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Preface

The Centre de Géostatistique has had a long tradition of teaching geostatistics,
starting with the summer schools in the early seventies. Over the past twenty years,
the CFSG postgraduate course has trained more than 150 engineers and geologists
to be mining geostatisticians. The aim of this 9 month postgraduate course which
is partially funded by the French government via the CESMAT has always been to
train professional geostatisticians — specialists who will work in industry after
graduating. When the CFSG started, there were plenty of textbooks in both English
and French. The legendary Fascicule 5, Matheron’s course notes for the 1970
summer school, provided the theoretical benchmark; the classic books by André
Journel and Charles Huigbregts, Michel David and Isobel Clark which were just hot
off the presses, gave practical insights into how to apply the theory in the mining
industry. These books are now a bit out of date. It seemed to be time for a new book
on basic linear geostatistics — not that the theory has changed in the meantime, but
ideas on how to apply it have evolved as more case studies were done.

This book gives my view on how to apply linear geostatistics (variograms and
kriging), especially in a mining context. Getting geostatistics to work in practice
requires some theoretical knowledge together with practical know-how. Not
enough theory and people make silly mistakes like choosing functions that are not
positive definite as variogram models, giving rise to negative variances. Not enough
practical know-how and people cannot see how to interpret experimental
variograms. I hope that this book will contain the right mixture of theory and
practice to allow engineers and geologists, particularly those living in remote
locations, to apply geostatistics to their own data.

The first chapter in the book illustrates two key concepts in geostatistics: the
support effect and the information effect. Chapter 2 introduces the different
stationarity hypotheses. The next three chapters concentrate on the variogram.
Chapter 6 takes up the topic of support again, but this time from the point of view
of regularization. The next three chapters are devoted to kriging, the name used for
the different geostatistical estimation methods. The final chapter treats the topic of
estimating the total reserves. Some reminders on basic mathematics and statistics
are included in Appendix 1. Lastly given the increasing trend toward law suits, it
seems important to propose guidelines on how to carry out case—studies in industry.
The key to this is keeping a “logbook” for each case-study. This is described in
Appendix 2.
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These course notes have evolved over the years through teaching the CFSG
students. Their comments and suggestions have been very helpful. Particular thanks
are due to Malcolm Thurston and Mike Harley who kindly allowed part of their
CFSG projects to be published in this book. Last but not least, I would like to thank
Michel Schmitt, Chris Roth and Jane Bocquel for their invaluable help in preparing
the manuscript.

Margaret Armstrong
Fontainebleau, May 1998
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1 Introduction

1.1 Summary

After outlining the types of problems in mining that geostatistics can be used to
solve, an introductory exercise is presented. It illustrates the need for good
estimators, particularly when selective mining is being used. The economic impact
of the support and information effects on reserve calculations is stressed. Lastly
some case studies comparing geostatistics with other estimation methods are
reviewed.

1.2 Introduction

Over the past 30 years, geostatistics has proved its superiority as a method for
estimating reserves in most types of mines (precious metals, iron ore, base metals
etc.). Its application to the petroleum industry is more recent, but it has nevertheless
demonstrated its usefulness, particularly for contour mapping and for modelling and
simulating the internal heterogeneity of reservoirs. Its use has been extended to
other fields such as environmental science, hydrogeology, agriculture and even
fisheries, where the time component as well as the spatial variability is important.

The basic tool in geostatistics, the variogram, is used to quantify spatial
correlations between observations. Once a mathematical function has been fitted to
the experimental variogram, this model can be used to estimate values at unsampled
points. This estimation procedure is called “kriging” after the South African
engineer, Danie Krige, who with Herbert Sichel carried out the first developments
in geostatistics in the Witwatersrand gold mines. After reading an early paper
written by Krige, the French mathematician, Georges Matheron, saw its
implications and went on to develop the theory in the sixties and seventies. Before
going into detail about the variogram and the different types of kriging, the main
uses of geostatistics in mining are outlined.
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1.3 Applications of geostatistics in mining

1.3.1 Estimating the total reserves

The first important step in a feasibility study is to determine the in situ reserves.
Geostatistics can help the mine planner get accurate estimates of the total tonnage
in situ, the average grade and the quality from the available information, and thus
help him decide whether further investment in the project is warranted.

1.3.2 Error estimates

No estimation method can give exactly the right value all the time since there is
inevitably some error involved. So it is important (0 know how serious this error is.
Decision makers need to know whether the estimated grade is accurate to +0.1%
orto + 1%. As well as giving the estimated values, geostatistics provides a measure
of the accuracy of the estimate in the form of the kriging variance. This is one of
the advantages of geostatistics over traditional methods of assessing reserves.

1.3.3 Optimal sample (or drillhole ) spacing

The estimation variance (calculated by geostatistics) depends on the variogram
model chosen for the deposit and on the location of the samples, but not on their
numerical values. So once the variogram has been selected for a particular deposit
or region, the estimation variance can be found. This makes it possible to evaluate
the estimation variance for a wide variety of possible sample patterns without
actually doing the drilling, and hence to find the grid that just gives the required
accuracy.

1.3.4 Estimating block reserves

Once a decision has been made to mine a deposit, estimates of the tonnage and the
average grade are needed block by block. Here a block might represent the
production for a shift, or for a month. In addition to estimating the ore tonnage and
the average grade of mining blocks, geostatistics can provide estimates of quality
variables. For coal these include ash content, sulphur content, ES.1. and calorific
value. For iron ore, they are the percentages of silica and phosporus, loss on ignition
and sometimes manganese content.
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1.3.5 Gridding and contour mapping

Although most mining companies usually want block estimates of their variables
rather than contour maps, geostatistics can be used {0 estimate the values at the
nodes of a regular grid. After this, a standard contouring package can be used to do
the plotting. This has the advantage of being more accurate than other methods of
evaluating grid node values. Over the past 25 years the petroleum industry has been
turning more and more to kriging for this. More recently environmental scientists
have also started using geostatistics.

1.3.6 Simulating a deposit to evaluate a propesed mine plan

Since kriging is designed to give the minimum variance linear estimates, the kriged
values are smoother than any other unbiased linear estimators but they are also
smoother than the real values. This means that if a numerical model of a deposit is
being set up to test various proposed mine plans, the kriged values should not be fed
into this because they would seriously under-estimate the inherent variability. In this
case a conditional simulation of the deposit should be used. More information on
when to use simulations rather than kriging is given in Chapter 9.

1.3.7 Estimating the recovery

In many mining operations engineers have to predict the recovery and the recovered
grades when blocks of a specified size are selected for treatment {or mining) if their
average grade is above an economic cutoff. When the sample grid is about the same
size as the selection blocks their grades can be estimated individually with
reasonable accuracy. But if the blocks are much smaller than the grid size as is
usually the case at the feasibility stage, it can be misleading trying to get estimates
of individual blocks. These are simply not accurate enough. The best that can be
done is to predict the proportion of selection units that will be recovered, and their
average grade. This leads in to nonlinear geostatistics.

Similar problems arise in soil rehabilitation work where scientists have to
predict the total amount of material that is contaminated, i.e. contains unacceptably
high levels of the pollutant.

In the subsequent chapters we go on to see what the variogram is and how kriging
is used to estimate values and to obtain the estimation variance. As this text deals
only with linear geostatistics, it does not go into more advanced topics such as
conditional simulaton or recoverable reserve estimation using nonlinear methods.

1.4 The $64 question : does geostatistics work?

Having seen some of the possible applications of geostatistics in the mining
industry, the $64 question is: “Does geostatistics work?” or “Does it work better than
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the alternative reserve estimation methods?”. First we present a simplified example
showing the financial impact of poor block estimates. Then several comparative
case studies on ore evaluation techniques are reviewed.

1.5 Introductory exercise

One of the most common uses of geostatistics (in the mining industry) is to estimate
the average grades of mining blocks by kriging — for example, for day to day grade
control. Many people wonder whether kriging really does give better results than
other methods. This exercise has been designed to highlight the economic impact
of estimation errors. First let us see the data. The grades of 64 blocks of size 1 x 1
were available in an area 8 x 8. Figure 1.1. shows 16 of these grades, each from the
top left corner of a block of size 2 x 2. The values of the other 48 samples will be
used later for comparison purposes.

735 4 45 1250|167+
as0r 3370 o5t [ass
cewdenabhbeecdeaecelerdesaaalecneadaaa
124¢  lasor |20 [ac0:
75 |2 |32 |20

' : X :

Fig 1.1. Sixteen samples of size 1 x 1 to be used to estimate mining blocks of size
2x2

These 16 values will be used as the “samples” to estimate the values of mining
blocks of size 2 x 2 (i.e. 4 times larger than the samples). The simplest way of
estimating each of the 16 block grades is by equating the grade of the sample in each
one to the block estimate. This is called the polygonal method. Figure 1.2.a gives
these estimates.

Now it is your turn to design a way of estimating each of these 16 values. You
may choose whatever method you like; for example by looking at the values and
seeing how they vary, or by guessing, or by taking moving averages of neighbouring
values. Write your estimates in the space provided on the right of Fig. 1.2.b.
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735 45 125 167

450 337 95 245

124 430 230 460

75 20 32 20

a b

Fig 1.2. (a) Polygonal estimates of block grades obtained by equating the block
grade with the sample value inside it; (b) space for the reader’s personal estimate

442 190 142 204

354 276 212 279

189 226 216 271

99 81 88 125

Fig 1.3. Kriged estimates of block grades

A third set of estimates was obtained by having a geostatistician krige the block
values (Fig. 1.3.). Kriging is just a special sort of weighted moving average. You
are not expected to understand how these numbers were obtained yet. For the
present, they are just another possible set of block estimates.

