. We do not make any assumptions regarding the set of vari- 

ables R, so they may be either qualitative, quantitative, fuzzy, or linguistic. The admissible sets 

of values Mi may also take the * value to denote a missing value. For every 0 element of U, 

there exists a point in Ml x . . . x M, , that we will denote D(0) = (xl(O), . . . ,zn(0)), where 

pi E Mi represents the evaluation of the variable zi (i = 1,. . . , n) for the object 0; D(0) 

will be called object description. 

Let us assume that classes Kl, . . . , K, are fuzzy subsets of U. Every object 0 c U may be 

associated with a membership r-tuple, ~(0) = (al(O), . . . , a,(O)) such that crj(0) = P&~(O) is 

the membership degree of the object 0 to the class Kj, j = 1,. . . , r. 

Let cpi be a function 

cpi : Mi x Mi - V (2) 

which states the comparison between two values of the variable zi. V will be (0, 1) for instance, 

whenever the result of the comparison is exactly one of two possible answers (similar or not 



Mathematical Algorithms 113 

similar). V may be considered as (0, l] if the answer is, for instance, of a fuzzy nature (degrees 

of differentiation). If a metric is used as vi, then V will be R+. V may also be the set of terms 

of a linguistic variable. 

Another problem that arises in practice is that specialists, very often, do not perform a com- 

parative analysis between two objects, paying simultaneous attention to the complete set of the 

features. Instead, they analyze parts of the descriptions usually taking them into account with 

different weights. This motivates the use of algorithm models based on partial precedence. 

Let pW be a partial similarity function on the pairs of descriptions 

(3) 

where w = {zil, . . . , xi, } & R, and V is as in (2). 

Let /3 be a total similarity operator 

where yW is a weighting parameter, denoting the informational importance of the subset of fea- 

tures w. RA is the family of subsets of features considered for the analysis of partial similarities. 

Let M = (01, . . . , 0,) C U. The only restriction imposed on M is the following: Vj = 1, . . . , T 

(mw5i5m &(oi) 1 O-5), which means that for each class Kj, M has at least one object which 

is “closer” to belonging to Kj, than not to belonging to it. 

The classical problem under these conditions would be formulated as follows. 

Given the description D(U) of an object 0 E (U\M), and the information re- 

garding M, find the r-tuple of membership of 0. In order to do this, an algo- 

rithm A has to be devised such that d(D(Ul),a(&), . . . , D(U,),a(U,), D(U)) = (4) 

(o?(Q), . . * ,c$(U)), where o(Oi) E [O,l]’ and of(U) E [O,l]. c$(U) is the mem- 

bership degree of the object 0 to class Kj estimated by the algorithm A. 

In this statement, D(Ul), (I, . . , D(O,), (~(0,) re p resents the information regarding M. 
Starting from this general statement of the problem, different situations may arise. 

l Classes KI,... , K,. may be crisp and disjoint, crisp and overlapped, forming a fuzzy 

r-partition [4], or a fuzzy Pa-partition, or a fuzzy pa-cover as defined in [5]. 

l Features may be of different nature (numerical, logical, linguistical); missing values may 

appear for any feature. 

l The comparison functions between descriptions (p), and between values of the same fea- 

ture (vi), may be of a different nature (Boolean, k-valued, real, fuzzy). 

l The output of the algorithm may be Boolean, k-valued, fuzzy, linguistic. 

According to (4) different cases may be obtained. Among them, the supervised classification 

problem as in formulation (l), without fuzzifying sources is obtained. At the present state of the 

art, there are not algorithmic models to solve some of these situations. 

A VOTING ALGORITHM MODEL IN FUZZY ENVIRONMENT 

Algorithms for the “calculation of evaluations” or voting algorithms, were introduced by Zhu- 

ravlev [6]. The basic idea contained in this model, consists of the classification of objects based 

on determined partial precedents. This means that several parts of the object to be classified 

(of its description) are compared with the corresponding parts of the already classified objects 

forming M. Based on the behavior of the simiarity between these parts, some integrations are 

made by applying a set of rules. 
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An extension of the original ideas to fuzzy conditions is described below. The model is made 

through six stages which are as follows. 

1. A support sets system is a not empty set of not empty subsets of the set of features. Every 

support set determines a subdescription of the objects, based on which, comparisons are 

made. We are going to allow the subsets in our set to be fuzzy, and we are also going to 

use a comparison criteria by features that may be infinite-valued. 

For example, the typical testor family of A4 may be taken as a support sets system [7]. 