1.5.1 Selective mining

In most mining operations, the high grade blocks are mined while the others are
either left in place or are dumped as waste. Suppose that in this case the economic
cutoff is 300. So mining a block with a grade of 301 leads to a profit of 1 unit, and
conversely mining a block with a grade of 299 leads to a loss of 1 unit. For the time
being we are going to ignore any geometric constraints due to the mining method,
and we will assume that all pay blocks are mined.
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The first step is to calculate the profits that would be predicted by each of the
three estimation methods. We shall work through this together for the polygonal
estimation and then you can repeat it for the other two. Firstly, shade in any blocks
with a predicted grade above 300 (or equal to it). There are five of them. See Fig.
1.4.a.

So the expected profit is: 735+ 450 + 337 + 430 + 460 -5 x 300 = 912

Now we calculate the actual profits that would be made when the blocks estimated
to be above cut off are mined. The true grades of the 2 x 2 blocks are given in Fig.
1.4.b. For the polygonal method, five blocks (the shaded ones) are scheduled for
exploitation. Their real grades are 505, 270, 328, 220 and 263 rather than the
estimated 735, 450, 337, 430 and 460.

So the actual profit would be: 505 + 270 + 328 + 220 + 263 — 1500 = 86

Instead of earning a profit of 912 units, the mine makes only 86 units. The company
could well end up in serious financial difficulties. Repeat these calculations for
kriging. Show that only two blocks are scheduled for mining and that the actual
profit is 175 compared to a predicted profit of 196, Lastly repeat the calculation for
your own estimator and note the results.

735 45 1251 167 505 | 143 | 88 207

450 337 95 245 270 328 171 411

124f 430| 230] 460 102 § 220 y 154 | 263

75 20 32 20 101 54 44 155
a b

Fig 1.4. (a) Polygonal estimates and (b) true block grades. Shaded blocks with a
grade above 300 are scheduled for mining. Note the difference between true and
estimated grades

1.5.2 Optimal recovery

Before comparing these results, we should calculate the optimal recovery (i.e. what
we would recover had we known the true grades before mining). Clearly only three
blocks would have been selected (505, 328 and 411) and the profit would have been
344. Compared to this, the profit predicted by the polygonal method (912) was quite
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illusory. Kriging gave a much more realistic prediction of 196 compared to an actual
profit of 175 (i.e. only 10% difference) but this is still suboptimal compared to 344.

Now it is interesting to see why kriging works better, on average, than other
estimation methods. We will see that the problems met when estimating blocks are
due to two effects: the information effect and the support effect.

1.5.3 Information effect

The information effect is due to the incomplete information available at the time
when we must discriminate between waste and ore blocks. We have only estimates
for the block grades instead of the real ones. To visualize this, we draw scatter
diagrams of the true grade (Y axis) against the estimate (X axis) for different
estimation methods. Ideally the estimated grade would be equal to the true one, so
the points would fall on a 45° line passing through the origin. Unfortunately they
do not. They form a cloud of points which has been represented here as an ellipse.

A

True

True grade = Estimated grade
grade 7

Ore estimated
to be waste

300

Waste estimated
to be ore

"4 S
300  Estimated grade
Fig 1.5. Crossplot of true grade versus estimated grade. The cloud of points has been

represented as an ellipse. Blocks with an estimated grade above 300 are scheduled
for mining whereas those blocks actually above 300 should be mined

When selecting blocks for mining, all the blocks whose estimated value is above the

cutoff are considered to be ore. To show this graphically, a vertical line is drawn at
=300. The blocks to the right of this line are selected for mining. What we actually

wanted was the blocks whose true grade is above 300. A horizontal line drawn at
=300 represents this. The blocks above this line should have been mined. This

divides the whole area into four zones:

1. True grade > 300; estimated grade > 300. These ore blocks are correctly estimated
as ore. They correspond to the upper right part of the diagram.
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2. True grade < 300; esumated grade < 300. These waste blocks are correctly
estimated as waste. They lie in the lower left part of the diagram.

3. True grade >300; estimated grade <300. These ore blocks have been considered
to be waste; this estimation error can have costly consequences for the mine.
These blocks lie in the upper left part of the diagram.

4, True grade <300; estimated grade >300. These wastc blocks have been
considered to be ore. This second type of estimation error does not cancel out the
preceding one and can have expensive consequences for the mine. These blocks
are in the lower right part of the diagram.

Going back to our example, Fig. 1.6. shows the crossplots corresponding to the
polygonal method and to kriging. For kriging the slope of the regression is
approximately 1.0 (i.e. at 45°) wheras it is less than 1.0 for the polygonal method.
Now look at the “fatness” of the two clouds. Kriging effectively gives a “thinner”
cloud. The reader can go back to the two scatter diagrams and see the misallocated
blocks for each of the estimation methods (in the upper left and lower right
quadrants). This confirms that kriging is better. In Chapter 8 we shall see that the
criteria for judging an estimator include the slope of the regression line of the true
value on the estimated one.

True | True !
Grade i Grade ;
| [ | | ®
| |
ol al
] @l
'T'_r T w e
nas i {' :
s | i
a | Estimated Grade [ ] | Estimated Grade
a Polygonal Estimates b Kriged Estimates

Fig 1.6. Crossplot of true grade versus estimated grade, (a) for the polygonal
estimator and (b) for kriging. Ideally points should lie along the diagonal (true grade
= estimated grade)

1.5.4 Support effect

In geostatistics the term “support” refers to the size and volume of a sample or a
block. Here the samples have a 1m x 1m support while blocks are 2m x 2m. In
general, the support of samples is smaller than that of blocks. The true grades of the
sixteen 2m x 2m blocks and of the sixty—four 1m x 1m blocks are shown in Figs.
1.4. and 1.7. Although the two means are the same, the variance of the samples is
higher than that of the blocks.
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735} 3251 45 140] 125| 175) 167} 485

540) 4207 260} 128} 20] 30} 105} 70

450} 2007 337 190] 95 260] 2451 279

180} 250f 380 405] 250f 80§ 515 605

124] 120§ 430] 175] 230{ 120{ 460} 260

40§ 135] 2407 35] 1300 135] 160{ 170

751 951 204 35§ 327 951] 20} 450

2001 357 100} 53 2 451 581 90

Fig 1.7. The true grades of the sixty—four 1m x Im blocks

Their histograms (Fig. 1.8.) show that the small blocks are more dispersed than the
large ones. For the 300 cutoff more ore will be recovered if Im x 1m blocks are
mined rather than 2m x 2m ones. As the polygonal method equates the grades of the
samples (i.e. a small support) with those of the blocks, it substitutes the histogram
of the samples for the block histogram — even though they are quite different. This
shows that a good estimator must take account of the difference between the
supports of the samples and the blocks to be estimated; that is, of the support effect.

0%k 20%

0% 1

10%

28 400 600
2 b
Fig 1.8. Histograms of the grades, (a) for small blocks and (b) for larger ones.

Although the means remain the same (201) the variances are different and so are the
shapes
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So we have seen that the support effect and the information effect are two of the
main causes of the incorrect prediction of reserves. We now know some of the
properties that a good estimator should have. We can see that the way in which we
combine data in the neighbourhood of the block to be estimated is important. The
first part of this course will deal with the variogram; this is a statistical tool for
assessing how similar values are, as a function of the distance between them. In the
second part of the book the variogram is used to calculate the weights to be used
when estimating blocks (for example); that is, when kriging blocks.

1.6 Does geostatistics work in the real world?

To answer this question we will have a look at some case-studies where the
predictions made using geostatistics were compared with actual production figures.
We will first look at two case-studies on coal, which is usually fairly easy to
estimate, then at two others on gold, involving lognormal kriging and then review
some more recent ones.

1.6.1 Early coal case studies

The studies on coal are Sabourin (1975) and Wood (1976). Both were favorably
impressed by the results given by kriging. Sabourin estimated the sulphur content
of blocks using channel samples. He then compared his estimates with the actual
production figures. The average relative error between the estimates and the actual
value was 9.8 %, which he judged to be “very satisfactory”. It is important to note
that this deposit had a marked trend in the sulphur values, which necessitated the
use of universal kriging. As this is more complicated than ordinary kriging, the close
agreement with the production figures is particularly impressive.

Wood did not run into the problem of a trend in the data in his study of South
African coal. He was therefore able to use ordinary kriging. The aim of his study
was to predict the seam width at a distance of 18m (one pillar) in advance of the
workings in the No 2 seam at the Witbank Mine. Four estimation methods were
considered:

1. the average of all measurements in the last 3 piliar advances,
2. the average of all measurements in the last pillar advance,

3. the closest single measurement, and

4. kriging.

The tests were carried out in two parts of the mine (one with 133 sets of data values,
the other with 101 sets). The differences between the estimated values and the actual
production figures were calculated for all four methods (Table 1.1.). This showed
that the kriged estimates were consistently closer to the true values than the other
methods considered.
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Table 1.1. Mean square of the standardised estimation errors, taken from Wood
(1976) Report No 2 South African Chamber of Mines

Region A Region B Both regions
No of estimates 133 101 234
Y an of last 7.50 2.69 5.42
Mean of last 738 184 4.99
Closest sample 5.79 3.17 4.66
Kriging 4.89 1.38 338
1.6.2 Gold case studies

We now go on to look at some comparative case-studies on gold deposits, which are
clearly much more difficult to estimate because of the skewness of the distributions.
Two interesting ones are Rendu (1979) and Krige and Magri (1982), who worked
on South African deposits.

Rendu set out to test whether geostatistical predictions were verified in practice.
He had about 5000 gold grades from one section of the Hartebeestfontein Mine. As
the data were on a very close grid (25 ft), blocks of size 125 ft x 125 ft contained
25 samples and averaging these gives an accurate idea of the true grade of each
block. Rendu then took the central one of the 25 grades as the “sample” and
estimated the block grades by kriging using the “samples”. By moving the center
of the “sample” grid, he was able to carry out his procedure on 4808 blocks.

Since the data had a three parameter lognormal distribution, he used lognormal
kriging as well as ordinary kriging and also two classical methods (polygons of
influence and inverse distance weighting). To present his results he calculated the
regression of the true grade against the estimated one (on a bi-logarithmic scale) for
all the estimation methods considered. Ideally the regression line should be at 45
degrees. Lognormal kriging with a known mean came closer to this than any of the
other methods. If the regression line is not at this angle, the estimates are said to be
conditionally biased. When that occurs, the slope is usually less than 1.0 and so the
grade of rich blocks is over-estimated, whereas that of poor ones is under-
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estimated. This was certainly the case for the polygonal method. As we have seen,
the economic consequences of this can be very serious when the estimates are being
used to select blocks above a cutoff grade for mining, and for predicting the
recoverable reserves.

The second comparative study by Krige and Magri was on the gold grades of a
very variable reef in the Lorraine gold mine and on the lead grades in the Prieska
copper-zinc mine. Their findings confirmed those by Rendu.

1.6.3 More recent case studies

Several more comparative studies were presented at the Ore Reserve Estimation

Symposium held in Montreal in May 1986. Two particularly interesting ones were

those by Raymond and Armstrong (1986) who worked on a porphyry copper deposit

and by Blackwell and Johnston (1986) who studied a low grade copper molybdenum
deposit. Raymond and Armstrong found a very close agreement between the grade

of milled ore over a 17 month period. They used lognormal kriging (which is a

special form of kriging designed for skew data with a lognormal distribution). In the

other paper the authors described how they used both DDH data and blasthole data
when kriging blocks, In their conclusion they cited three advantages of using
geostatistical methods:

1. The mineral reserves results are easily duplicated by different mine personnel,
as there is little need for subjective interpretation after the variogram models are
selected.

2. Geostatistics effectively improves estimated grades, even when using grade data
of differing size and reliability.

3. The improved mineral reserve permits better long and short range planning and
allows the operator flexibility when dealing with downtime, breakdowns, wall
slope instabilities, metal price changes.

Since these comparative studies confirm the superiority of kriging over other
commonly used estimation methods for deposits ranging from coal to gold, it seems
worthwhile looking more closely at the technique. We shall start by seeing how to
use geostatistics to model these types of variables.

1.7 Exercises

Ex 1.1 The four tables below show the estimated grades obtained using three
different methods and also the real grades found after mining.

Calculate the average for the 16 block grades for each method and for the true
grades. Which of these estimators are unbiased?

Plot the scatter diagrams of the true grade (on the vertical axis) against the estimated
grade. Look at their regression slopes (true against estimated) and see which is
closer to 45° (i.e. a slope of 1.0).
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Table 1.2. Grades estimated by three different methods (a, b and ¢) and the true
grades (d)

30 30 20 45 10 30 10 55
20 50 50 35 5 20 50 35
40 25 35 25 40 15 40 30
15 40 20 20 5 35 10 10
a b
15 35 20 35 20 25 15 40
15 20 45 25 15 25 45 30
40 10 30 30 35 15 35 25
15 35 20 10 10 35 20 10




2 Regionalized Variables

2.1 Summary

In this chapter the basic definitions in geostatistics including the concepts of random

Sunction and regionalized variable are presented. The underlying hypotheses
(second order stationarity and the weaker intrinsic hypothesis) are introduced. The
variogram and the spatial covariance are defined. The problem of how to decide
whether to treat a variable as stationary, intrinsic or nonstationary is discussed.
Some of the basic properties of the spatial covariance are introduced in this chapter
as they are helpful in deciding on the degree of stationarity. The relationship
between the variogram and the spatial covariance is derived but the rest of the
variogram properties are left to the next chapter.

2.2 Modelling regionalized variables

Since the information available about the variable under study is fragmentary, we
need a model to be able to draw any conclusions about points that have not been
sampled. There are many ways of setting up models. Several will be discussed.

Genetic models. One of the most intuitively appealing ways of developing a
mathematical model is by modelling the genesis of the phenomenon. As
sedimentary processes are amongst the simplest to describe, attempts were made to
model them in the early seventies by Jacod and Joathon (1970 a, b). Unfortunately,
the geological factors controlling even simple sedimentary processes are exuemely
complicated and require many parameters to represent them. Not surprisingly it
proved difficult to get meaningful estimates of these from limited sample data.
These problems led researchers to give up this approach at the time. Recent work
by Hu, Joseph & Dubrule (1994) in modelling oil reservoirs made up of prograding
lobes has met with more success, but the idea of simulating the genesis of deposits
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mathematically has been dropped. The geology of reservoirs and deposits is 100
complicated and not yet well enough known for this approach to work — at least at
present.

Trend surfaces. By the late sixties, computers had become much more common
which made it possible to carry out the calculations involved in statistical methods
such as trend surfaces. So at the same time that Jacod and Joathon were working on
reservoir genesis, two Americans applied trend surface analysis for predicting the
properties of coal. The implicit assumption underlying these types of regression
methods is that the surface under study can be represented, at least locally, by a fairly
simple deterministic function such as a polynomial, plus a random error component.
Here “random” means that the error is uncorrelated from one place to another and
does not depend on the function. The difficulty with this approach can be seen from
Table 2.1 which shows the equation fitted by Gomez and Hazen (1970) for the
proportion of pyritic sulphur in a certain coal. The equation is very complicated and
contains many terms like sines, cosines and exponentials. The problem is that most
geological variables display a considerable amount of short scale variation in
addition to the large scale trends that can reasonably be described by deterministic
functions. Insisting on having uncorrelated errors means that the function has to
twist and turn a lot, which explains the presence of all the exponential and
trigonometric terms in Table 2.1. This suggests that it might be better to allow for
correlations between values different distances apart. This is the basic idea behind
geostatistics.

Geostatistics. The term regionalized variable was coined by Matheron (1963,
1965) to emphasize two apparently contradictory aspects of these types of variables:
a random aspect, which accounts for local irregularities, and a structured aspect,
which reflects large scale tendencies. The common statistical models including
trend surfaces put all the randomness into the error term while all the structure is
put into the deterministic term. Unfortunately this is not realistic for geological
phenomena. A better way of representing the reality is to introduce randomness in
terms of fluctuations around a fixed surface which Matheron called the “drift” to
avoid any confusion with the term “rend”. Fluctuations are not “errors” but rather
fully fledged features of the phenomenon, with a structure of their own. The first
task in a geostatistical study is to identify these structures, hence the name
“structural analysis”. The geostatistician can go on to estimate or simulate the
variables.

2.3 Random functions

The observed value at each data point x is considered as the outcome, z(x), of a
random variable, Z(x). Its mean is called the drift, m(x). At points where no
measurements have been made, the values z(x) are well defined even though they
are unknown. They can also be thought of as being the outcomes (or realizations)
of the corresponding random variable Z(x).
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Table 2.1. Regression equation for pyritic sulphur in coal (From Gomez & Hazen,
1970) This method assumes uncorrelated errors, which forces the trend surface to
twist and turn rapidly, hence the trigonometric and exponential terms

Equation A~—1 (Pyritic sulfur, coarse coal) = 14.0548 — 5.97910 x A4S
+ 1.35753 x SU + 1.34232 x SU x (AS — SU) - 0.419448 x AS
x SU x (AS = SU) + 4.95307 x 1072 [4AS x SU x (A4S — SU))?
— 2.69728 x 10°* [4S x SU x (AS — SU)}® + 5.88963 x 10711 x “5sD
= 1.38995 x 105 [eMS*US-SON + 0.0103637 [elSV> ¢S S]]
— 16.70984 [AS x SU/e“S*SV] + 5.67080 x 10°* [4S x (A4S — SU)
Je US*AS=SUN] — 1,96079 x 107° [SU X (AS — SU) [e SUxHs-50N]
+ 0.104688 X sin(AS x SU)? x cos(AS x SU)* — 9.53418 x 103
x sinfAS x (AS — SU)]® x cos{AS x (A4S — SU))* — 0.0848224
x sin[SU x (AS — SU)}® x cos[SU x (AS — SU))* — 2.08676 x sin(AS)
— 2.19124 x sin(SU) + 1.49662 x sin(AS — SU) — 0.107983 x *S
— 0.0504733 x &5V + 0.312656 x “5~5U) — (,0491919 x sin(AS?)
X cos(AS?) + 0.0434771 x sin(SU®) x cos(SU%) — 1.81229 x 10°*

x sin(AS ~ SU)? x cos(AS — SU)? — 2.01703 x 107% x eU“s+SU) x oUS-5U)

Variables used in equation.

AS = Ash in coal, percent
SuU = Sulfur in coal, percent

In mathematical terms, the family of all these random variables is called a random
function. (Synonyms: stochastic process, random field). A random function bears
the same relation to one of its realizations as a random variable does to one of its
outcomes, except that the realization of a random function is a function whereas the
outcome of a random variable is a number. A random function is characterized by
its finite dimensional distributions, i.e. by the joint distributions of any set of
variables Z(x,), Z(x3), ... Z(xy), for all k, and for all points x{, X2, ... Xk. It would
be impossible to do anything with this model unless we are prepared to make some
assumptions about the characteristics of these distributions. The next section
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presents the most commonly used hypotheses. Before going into these in detail,
readers may be interested to know what types of variables can be modelled as
random functions. Box No 1 lists some of the more common ones.

BOX No 1 : Variables that can be modelled by random functions.