A testor r of M is a subset of features such that, taking into account only the variables 

in 7, no more similar objects appear in different classes than those already appearing when 

we considered all the features of R. A testor is typical if it is no longer a testor when we 

eliminate any of its variables. We may also consider the typical Goldman’s fuzzy testors, 

which are a generalization of the above-mentioned ones (see, for example, [7]). 

2. A similarity function allows us to quantify the similarity between two objects. Particularly, 

an object to be classified and those in the learning sample M can be compared, by using 

at each moment the corresponding subdescriptions, based on a support set. 

The general expression 

may be considered. 

In this expression, w represents a support set, 0 is the object to be classified, Ot is 

the tth object of M, wOt expresses the subdescription of Q considering only the features 

in w, ]w] is the cardinality of w, xi represents the z .th feature, pw(zi) is the membership 

degree of zi to w, and cpi(zi(O),zi(CJ)) re p resents the (similarity) comparison between 

c3 and Ot, regarding only the xi feature. We consider that p(wO,wOt) E [0, 11, for all w, 

0, a. 
3. The rule to evaluate the similarity objectwise for a fixed support set gives us the pre- 

liminary “votes”. This rule does not necessarily agree with the result of the similarity 

function, because it is possible to introduce parameters related with each row and/or with 

the features present in the support set. For example, we can use an expression such as: 

r,(O, Ot) = rd’(Q)&(O, Q), where 7, and P(O ) t are parameters associated to the 

set w and to the object Ot, respectively, for example, their informational weights. 

4. A rule to evaluate the similarity classwise for a fixed support set, allows us to totalize 

the evaluations by object within a class, mantaining a fixed support set. It is a way of 

%crutinizing” without making the support set change. For example, we may consider the 

average of the preceding evaluations objectwise of each class. 

5. A rule to evaluate the similarity classwise for the entire support sets system also sumarizes 

the evaluations, but now based on the consideration of all the support sets. It constitutes 

the final step of the scrutiny, and it can be the final step of the algorithm if we were 

interested in knowing only the degree of similarity (membership) of the object 0 to each 

class. In general, we stop here in the fuzzy case. 

6. The algorithm can eventually take an additional step: a decision rule. Based on the votes 

obtained, this rule produces a final assigment of the object 0 to one or more classes. This 

is the usual process when we are working with crisp sets, where the decision of locating 

or not locating the object in one or more classes is required. For instance, in those for 

which the membership degree satisfies a given condition; let us say that it has to exceed 

a certain threshold, or to be the maximum value, etc. 

KORA-i2 SUPERVISED CLASSIFICATION ALGORITHM MODEL 

The KORA-3 algorithm, introduced in [8], was devised for the solution of supervised classifica- 

tion problems in geosciences with two disjoint classes, for objects described in terms of Boolean 
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variables without missing values. The underlying idea in the initial method is to classify new 

objects based on a learning sample according to the verification of some complex properties for 

each class. Those properties are formed from three feature values, which appear (‘sufficient times” 

in one of the classes and “sufficiently little” in the other one. The KORA-R algorithm introduced 

in [9] is a generalization of these ideas for the fuzzy case. 

Now, let us consider a problem such as (4). Given a comparison criterion between values for 

each variable, and some partial similarity operators, such as (2) and (3), respectively. We will 

consider V = [0, l] in both cases. 

DEFINITION. Let 0~ be a family of support sets, and w = {xii,. . , xi,} E 52~. A combination 

Of values, a = (ai,, . . . , ai,,), and its respective features, forms a &i-fuzzy complex feature (a, w) 

for class Ki, with degree pi (( a, w)), i = 1, . . . , T iff 

30j E K,!wK,! no {a} > {(Oj,a)}, h were AnpB = {(0,(3’) 10 E AAO’ E BA 
p(O,S’) > 0}, being ,B a similarity function. In other words, this refers to the set of pairs 

of subdescriptions of objects, corresponding to the features xi*, . . . , xi,, which, according 

to p, have a similarity value strictly above zero. wK,! is the set of w0 subdescriptions, 

with 0 E K,‘. 

COjEK! P(woj, a)PKi(oj) 2 &. 
‘&,jECk; p(wOj,a)(l - pan) < S:, being CK, = {Oj 1 ai = 0) with 

6i 2 0,and 6: > 0 are thresholds that denote to what degree a appears sufficiently often in objects 

of the Ka class, and sufficiently seldom in the objects of the complement of that class, respectively. 

It may be demonstrated that, for (P(w0, w0.j) = 1 iff w0 = WOj) and IwI = 3, original KORA-3 

algorithm is obtained. 