— Metal grades, for precious metals, uranium, base metals, coal, diamonds,
beach sands, industrial minerals,

— Quality parameters e.g. for iron ore, silica, alumina, loss on ignition and
sometimes manganese; for gold, arsenic; for coal, calorific value, ash &
sulphur content; for cement, iron content, magnesium oxide, moisture,

— Topographic variables such as seam thickness, overburden thickness,
depth to a geological horizon, position of the sea floor,

— Rock type indicators e.g. for disunguishing between sandstone and
shale in oil reservoirs, or between different facies in general,

— Porosity and permeability, for both oil reservoirs and aquifers, hydraulic
head and transmissivity in hydrology,

- Geochemical trace element concentrations in soil samples and stream
sediments,

- Pollutant concentrations in soil & water and in the atmosphere,

— For soil science, trace element concentrations (e.g. Cu & Co), nematode
counts in soil,

- In fishery science, fish & egg counts, water temperature, salinity; density
of shellfish per unit area,

— In hydrology, rainfall and runoff measurements,

— Tree density in tropical forests.

2.4 Stationary and intrinsic hypotheses

In statistics it is common to assume that the variable is stationary, i.¢. its distribution
is invariant under translation. In the same way, a stationary random function is
homogeneous and self-repeating in space. For any increment h, the distribution of
Z(x1), Z(x3), ... Z(xy) is the same as that of Z(x; + h), Z(x2 + h), ... Z(xg + h) This
makes statistical inference possible on a single realization. In its strictest sense
stationarity requires all the moments to be invariant under translation, but since this
cannot be verified from the limited experimental data, we usually require only the
first two moments (the mean and the covariance) to be constant. This is called
“weak” or second order stationarity. In other words, the expected value (or mean)
of Z(x) must be constant for all points x.



Regionalized Variables 19

That is,
E(Z(x))=m(x)=m [2.1]

Secondly the covariance function between any two points x and x+h depends on the
vector h but not on the point x. That is,

E[Z(x) Z(x+h)] - m2 = C(h) [2.2]

There is no need to make an assumption about the variance because it turns out to
be equal to the covariance for a zero distance, C(0).

In practice, it often happens that these assumptions are not satisfied. Clearly
when there is a marked trend the mean value cannot be assumed to be constant.
Another branch of geostatistics has been developed to handle “nonstationary”
regionalized variables. It is outside the scope of this text. Interested readers could
consult Matheron (1973) or Delfiner (1976).

For the moment we shall only consider cases where the mean is constant.
However, even when this is true, the covariance need not exist. A particularly
startling practical example of this was described by Krige (1978) for the gold grades
in South Africa. On both theoretical and practical grounds it is convenient to be able
to weaken this hypothesis. This is why Matheron (1963, 1965) developed the
”intrinsic hypothesis™. It assumes that the increments of the function are weakly
stationary: that is, the mean and variance of the increments Z(x+h) — Z(x) exist and
are independent of the point x.

E[Z(x+h) - Z(x)] =0 [2.3]
Var{Z(x+h) — Z(x)] = 2y(h) [2.4]

The function y(h) is called the semi-variogram (variogram for short). It is the basic
tool for the structural interpretation of phenomena as well as for estimation.

Regionalized variables that are stationary always satisfy the intrinsic hypothesis
but the converse is not necessarily true. Later in this chapter we will see that if a
regionalized variable is stationary, there is an equivalence between its variogram
y(h) and its covariance C(h).

Most estimators used in the earth sciences are linear combinations (i.e. weighted
moving averages) of the data. This is true for the inverse distance method, and for
kriging (as will be seen later) and even for the polygonal method where all the
weights except one are zero. So it is important to be able to calculate the variance
of linear combinations in terms of the variogram and/or the covariance. In contrast
to the stationary case, when working with intrinsic variables the operations are
defined only for increments. We will show later that the variance of linear
combinations can be calculated only if the sum of the weights is 0. By using intrinsic
regionalized variables instead of just stationary ones, we have to work with
increments but the range of variogram models available is considerably enlarged.
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2.5 How to decide whether a variable is stationary

Betfore going into more detail about the variogram, it is important to see how to
decide whether a particular variable can be considered stationary or not. In practical
situations the variogram is only used up to a certain distance. This limit could be
the extent of a homogeneous zone within a deposit or the diameter of the
neighbourhood used in kriging (i.e. estimation). Consequently, the phenomenon
only has to be stationary up to this distance. The problem is to decide whether we
can find a series of moving neighbourhoods within which the expected value and
the variogram can be considered to be constant and where there are enough data to
give meaningful estimates. This assumption of quasi-stationarity is really a
compromise between the scale of homogeneity of the phenomenon and that of the
sampling density. This can best be seen from an example.

¥ 3
%S
' : km
0 1 2 3 4 5 6 7 8
' Blow-up of central section ,
"""" 3 4 5 6

Fig 2.1. Diagrammatic representation of sulphur grades and a blow-up of the central
section. Over the whole 8km length, the sulphur content is clearly not stationary
because of the increase in the average. But over shorter sections it can be considered
as being locally stationary because the fluctuations dominate the trend

Consider the sulphur content of coal along a transect (Fig 2.1.). Over the total
distance shown (8 k) there is a clear increase from left to right. However looking
at a blow-up of the central section, the fluctuations appear to cover up the trend. This
means that at this scale the sulphur content could be considered as a locally
stationary or, at least, intrinsic variable whereas it is clearly nonstationary over
longer distances. In practice the blocks of coal to be estimated are about 100m x
100m for underground mines and 200m x 60m in strip mining operations. Samples
are generally on a 500m x 500m grid for wide spaced holes, down to 100m x 100m
later on. With samples at these distances, there is no point in searching for data
several kilometers away. There is plenty much closer.
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2.6 Spatial covariance function

Before going into the properties of the variogram in detail, we present some of the
basic properties of the spatial covariance and derive the relationship between it and
the variogram for stationary random functions. (Note: no covariance exists for a
random function that is intrinsic but not stationary). Three important properties are
listed below. Proofs are given in Box No 2.

C0) = o° [2.5]
C(h) = C(~h) [2.6]
ICh)l < C(0) 2.7

Note that absolute values appear in some equations because the covariance can take
negative values. Our next task is to establish the basic relation between the
variogram and the corresponding covariance:

Y(h) = C(0) - C(h) {2.8]

Proof. The proof starts out from the definition of the variograra:

2y(h) =E[{Z(x+h)-Z(x))}?]
=E[{(Z(x +h) =m)? + (Z(x) - m)? — 2(Z(x + h) — m}Z(x) — m)]
=2C(0) - 2C(h) [2.9]

Hence the result. This shows that the corresponding covariance is obtained by
“turning the variogram upside down”, Figure 2.2. illustrates this idea.

v{h)

C(h)

hg

Fig 2.2. Whereas the variogram starts from zero and rises up 10 a limit, the spatial
covariance starts out from the variance and decreases
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BOX No 2 : Proofs of the properties of the covariance,

First property. For stationary variables, the mean m exists. The covariance is,
by definition:

C(h) = E [(Z(x+h) - m)(Z(x) - m) ] [2.10]
Substituting h = 0 gives
C(0) =E [(Z(x +0) - m) (Z(x) ~m)] = o? [2.11]
Second property. By definition
C(-h) = E [(Z(x - h) - m)(Z(x} ~ m) [2.12]
Putting t = x — h gives
C(~h) = E [(Z(t1) - m}{Z(t + b) —m) ] = C(h) [2.13]
Third Property To prove the third property, we must prove that
C(h) < C(0) and C(h) = - C(0) [2.14]
We start out from the relation
0 < E[{Z(x+h)-Z(x)}?]

=E [(Z(x + h) ~m)? + (Z(x) - m)? - 2(Z(x + h) - m)(Z(x) — m)]

= 2C(0) — 2C(h) [2.15]
Hence C(h) < C(0) (2.16]

Similarly the other inequality can be obtained by starting out from the relation

0 <E[{Z(x + h) + Z(x)}?)

Hence C(h) > —C(0) [2.17)
So we obtain

ICh) < C(0) [2.18]

This is called Schwartz’s inequality.




Regionalized Variables 23

Clearly this is possible only when the variogram is bounded above. It can be shown
mathematically that variograms with an upper bound come from stationary
regionalized variables. It would be more accurate to say that only stationary
regionalized variables have bounded variograms. Consequently, unbounded
variograms come from intrinsic regionalized variables or nonstationary ones.

Lastly it can be proved that for stationary and intrinsic variables

im Y _ (2.19]

n—= h?

This resuit is not easy to prove. Interested readers can consuit Matheron (1972). This
result means that if the variogram rises more rapidly than a quadratic for large h,
the variable is nonstationary. Otherwise it can be considered to be stationary or
intrinsic. This is helpful in deciding whether a variable is stationary or intrinsic or
whether it has to be treated as nonstationary.

2.7 Exercises

Expressing variances in terms of covariances. One of the key steps in geostatistics
is expressing the variance of a linear combination (a weighted average) in terms of
the weights and the covariance function, and later the variogram. The first exercise
develops the basic formula; in the second one, it is applied to a particular case.

Ex 2.1 Let Z(x) be a stationary random function. Its spatial covariance is denoted
by C(h). Let Z* be the weighted average of the values at two points:

Z =\ Z(x;) + \, Z(x;) [2.20]
where A; and A, are two weighting factors and x; and x; are the two points. What
is the expected value of Z*? Express its variance in terms of the weighting factors

and its covariance C(h).

Now generalize this to an arbitrary linear combination Z**
2= > M Zx) [2.21]

What is the expected value of Z**? Show that its variance can be written in either
of the following ways:

Var(Z”) = > M Var(Z(x) + 25 > M A C(x; — x)

j>i

H

> Z A d Cx — x;) [2.22]
}

i
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Ex 2.2 Let Z(x) be a stationary random function, and let Z* be a weighted average
of the values at the four corners of a 100m x 100m square:

X, X4
X, X3
Z' =05 Z(x,) + 0.2 Z(x,) + 02 Z(x;) + 0.1 Z(x,) [2.23]

Evaluate the variance of Z* when the spatial covariance of Z(x) is an exponential:

C(h) = 2.5 exp (-1hl/200) [2.24]

(In the next chapter we will see that this is an acceptable model for a covariance).



3 The Variogram

3.1 Summary

This chapter and the following one are devoted to the variogram. In this one, after
defining the variogram, its theoretical properties are discussed (e.g. zone of
influence, behaviour near the origin, anisotropies, presence of a drift, etc.). The
comunon variogram models are presented. Images of variables having some of these
variograms have been simulated to highlight the differences between the models.
The formula for calculating the variance of a linear combination of regionalized
variables in terms of the variogram is proved. The reason why only positive definite
functions can be used as models for the variogam is stressed.

3.2 Definition of the variogram

In Chapter 2, the variogram of an intrinsic random function was defined as:
y(h) = 0.5 Var [Z(x+h) — Z(x)] {3.1]

For stationary and intrinsic variables, the mean of Z(x+h) — Z(x) is zero, and so y(h)
is just the mean square difference. Consequently,

y(h) = 0.5 E [Z(x+h) — Z(x)]? [3.2]

Here x and x+h refer to points in an n-dimensional space where n could be 1, 2 or
3. For example, when n = 2 (i.e. in the plane), x denotes the point (x, x2) and h is
a vector. Consequently, the variogram is a function of the two components h; and
hy, or alternatively, of the modulus of the vector h and its orientation. For a fixed
angle, the variogram indicates how different the values become as the distance
increases. When the angle is changed, the variograms disclose directional features
such as anisotropy. Figure 3.1. shows a typical variogram.
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Fig 3.1.. A typical variogram which reaches a limit called its sill at a distance called
the range

It presents the following features:

~ it always starts at 0 (for h = 0, Z(x+h) = Z(x)). It could be discontinuous just after
the origin.

— it generally increases with h,

- it rises up to a certain level called the sill and then flatiens out. Alternatively it
could just go on rising.

The properties of the variogram will now be treated in detail.

3.3 Range and zone of influence

The rate of increase of the variogram with distance indicates how quickly the
influence of a sample drops off with distance. After the variogram has reached its
limiting value (its sill) there is no longer any correlation between samples. This
critical distance, called the range, gives a more precise definition to the notion of
the “zone of influence”. For stationary variables, y(h) equals the variance for
distances past the range. That is,

y(h) = 0.5 Var [ Z(x+h) — Z(x)]
=0.5 [ Var ( Z(x+h)) + Var ( Z(x))] = ¢? [3.3]

Not all variograms reach a sill. Some, like the one shown in Fig. 3.2.b, keep on
increasing with distance. This is one fundamental difference between the variogram
and the covariance. The latter only exists for stationary variables and is bounded.

The range need not be the same in all directions. This merely reflects the
anisotropy of the phenomenon. What is more, even for a given direction there can
be more than one range. This occurs when there are several nested structures acting
at different distance scales. Examples of anisotropy and nested structures will be
given later.
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y(h) sill y(h)

Fig 3.2. Bounded and unbounded variograms

3.4 Behaviour near the origin

We have just examined the behaviour of the variogram for large distances. But it
is even more important to study its behaviour for small values of h because this is
related to the continuity and the spatial regularity of the variable. Four types of
behaviour near the origin are shown in Fig. 3.3,

1. Quadratic. This indicates that the regionalized variable is highly continuous. In
factitis differentiable. A quadratic shape can also be associated with the presence
of a drift.

2. Linear. The regionalized variable is then continuous but not differentiable, and
is thus less regular than above.

3. Discontinuous at the origin i.e. y(h) does not tend to zero as h tends to 0. This
means that the variable is highly irregular at short distances.

4 Flat. Pure randomness or white noise. The regionalized variables Z(x+h) and Z(x)
are uncorrelated for all values of h, no matter how close they are. This is the limiting
case of a total lack of structure. It is, incidentally, the model adopted in trend surface
analysis.

The variograms of most geological variables, including metal grades, have this
discontinuity at the origin. It is called a nugget effect because it was first noticed
in gold deposits in South Africa where it is associated with the presence of nuggets
of gold. The grade passes abruptly from zero outside the nugget to a high value
inside it. Gold is not the only substance that contains nuggets. Particles of pyrite
randomly distributed in coal lead to erratic changes in its sulphur content. The term
“nugget effect” is also applied to short range variability even when it is known to
be due to some other factor such as micro-structure, measurement €rror or €rrors in
location.
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A v(h) $r(n)
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Fig 3.3. The behaviour of the variogram near the origin. The quadraticic shape (a)
indicates a high degree of continuity in the variable; linear behaviour (b} shows
moderate continuity. Discontinuities at the origin {c, d) indicate erratic short scale
behaviour called a nugget effect

3.5 Anisotropies

When the variogram is calculated in different directions, it sometimes behaves
differently in some of them (i.e. anisotropy). If this does not occur, the variogram
depends only on the magnitude of the distance between the two points and is said
to be isotropic. Two different types of anisotropy can be distinguished: geometric
anisotropy and zonal anisotropy.

3.5.1 Geometric anisotropy

Figure 3.4. shows examples of geometric anisotropy. On the left, the variograms
have the same sill in all directions even though their ranges are different while on
the right they are both linear but have different slopes.
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irection 2

direction 2
Yo(h) = C,|h|

direction 1

direction 1
yi(h) = C,|h|
S

o

e . e

a b

Fig 3.4. Elliptic or geometric anisotropy

We can draw a diagram showing the range or the slope as a function of direction.
(Fig. 3.5.). If the curve is an ellipse (in 2-D), then the anisotropy is said to be
geometric (or elliptic). In these cases a simple change of coordinates transforms the
ellipse into a circle and eliminates the anisotropy.

direction 2 ‘ ‘

/—_a: -m direction 1
T : "

a b

Fig 3.5. Ellipses showing the major and minor axes in the case of geometric
anisotropy

This transformation is particularly simple when the major axis of the ellipse
coincides with the coordinate axes as is shown in Fig. 3.5. (a). Then if the equation
of the variogram in direction 1 is yj(h), the overall variogram after correcting for
the anisotropy is of the form:

y(h) = Yn(»/ hi + k* hi ) (3.4

where hy and h; are the two components of h and k is the anisotropy ratio, namely:

_ range 1 slope 1

range 2 or slope 2 [3.51
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When calculating the variogram, it is important to use at least four directions. If the
variogram was calculated in only two perpendicular directions it would be possible
to miss the anisotropy completely. This would be the case if the major axis was at
45° 10 the directions in which the variogram was calculated, as in Fig. 3.5.b.

3.5.2 Zonal (or stratified) anisotropy

There are more complex types of anisotropy. For example, the vertical direction
often plays a special role because there is more variation between strata than within
them. In such cases the sills of the variograms are not the same in all directions. It
is standard practice to split the variogram into two components, an isotropic
component plus another one which acts only in the vertical direction:

Isotropic component Vertical component:
Yo (yhi + h3 + h3) Y1 (h3) [3.6]

The overall variogram y(h) is
y(h) = v, (h) + y,(h) 13.7)

3.6 Presence of a drift

As was mentioned at the end of Chapter 2, theory shows that for intrinsic and
stationary variables, the variogram increases more slowly than a quadratic for large
distances. To be more specific,

'—Y—(—h-z — —
2 0 as h o (3.8]

t vy

raw variogram

true underlying variogram

h

“ -

Fig 3.6. Variogram shape in presence of a drift

However, in practice it often occurs that variograms increase more rapidly than h2,
This indicates the presence of a drift (Fig. 3.6.). The experimental variogram
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provides an estimate of 0.5E(Z(x+h) — Z(x))2, which is called the raw variogram,
rather than the true (or underlying) variogram. These two coincide only if the
increments have a zero mean. Otherwise

E[Z(x + h) — Z(x)]* = Var[Z(x + h) — Z(x)] + (E[Z(x + h) - Z(x)])2
raw variogram = underlying variogram  + (bias term)? [3.9]

If there is a drift, the empirical variogram overestimates the underlying variogram.

3.7 Nested structures

Nested structures can sometimes be seen when looking at experimental variograms.
In Fig. 3.7. the longer range is apparent because the variogram flattens out at that
distance. The shorter range can be distinguished by the characteristic change in the
curvature. This change is obvious when the two ranges are quite different. If they
are not, the change is more gradual and need not be obvious.

y(h)

h
shorter range longer range

-

Fig 3.7. Nested structure composed of a short range structure and a longer one

Nested structures indicate the presence of processes operating at different scales.
For example, there may be measurement error at the level of a sample, i.e. for h =
0. At the petrographic scale (i.e. h < 1 cm), there can be variability due to a transition
from one mineralogical constituent to another. At the level of strata or mineralized
lenses (i.e. for h < 100m) a third type of variability comes into play as the points pass
from ore to waste or from ore facies to another.

3.8 Proportional effect

A variogram is said to have a proportional effect when its value (particularly its sill}
is proportional to the square of the local mean grade. This often occurs with
lognormally distributed data. The variograms for different zones have the same
shape but the sill in rich zones is much higher than in poor ones. As the sill often
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turns out to be proportional to the square of the local mean, the underlying
variogram model can be found by dividing each of the local variograms by the
square of the local mean and then averaging them before fitting a variogram model.