Let, RC(Ki) be the set of all the &-fuzzy complex features (a,w) for class K,‘, with de- 
gree pi((a,w)), i = 1,. . . ,T. 

DEFINITION. We will call vi-remainder of K,! to the set r(Ki) of objects 0 E K,! such that 

C@l,w)ERC(K;) ( p ~0, a) < vi, where vi is a threshold value, i = 1, . . . , r. 

The qi-remainder of K,! contains those objects in Ki that are not sufficiently represented in 

RC(K,!). 

DEFINITION. A combination of values a = (ai,, . . . , ai,) of the features xii, . . . , xi,, respectively, 
forms a &j-complement~y fuzzy complex feature (a,w) for class K,!, with degree pi((a,w)), 

i= l,...,r iff 

1. 30 E r(K,!)wr(K,I) f$ {a} > {(Oj, a)}; 

2. COAX P(wO, a) 2 &j; 

3. c OECK; P(wO, a) 5 5:j with 

6,j 2 0 and 6; > 0 are thresholds, that form decreasing monotonous successions of vaiuas, and 

which have the same meaning of the thresholds 6i and S:, respectively; j is the iteration number. 

KORA algorithm model defines complementary fuzzy complex features in order to cover the 

objects belonging to the remainders of the classes. 
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DEFINITION. Let (a, w) be a &-fuzzy complex feature (complementary or not). We will call the 

magnitude written below, informational weight of the Gi-fuzzy complex feature (a, w): 

P((a,w)) = C +i> C 
2i Ew OtEOC(a,K;) “j(ut)l 

where P(,i) and rj (Ot) are the informational weights of feature xi and object Ot in class K(, 

respectively, calculated according to [7]; and OC(a, K,!) is the set of all the objects 0 E K, such 

that w0 = a. 

The KORA R algorithm works in three stages. 

Learning stage: 

Step 1. determine &, Si, i = 1,2, . . . , r, (by means of expert criteria); 

Step 2. calculate all the Gi-fuzzy complex features in each class. 

Relearning stage: 

Step 3. determine vi and r(K,!), i = 1,2, . . . , r; 
Step 4. determine 6il, 611, i = 1,2,. . . ,T (as in Step 1); 

Step 5. calculate all the Gi-fuzzy complex complementary features in each class. 

The steps of this stage may be repeated as many times as required, changing the set r(K,!) in 

each iteration. In the worst case, it will be possible to make Irc,!l iterations, i = 1,2,. . . , T. 

Classification stage: 

Step 6. let w E RA, and (ap, w) be a Gi-fuzzy complex feature (either complementary or not) 

for class K,!, p = 1, . . . , si(w), where si(w) is the number of b&uzzy complex feature 

(either complementary or not) for class K,! with regard to w E RA, i = 1,2,. . . , T, 

and 0 an object to be classified; then: 

Step 7. any rule to find the solution may be used; for example: 

a) 0 E Ki ti ITi > I’j(C’), i # j, j = 1,. . . , r; 

b) 0 E Ki e I’i(o) > 6, i = 1, . . . , T, where 6 is a threshold value. 

CLASSIFICATION BASED ON SETS OF REPRESENTATIVES 

The classification method based on the sets of representatives was introduced in [lo] under the 

following conditions: objects are described in terms of a set of features that take values in metric 

spaces, classes are not necessarily disjoint, all comparison criteria are Boolean; the response of 

the algorithm will only take two extreme values, meaning for full belonging or not belonging. 

The basic underlying idea is that for each class some combinations of values of certain features 

may help to make a decision regarding, the classification of the object into the class. In practice, 

however, there are many problems, as those described in [l,ll], which despite the fact that they 

resemble this basic idea do not meet all the conditions assumed by the aforementioned algorithm. 

This means that the analogy concepts used by the specialists should not be modeled through 

Boolean functions. The degree of reliability that the specialist has regarding the membership of 

the objects under study to any of the classes is not always absolute, but rather gradual, subjective; 

and they should not be modeled through crisp sets. The features in terms of which the objects are 

frequently described, are of different natures and, in the descriptions of the objects, the values 

of all the features are not always present. So the model should allow us to deal with partial 

descriptions of objects and with features of different natures. The above listed characteristics 

may occur in all of the possible combinations. 
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An extension of the Baskakova’s model to real conditions of problems arising in geosciences, 

medicine, and other disciplines is exposed in [12]. 

Let us consider again a supervised classification problem such as the one described in (4). 

Given a comparison criterion between values of each variable, and partial similarity operators, 

such as (2) and (3), respectively. We consider V = (0, I] in both cases. 