3.9 Hole effects and periodicity

In between the origin and infinity, the behaviour of the variogram reflects different
features such as the presence of nested structures or occasionally a hole effect or
even periodicity. In some cases, the experimental variogram rises above its sill value
then drops down. As this "hump” in the variogram corresponds to a hole in the
covariance, the effect is called a hole effect. Sometimes this shape can be explained
geologically. One such example is the variogram obtained by Serra (1968) from thin
sections of iron ore from the Lorraine region in France. The calcite crystals tended
to be separated by intervals roughly proportional to their size, because of the
concentration process around randomly located seed crystals. This regular, almost
periodic structure leads to the hole effect. But more generally bumps of this type
are due to natural fluctuations in the variogram or to statistical fluctuations because
too few pairs of points were used in calculating the experimental variogram.

variograms, like covariances, can exhibit periodic behaviour. Whereas it is
natural to find periodic phenomena when dealing with time series, this is much rarer
and more difficult to explain with geological variables. Folded strata could exhibit
periodicity. But it is more common to find that periodicity is an artefact due to
human activity rather than Mother Nature. For example, grades obtained during the
night shift may be statistically different to the day shift. It is important to check that
the effect is real and not merely an artefact. One case where periodicity can occur,
is when the ore lies in ridges and valleys, as sometimes happens in sedimentary gold
deposits. The variograms calculated perpendicular to the ridges and valleys can
show the periodicity but those paraliel to the ridges do not. An example of this is
presented in Chapter 5.

3.10 Models for variograms

Before the variogram can be used to estimate grades or tonnages, a mathematical
model has to be fitted to it. The reason for this is that variograms have to satisfy
certain conditions. Otherwise there is always a risk of finishing up with a negative
variance which would be totally unacceptable.

3.10.1 Variance of admissible linear combinations

Since the common estimators are linear combinations of the data (i.e. weighted
averages), we need to be able to calculate their variance. First we consider a
stationary variable Z(x) with covariance C(h). Let the linear combination be Z*
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Z = Z A Z(x;) [3.10]

where A; are the weights and x; are the sample locations. By definition its variance
is

Var (Z') = E(Z' - B@Z"))’ [3.11]

It is not difficult to show that if m is the mean of Z(x), E(Z') =m Z A; . Hence

2

Var (Z') = E (ZM (Z(x, - m))

=AM C(x; =%, ) + A C(x, =) + .. + A2 C(x, ~ X, + 2L, C(x, — Xx;)
+ ..+ 20 A, C(x, 1 —X,)

Consequently
Var (Z7) = > > A Cx, - x)) (3.12]
j

This must be non-negative whatever the points and whatever the weights. A
function C(h) satisfying this condition is said to be positive definite.

The situation is slightly different when the variable is intrinsic but not stationary.
In this case the variance of an arbitrary linear combination need not exist. We can
only be sure that this exists for linear combinations of increments. Combinations are
said to be “admissible” if the sum of the weighis is zero.

S =0 [3.13]

Clearly any linear combination of increments satisfies this condition since any
single increment involves the weights +1 and ~1. Conversely any combination
satisfying this condition can be written as a linear combination of increments. Box
3 gives this proof and the formula for its variance in terms of the weights and the
variogram model. As the covariance need not exist for intrinsic random functions,
the formula must be in terms of the variogram.

Var (Y8 Z)) = = 3 > A A v - %)

{3.14]

As this variance must be non-negative, variogram models have to satisfy certain
conditions. For any set of points x1, x2, ... xi, any set of weights A{, Ay, ... Ak, such

that Z A; = 0, we require that
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BOX No 3 : Calculating the variance of admissible linear combinations.

Firstly we want to show that any linear combination whose weights sum to 0,
can be expressed as a combination of increments. By choosing an arbitrary
point as origin, we have:

> MZEx) = > M [Z(x) - Z(0)] [3.15]
So its variance exists and is given by:

Var[z A Z(xi)] = 3 Sk & Cov [Z(x)-Z(0), Z0)-Z(O)]  (3.16]

To calculate the covariance of increments we use the identity:
var|Z(x) - Z(x)] = Var[Z(x) - Z(0) + Z(0) - Z(x)]
= VarZ(x) - Z(0)] + VarZ(x)) — Z(0)]
~ 2Cov [Z(x)) - Z(0), Z(x;) ~ Z(0)] (3.17]
Hence 2Cov|Z(x)) — Z(0), Z(x;) —~ Z(0)] =
= Var[Z(x) - Z(0)] + Var[Z(x)) — Z(0)] - Var[Z(x) - Z(x))]

= 2y(x) + 2v(x;) - 2y(x;, — x;) (3.18]

Substituting this into formula [3.16} gives:

Varzxi Z(x;) = Z Z AA {Y(xi) + y(x) — v(x; — xj)]

DX PR TCOED R R RO EDIPR RIS

The first two terms disappear since Z)‘i = Z A, = 0, leaving:

Var (Z A Z(xi)) = - Z Z)"i A y(x — X))

Hence the very important result that the variance of any linear combination
whose weights sum to 0, exists and can be calculated by replacing the
covariances in Equation [3.12} by —y.

{3.19]
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- Z Z MAY (X -x)20 (3.20]

Then —y is said to be conditionally positive definite. This condition is weaker than
the preceding one for covariances which had to hold for all possible weights,
because this one only has to hold for sets of weights whose sum is 0. Consequently
the class of admissible variogram models is richer than for covariances. It contains
the bhounded variograms associated with covariances and also unbounded ones
which have no covariance counterpart. So there is a trade—off between the two
hypotheses. The intrinsic hypothesis allows us to use a wider range of variograms
but the weights must sum to 0. The range of admissible variogram models is more
restricted for the stationary hypothesis but any weighting factors may be used.

3.11 Admissible models

We have seen that in order to ensure that the variance of any linear combination
never goes negative, only certain functions can be used as models for variograms
and covariances. Covariances must be positive definite functions; variograms have
to be conditionally negative definite.

As it 1s not easy to recognize functions that have this property or to test for it,
itis best to choose variogram models from the range of suitable functions rather than
try to create them oneself. A list of the common models is given in the next section.
These can be added to obtain other admissible models because this is equivalent to
adding independent random functions, but subtraction is not allowed. Nor can they
be combined piecewise. By this we mean that you cannot choose one model up to
a certain distance then a different one from there onwards as shown in Fig. 3.8.

4
f(h)
NOT ALLOWABLE

AS A VARIOGRAM
h

g

Fig 3.8. Example of a function that is NOT allowable as a variogram model

In order to work out whether a certain function is or is not positive definite, one has
to calculate its Fourier transform. This is not always simple in 1-D but it becomes
even more difficult in higher dimensional spaces. For more information on how to
test for positive definiteness see Armstrong and Diamond (1984).
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To make matters more complicated it is possible for functions to be positive
definite in one space but not in higher dimensional spaces. For example the
piece-wise linear function shown in Fig. 3.9. is an admissible variogram in 1-D but
not in two or three dimensions. Exercise 3.11 shows how to construct itin 1-D while
exercise 3.10 gives a counter example in 2D with a negative variance proving that
it is not acceptable in 2-D or higher dimensional spaces.

0 1 2 3 4

Fig 3.9. Piecewise linear model that is admissible in 1D but not in 2D or higher
dimensions

Having been warned of the dangers of trying to invent their own variogram
models, readers may be curious to know how the current variogram models came
into existence. Basically they were developed by mathematically constructing a
random function and calculating its variogram theoretically. The resulting model
must, by construction, be positive definite or at least conditionally negative definite
in the space in which it was built. Several exercises at the end of the chapter illustrate
this procedure. For example, exercise 3.13 describes a method for building
spherical balls enclosing a random number of Poisson points, leading to the
so—called spherical variogram.

3.12 Common variogram models

The following variogram models are admissible. Those with a sill correspond to
stationary regionalized variables while the unbounded models are associated only
with intrinsic variables. This list is not exhaustive.

3.12.1 Nugget effect
yh)= 0 h=0 [3.21}
= C |h} >0

This model corresponds to a purely random phenomenon (white noise) with no
correlation between values no matter how close they are.
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3.12.2 Spherical model

- el 1)

c Ih| >a [3.22]

N

The spherical model is probably the most commonly used model. It has a simple
polynomial expression and its shape matches well with what is often observed: an
almost linear growth up to a certain distance then a stabilization. The tangent at the
origin intersects the sill at a point with an abscissa 2a/3. This can be useful when
fitting the parameters of the model.

3.12.3 Exponential model
v(h) = C (1L - exp(- |h|/a)) 13:23]

The practical range of this model is 3a, because that is the distance when it reaches
95% of its limit value. The tangent at the origin intersects the sill at a point with an
abscissa a. As both the spherical and the exponential models are linear for small
distances, it is helpful to compare them. Figure 3.10. shows two models with the
same sills, with the practical range of the exponential equal to the true range of the
spherical. The differences are quite obvious. The exponential rises more rapidly
initially but only tends towards its sill rather than actually reaching it.

—]

a Spherical Model b Exponential Model
Fig. 3.10. (a) The spherical variogram model with a sill of 1.0 and a range of 1.0
and (b) an exponential model with a sill of 1.0 and a scale parameter of 0.33 (i.e.
its practical range is 1.0)
3.12.4 Power functions

y(h) = C]|h|"° with 0 <as<?2 [3.24]

The linear model, y(h) = Ihl, is a special case.
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a Gaussian Model b Power Models
Fig. 3.11. (a) The gaussian variogram model and (b) three power function models

with exponents a =0.5, 1.0and 1.5

3.12.5 Gaussian model
{hi?
‘Y(h) =C1l1- exp( —? [3.25}

The practical range is 1.73a. The gaussian model represents an extremely
continuous phenomenon. Experience shows that numerical instabilities often occur
when this is used without a nugget effect.