DEFINITION. Let s2$ be a family of support sets for class Kj, And w = {zil, . . . , xi,} E 05. A 

combination a = (ai,, . . . , at,) of feature values is called a positive representative (a, w) for Kj 

with degree pj ((a, w)), if the following conditions hold: 

1. 3Oi E KjwOi = a; 

2. - CZ1 P(wQi,a)CLj(CV 2 rlj; 

3. - Czl P(w%a)(l - Pj(Oi)) < bj with 

Let wMi be the set of all positive representatives for Kj. 

This means that a positive representative (a, w) is a combination of values, such that, it is 

sufficiently similar to corresponding subdescriptions “in Kj”. Notice that each value of similarity 

is multiplied by the membership degree of the corresponding object to the class Kj. Condition 3 

expresses an opposite constraint regarding the complement of Kj. 

DEFINITION. A combination a of feature values is called a negative representative for Kj with 

degree pj (a), if the following conditions are fulfilled: 

1. 3 0i E CK,!wc)i = a; 

2. - CL, B(wQi,a)(l - Pj(Oi)> 2 Vjj; 

3. - Cz”=, P(wO~, a)bj((oi) < bj with 

Let wMT be the set of all negative representatives for Kj. 

Observe that if the classes are crisp sets, then Cz, P(wOi, a)pj(Oi) = COCK; /?(wOi, a) and 

analogously, CE, P(WOi, a)(1 - Pj(Oi)> = COECK! PCwoi, a). 

The classification algorithm based on the sets of r;presentatives may be expressed as follows. 

Step 1. 

Step 2. 

Step 3. 

Determine fli, qjyCK(, j = 1,. . . , r. 

Determine Pi,. . . , Pi,<, . . . ,-&, j = 1,. . . ,T, the parameters associated with 

El,..., x,, and 01,. . . ,O,, respectively. These parameters usually represent the 

relevance of features and objects, respectively, in each class. 

Given an object 0 to be classified, calculate I’j(w, 0) for every j = 1,. . . , T and for 

every W = {2il,. . . 1 Xi. } E Cl;, aS fOllOWS: 

vj’, ifwOEwMj’, 

rj(wO) = y*, if w0 E wM~, 

0, in other cases, 

where 
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Step 4. The magnitudes I’; (~0) and ri (~0) are calculated for j = 1, . . . , T, a,s follows: 

rj+(wU) = C rj(wU)pj(a), 
rj(wo)>o 

r;(d) = C rj(t.dO)pj(a). 
l?j(WO)<O 

Step 5. The total evaluation rj (U), is calculated for each class Kj, as follows: 

0, if l?:(U) = 0 and r;(U) = 0, 

l?j(U) = r;(o) + r; (0) 
2max {Ir,+(o)l, Ir;(o)l}’ in Other cases’ 

It is not difficult to see that rj(U) E [-0.5,0.5]. Based on this evaluation, the membership 

function of class Kj will be estimated such that it will be a continuous increasing monotonous 

function, that will take values in [0, max{pj, (Ui)}] with Ui E M; pj(U) = 0 iff I’j(U) = -0.5; 

hj(U) = 0.5 iff Tj(U) = 0; pj(U) > 0.5 iff l?j(U) > 0 and pj(U) < 0.5 iff I’j(U) < 0. Therefore, 

the r-tuple of membership for 0, Q(U) = (al(U), . . . ,a,(U)) shall be defined as 

Pj(O) = 
{ 

0.5 + l?j(U) (2 max {/Lj(Ui)} - 1) , if l?j(U) 2 0, 

0.5 + rj(U), if l?j(U) < 0. 

In the above expression, if the total evaluation of an object is 0, then there is as much evidence 

indicating that it is in the class, as indicating the contrary. Therefore, its membership shall 

be 0.5. If the total evaluation is bigger than 0, then there is more evidence that it is in the class, 

so the membership value shall be higher than 0.5. On the other hand, if the total evaluation is 

smaller than 0, then the membership shall be smaller than 0.5. In case the total evaluation takes 

extreme values, membership also will. 

APPLICATIONS 

The models exposed here have been applied in some of their particular formulations to solve sev- 

eral problems in geosciences successfully: Gomez-Herrera et al. [l] provided a forecast gssopetro- 

liferous map in determined the type of soil in Cuba, using voting algorithms. Simultaneously, 

Boolean variables as “presence of Methane anomaly”, nominal features as “type of lithology”, 

as well as numerical variables as “slopes, distances, gradients” were used in this problem. The 

data also presented missing values. Authors declared 80% of coincidences between theoretical 

and practical results on 48 drillholes. Keilis-Borok and Soloviev [13] discuss other applications 

in geosciences. 