3.12.6 Cubic model

This model has a parabolic behaviour at the origin and is generally similar to the
gaussian model, except that it is not infinitely differentiable. Its equation is

y(h) = C (72 — 8750 + 3.5¢° — 0.75r)) if r<1 (3.26]

= C otherwise

where r = h/a.

3.12.7 2D hole effect model
y(h) = C (1 = exp(= |r]) I, 2n 1, ) (3271

where r = h/a, T: = /A and Jg is a Bessel function. The value of A controls the
magnitude of the hole effect.
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3.12.8 Cardinal sine model

This model is one of the rare ones with a hole effect that is authorized in 3D. It
corresponds 1o very continuous structures. Its equation is

- - sinr
y(h) = C ( 1 ] ) (3.28]

where r = h/a. When calculating this on a pocket calculator, remember that the

parameter "r” should be in radians not degrees. Working in degrees, [sin(r)}/r
oscillates around the value of 7/180 = 0.0174532.

Fig. 3.12. The cardinal sine model

3.12.9 Prismato-magnetic model

_ 1
y(h) = C (1 - (—1—;;2—33) [3.29]

where r = h/a.

3.12.10 Prismato—gravimetric model

_ 1
y(h) = C (1 - m) [3.30]

where 1 = h/a. The last two models were developed to model different types of
gravimetric and magnetic anomalies.

3.13 Simulated images obtained using different variograms

The variogram models given in the previous section range from very common ones
like the exponential and the spherical to quite unusual ones like the hole effect
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models. When most people look at the equaiions, they are unable to guess how
regionalized variables having those variograms might behave. Are they very similar
or do they have obviously different features? To highlight the differences between
the variograms, we have generated one realization (one possible image) for each of
four types of variograms: the exponential, the spherical, the gaussian and the
cardinal sine. (Figs. 3.13. t0 3.16.) A zero nugget effect was used throughout. These
variograms all have sills so they correspond to stationary variables.

The images are 200 pixels x 200 pixels. The EW range (or the practical range)
was set to 20 pixels whereas the NS one is half that. The darker and lighter patches
in the figures are elongated with these dimensions on average. For those interested
in the technical details the simulations were obtained using 400 turning bands and
the resulting distributions are N(0,1). Simulation methods are beyond the scope of
linear geostatistics. Details can be found in Journel and Huijbregts (1978) or
Lantuéjoul (1994).

Comparing the four figures, it is clear that the exponential and the spherical
variograms lead to "fuzzier” images than the gaussian and the cardinal sine, This
obvious difference is due to the fact that the spherical and the exponential models
are linear near the origin whereas the other two are parabolic. Variograms that are
quadratic near the origin come from highly continuous variables. For a spherical and
an exponential with the same sill and the same range, the exponential rises faster
initially, which explains why the simulation obtained using the exponential mode!
is slightly less structured than the corresponding spherical.

If a pure nugget effect had been used to generate a simulation, the resulting
image would have been totally unstructured, with high and low valued pixels being
spread around at random. This leads to very “spotty” pictures with a uniform grey
colour and no distinct high or low patches.

It is important to keep the relation between the variogram model and its
realizations in mind when fitting models to experimental variograms and later when
kriging. Unless very closely spaced data are available, the geostatistician has to
choose the shape of the variogram near the origin rather than fitting it to
experimental values. So it is important to understand the implications of this choice
in terms of the continuity of the variable or, on the contrary, its behaviour.

3.14 Exercises

Variogram Properties. Before fitting models to experimental variograms it is
important to become more familiar with their properties.

Ex 3.1 Spherical model. Write down the equation for the spherical model with
a range of 300m and a sill of 2. Plot its shape for distances up from h = -500m to
h = +500m, remembering that y(-h) = y(h). Note the mirror image around the y axis.

The curve is continuous at the origin but what about its derivative? When we get
to kriging, we will see that the kriged estimates “inherit” the discontinuities in the
variogram function and its derivatives.
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Fig 3.14. Simulation of a variable having a spherical variogram
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Fig 315, Stmulation of o variable having a gousgian variogram

Fig 3.16. Simulation of a variable having a cardinal sine variogram
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Ex 3.2 Exponential model. Write down the equation for the exponential model
with a scale parameter of 100m and a sill of 2. What is its practical range? Plot its
shape for distances up to 500m. Compare this model with the spherical model in the
first exercise.

Ex 3.3 Tangents at the origin. Find the slopes of the spherical and the
exponential models given in 3.1 and 3.2 by differentiating their equations with
respect to h. Find the distance where the tangents at the origin cut the sill.

Ex 3.4 Gaussian model. Write down the equation for the gaussian model with a
scale parameter of 100m and a sill of 2. What is its practical range? Plot its shape
for distances from h= —500m to h=+500m. As before, the left hand side is a mirror
image of the right hand side. What is the slope of its tangent at the origin? The curve
is continuous there but what about its derivative? What about higher order
derivatives?

Ex 3.5 Factorizable covariances. Write down the equation for the gaussian
covariance model with a scale parameter of 1 and a unit sill, remembering that

y(h) = C(0) ~ C(h)

Use the fact that in 2D h2 equals x2 + yZ, to split C(h) into the product of two factors:
exp(~ x2) and exp (-y2). Could this be extended to 3D? When we get 1o the chapter
on kriging, we will see that factorizable covariances like this lead to a strange
“perpendicular ” screen effect.

Ex 3.6 Variograms that are linear near origin. Both the spherical and the
exponential models are linear at the origin. Write down their slopes at the origin in
terms of the sill, C, and the parameter, a.

Suppose that an experimental variogram is linear with a slope of 5.0 for distances
up to 10m. Find suitable values of a and C for a spherical model and for an
exponential one that have this slope. Show that choosing C=50 and a=15 gives a
slope of 5 at the origin for a spherical. By plotting the corresponding variogram
determine whether it is effectively linear up to 10m. In fact larger values of both a
and C are needed. Knowing the slopes at the origin can prove helpful later for fitting
experimental variograms.

Calculating the variance of linear combinations. Most estimators used in the
earth sciences can be written in terms of linear combinations, This includes
estimators based on polygons or on inverse distance and inverse distance squared.
The following exercises are designed to give readers practice calculating these
variances.

Ex 3.7 Suppose that two sample points, x| and x7, are 100m apart. Calculate the
variance of the linear combination: Z* = Z(x;) + Z(x;) where Z(x) is a stationary
variable with a spherical variogram with a range of 250m and a sill of 3.

What would the variance be if the range is 25m instead of 250m?

What would the variance be if the variogram was a pure nugget effect of 3.0? Why
is the value the same as when the range is 25m?
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Ex 3.8 Consider a linear combination:

Z = A Z(X) + A Z(x) + Ay Z(x5) + Ay Z(xy)

where Aj, Az, A3 and A4 are constants and xi, X3, X3 and x4 are the corners of a
rectangle with sides of 30m and 40m. The variogram of Z(x) is a spherical with a
range of 100m and a sill of 4.0 pius a nugget effect of 1.0. Calculate the variance
of Z* for the case where A=Ay = 1.0and hy=Aq4=-1.0.

Would it be possible to evaluate the variance of the linear combination if the
variogram was linear? Explain why. Would this still be true if the weights were all
equal to 0.257

Ex 3.9 To highlight the necessity of using only admissible models, here is a case
where a non-standard model has been used. The model and the data layout are
shown below. The three points form an isosceles triangle with sides of 0.8, 0.8 and
1.0. After noting that the sum of the weights equals 0, calculate the variance of the
linear combination:

Z' = Z(x) - 0.5 Z(x)) — 0.5 Z(x;)

1.0

02

L X3 X3
0.8 1.0
Non-standard variogram Lay-out of points

The variance of this linear combination is negative because the function used as a
variogram model is not positive definite or conditionally negative definite (even
though its shape resembies a gaussian variogram model).

Ex 3.10 Piecewise linear model in 2D. This exercise is designed to highlight
another subtle feature of positive definite functions. They can be positive definite
in a 1D space but not in 2D and higher order spaces. We use the piecewise linear
model to illustrate this point. Exercise 3.11 presents a construction for generating
this variogram in 1D.
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\\\ Piecewise Linear Model
N
N C(h)
|
2

Set up a regular 1m x Im grid containing 8 x 6 nodes (48 nodes). Let the weights
be alternatively +1 and -1 so that neighbouring points always have weights with
opposed signs. Check that the sum of the weights is zero. The variogram and the
spatial covariance for the piece-wise linear model with a unit sill and a range of V2
are shown above. Calculate the variance of this linear combination. Hint: the
calculation is much simpler if one works with covariances because they are all zero
for distances greater than or equal to V2.

The fact that there is at least one linear combination with a negative variance proves
that this model is not authorized in 1D. There is no way of "proving” that a model
is positive definite by testing the variances of specific combinations because there
is no way of testing them ali. Much more general methods are required.

Constructing random functions to obtain new variogram models. As it is very
difficult to test functions for positive definiteness, most new variogram models are
obtained by a suitable construction. These exercises are designed to present some
of the simpler ones, starting out from the piece—wise linear model in 1D.

Ex 3.11 Piecewise linear model in 1D. The aim of this exercise is to show that the
piecewise linear model is an admissible variogram in 1D. After drawing an origin,
Xo, at random in the interval [0, a], divide the line into segments of length o. A
random function, Y (x), is constructed by drawing a value for each segment from a
distribution with mean m and variance 0. The values are independent from one
segment to another.

Y(x)

Xo Xo + @ Xo + ka

The probability that two points, x and x+h, chosen at random belong to the same
interval depends on the distance between them. Show that the probability is O if il
> o and that otherwise it equals: 1 — |h]/a.

Show that EfY(x + h) — Y(X)]* = o® if |h| > «, whereas itis zero otherwise.