There are also reported some applications in medicine. For example, Ikramova [14] worked on 

prognosis of epidemic processes, complications of infectious hepatitis A and B, early diagnosis 

of bacterial dysentery, meningococcic infection, and respiratory diseases; and Dorodnitsina [15] 

applied voting algorithms to prognosis throat cancer complications. 

It is important to point out that supervised classification problems often appear in eosciences 

and in medicine. In both areas, there appear quantitative features mixed with qualitative features, 

and it is also common in the presence of incomplete descriptions of several objects, that is, object 

descriptions with missing values. In this sense, the application of logical-combinatory models 

seems to be a more natural way for dealing with the characteristics of soft sciences problems. 

CONCLUSIONS 

The previous models conform a family of classification algorithms based on partial precedence, 

under the conditions posed in (4), that allow the solution of complex problems that frequently 
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arise in sciences as medicine, the geosciences, and others. For example: differential diagnoses 

of illnesses, technical diagnoses of equipment, forecast of phenomena, etc. In such problems, 

quantitative and qualitative variables may be found mixed in object descriptions and even lacking 

information. The classes may be fuzzy subsets. These algorithms are a good alternative, from 

the methodologic point of view, for the solution of these problems. They will be improved by 

more extensive application to real problems. 

REFERENCES 

1. J. Gbmez-Herrera et al., Gasopetroliferous forecast in Cuban ophiolitic association using mathematical mod- 
eling, Geofisicu International, (in Spanish), 33 (3), 447-467, (1994). 

2. V. Valev and Y.I. Zhuravlev, Integer-valued problems of transforming the training tables in /c-valued code in 
pattern recognition problems, Pattern Recognition 24, 283-288, (1991). 

3. E.1 Cheremesina and 3. Ruiz-Shulcloper, Methodological aspects about application of mathematical models 
for pattern recognition in soft sciences, Revista Ciencias Matemdticas, (in Spanish) 13 (2), 93-108, (1992). 

4. E.H. Ruspini, A new approach to clustering, Information and Control 15, 22-32, (1969). 
5. J. Ruiz-Shulcloper and J.J. Montellano Ballesteros, A new model of fuzzy clustering algorithms, In Proc. 

EUFIT’95, 3 1484-1498, (1995). 
6. Yu.1. Zhuravlev and V.V. Nikiforov, Algorithms for recognition based on calculation of evaluations, Kiber- 

netilca (in Russian) 3, Moscow, l-11, (1971). 
7. M. Lazo-Cort& and J. Ruiz-Shulcloper, Determining the feature relevance for non-classically described objects 

and a new algorithm to compute typical fuzzy testors, Pattern Recognition Letters 16, 1259-1265, (1995). 
8. M.N. Bongard et al., Solution of geological problems using recognition programs, Sov. Geologia (in Russian) 

6, (1963). 
9. L.A. De la Vega-Doria, Extending KORA-3 algorithm to fuzzy environments, Thesis (in Spanish), 

CINVESTAV-IPN, Mexico, (1994). 
10. L.V. Baskakova and Y.I. Zhuravlev, An algorithm model for recognition with representative sets and support 

sets systems, Zh. Vichislitielnoi Matematiki i Matematicheskoi Fitiki (in Russian) 21 (S), 1264-1275, (1981). 
11. J. Ruiz-Shulcloper et al., PROGNOSIS and its applications in geology and geophysics, In Proc. III Iberoamer- 

ican Congress on Artificial Intelligence IBERAMIA ‘92 (in Spanish), pp. 561-586, (1992). 
12. J.A. Carrasco-Ochoa, Classifiers based on representative sets, Thesis (in Spanish), CINVESTAV-IPN, Mbxico, 

(1994). 
13. V. Keilis-Borok and A. Soloviev, Workshop on Non-Linear Dynamics and Earthquake Prediction, Interna- 

tional Centre for Theoretical Physics, Trieste, Italy. Nov.-Dec. 1991, (1991). 
14. J.Z. Ikramova, Algorithms of Recognition and Diagnosis (in Russian), FAN, Tashkent, Uzbekistan, (1982). 
15. V.V. Dorodnitsina, About the application of recognition and classification methods to the solution of medical 

diagnosis, In Mathematical Methods in Pattern Recognition and Discrete Optimizaation (in Russian), (Edited 
by Yu. I. Zhuravlev), pp. 33-42, Calculus Center of Russian Academy of Sciences, Moscow, (1990). 