Hence show that the variogram of Y(x) is a piecewise linear model with a sill of 0%/a
and a range of a.
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Ex 3.12 Exponential model in 1D. This exercisc is a simple exiension of the
previous one. We construct a random function having an exponential variogram. As
before, an origin X, is drawn at random in the interval [0, a] but this time we divide
the line into segments whose length is a Poisson random variable with intensity A.

Y(x)

.........

Xo X,y X» X3 Xn

As before, a random function Y{(x) is constructed by drawing a value for each
segment from a distribution with mean m and variance 2. The values are independ-—
ent from one segment to another. Show that the variogram is an exponential with
sill 0% and scale parameter A.

Ex 3.13 Spherical model in 3D. In this exercise we construct a random function
in 3D having a spherical variogram. Let the space be filled with Poisson points with
intensity A. So the number of points falling in a volume V is a Poisson random
variable with parameter AV. Its mean and variance are both AV. Moreover the
numbers of points in two volumes V and V' are independent if the volumes are
disjoint. Let Y(x) be the number of Poisson points falling in a sphere of radius D
centered on point x. Show that its variogram is a spherical model.

Hint: When the points x and x+h are further apart than D, the spheres do not intersect
and so Y(x) and Y(x+h) are independent. When the points are closer together, split
the two spheres into three disjoint parts as shown below:

Then if N(V) denotes the number of Poisson points in V,
2 2
E(Y(x + h) = Y®)) = E[(N(V,) + N(VD)) — (N(V,) + N(V3))]
To complete the proof, it suffices to calculate the volume V3 as a solid of rotation.

- &ps|;_3h , ]

Volume of V, 3 D [l 5D + D7

Ex 3.14 Linear model in 1I». This exercise is designed to construct a random
function having a linear variogram. Let W be a set of independent random variables
that take the values +1 and —1 with equal probability. A regionalized variable Y(n)
is constructed for positive integral values of n, by summing the Wj up to n.

n
Y(n) = > W,
1=0
Show that Y(n) is not second order stationary because its variance depends on the

value of n, but that it satisfies the intrinsic hypothesis. Show that its variogram is
linear.
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4.1 Summary

Like the preceding chapter, this one is on the variogram. The reader is shown how
to calculate experimental variograms in 1D, 2D and 3D, and how to fit models to
them. Several exercises are provided. The practical problems encountered with
troublesome experimental variograms are discussed. These include outliers, almost
regularly spaced data, and so on.

4.2 How to calculate experimental variograms

The experimental variogram can be calculated using the following formula:

N(h}

Y0 = 3R 2 20+ D) — ZeP [4.1]

where x; are the locations of the samples, Z(x;) are their values and N(h) is the
number of pairs (x;, x; + h) separated by a distance h — those actually used in the
calculation. It is very easy to apply this formula when the samples are regularly
spaced in 1D such as down a drillhole, along an underground gallery, a transect or
a seismic profile. Example 1 illustrates the procedure.

If samples are missing from a regular pattern, their values should not be
interpolated by averaging the neighbouring values, nor should a zero be inserted in
its place because these distort the true variability. The square differences are
calcuiated for alt available pairs.

If data are not regular, the variograms are calculated for distance classes with
an associated tolerance, usually 50% because this covers all possible distances.
Going further, when the data are irregularly spaced in 2D, variograms are calculated
for angular as well as distance classes.
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4.3 In the plane

When data are two dimensional, the variograms should be calculated in at least four
directions to check for anisotropies. The first step is to choose the variogram lag and
its tolerance, then the principal angles and the angular tolerance.

The procedure then goes as follows. Taking each point x; in turn, the program
calculates the difference x; — x; to find out which angular class and which distance
class the pair belongs to. The corresponding square difference (Z(x;) — Z(x; + h))?
is then calculated and added to the subtotal for the appropriate class. The count of
elements in that class is also increased by 1. When all possible pairs have been
treated for a given point x;, the program moves onio the next one. At the end of the
process the subtotals are divided by twice the number of pairs in which the
successive origins are chosen. A flow-chart for this is shown in Fig. 4.2.

4.4 In three dimensions

The procedure given above could theoretically be generalized to three dimensions
by considering classes of solid angles. But in practice the third dimension usually
plays a special role. There is often much more variability in the vertical direction
than in the horizontal, because of the stratification of many natural phenomena.

Consequently it is usually much more meaningful to calculate the variograms
in the plane of the strata using the methods described in the last section and then
calculate those perpendicular to this plane. Typically the vertical variograms are
calculated using the data down each drillhole then the horizontal variograms are
calculated in several horizontal directions. If the orebody has been tilted due to
tectonic action, the variograms are calculated in the plane of the deposit and
perpendicular to it.

4.5 Example 1: regular 1D data

Use formula [4.1] to calculate the experimental variogram for the first three distance
classes for the data given below. The samples are regularly spaced every S5min 1D.

8 6 4 3 6 5 7 9 5 6 3
1 ] ] 3 [ [l i . i E i ]
¥ 1] ¥ ¥ J ¥ L) 1 1 L L] ] L}

Fig. 4.1. Sample data spaced every 5Sm along a line, with grades shown
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START

READ IN DATA VALUES Z/(Xy)

Y

CHOOSE ANGULAR CLASSES AND DISTANCE
CLASSES FOR VARIOGRAM

Y

]

Doi=1,N-1
DoJ=1+1,N
A CALCULATE Hy; = X; - X;
D? = (Z¢xy) - Z(Xp))
\ 4
ADD 1 TO COUNT OF CLASS FOR Hy. ADD D?
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TO Hy;
&

_ad

FoRr EAcH VARIOGRAM Crass DIVIDE
2 D? BY TWICE COUNT FOR THAT CLASS
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Fig. 4.2. Flowchart showing how to calculate experimental variograms
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For the first variogram class (5m), there are twelve square differences:

y'(S)=—2—;li—2-[22+22+12+32+12+22+52+62+12+42+12+32]
= 4,625 [4.21

Show that the values of y'(10) and y’'(15) are 4.82 and 6.00 respectively. Plotting
these as a function of distance gives the experimental variogram (Fig. 4.3.). A solid
line has been used to connect known values; a dotted one, to extrapolate back o the
origin. The nugget effect could not be higher than 4.0 but could well be less if there
were a micro—structure with a range of less than 5m.

6 /
49-7"""
2
0
0 5 10 15

Fig. 4.3, Experimental variogram for samples spaced 5m apari. The solid line
connects experimental values; the dotted one extrapolates back to the origin

When sample values have a skew distribution (with a long {ail to one side) or when
there are outliers in the data (i.e. unusually high or low values), the presence of just
a few extreme values can cause trouble. Imagine what would have happened in
Example 1, if the value of 7% had been 17% or 70% instead. In the first distance
class, the square differences (5-7)% and (7-2)? would have become (5-17)? and
(17-2)2, or even worse, (5-70)2 and (70-2)2. These two terms would completely
dominate the experimental variogram, making it difficult to interpret it or to fit a
model to it. This point will be dealt with at the end of this chapter.

4.6 Example 2: Calculating experimental variograms in 2D

Table 4.1. shows 56 grades arranged in a unit square grid. Use them to calculate the
experimental variograms in the four main directions for distances up to 4 lags. For
each distance, note the number of pairs of points used. All pairs of points a particular
distance apart in a specified direction should be used, not just those in the same row
or column. Remember that the distance along the diagonals is a multiple of V2.
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Table 4.1. Regular 2D data for calculating the experimental variograms

26 |22 119114116 119 |16 | 14
23 120 {17 120 {14 |23 |21 |17
22 |17 {18 {19 | 18 125 120 | 19
21 |15 120 | 18 {20 |20 | 18 | 13
19 |18 | 15 {15 |18 |23 |22 | 20
18 116 {10 | 16 | 14 | 18 | 20 | 18
17 114 110 } 13 [ 13 |15 | 14 | 17
15 113 } 11 10 } 17 (16 {15 | 11

Table 4.2. Values of the experimental variograms in the four main directions for
data given above, together with the number of pairs of points

v(1) | N | v | N@) | v3) | NG) | v(4) | N4)
E-W|[474 | 56 | 849 | 48 [1028] 40 [1327] 32
N-S |58 | 56 [911 | 48 [913 ]| 40 [1077] 32

NE- | 7.69 49 1224 36 |1836] 25 |18.16} 16
Sw

NW-—| 755 49 {1202} 36 1000} 25 |1400]| 16
SE

Table 4.2, gives the values of the experimental variograms in the four main
directions and also the number of pairs of points used in their calculation. The
variogram is not reliable for distances greater than half the ficld length. This is why
it has been calculated for only four lags. Figure 4.4. shows the four directional
variograms,

Diagonals
15 15
10 10
5 5
0 ] 1 ] E | 0 L t L .
01 2 3 4 5 6 0 1 2 3 4 5 6

Fig. 4.4. Experimental variograms in 4 directions
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As there is little difference between them, we consider them to be isotropic. So
the average experimental variogram for all directions was calculated (Fig. 4.5.). A
linear model with a slope of about 3 plus a nugget effect of about 3 gives a good fit.
This example was designed to show how to calculate variograms. In practice,
variograms usually turn out to be more erratic than these.

20
Omnidirectional
15
10
5
0 [} § ] | il |

0 1t 2 3 4 5 6

Fig. 4.5. Omnidirectional variogram caiculated from the regular 2D data, and the
fitted linear model with a nugget effect of 3 and a slope of 3

4.7 Variogram cloud

There are two ways of plotting variograms: the standard way shown above where
the average square difference is plotted against distance or alternatively as a cloud
of square differences each plotted against its distance. Chauvet (1982) called this
the variogram cloud. The advantage of the standard plot is that it synthesizes ali the
information into one point per distance class, but in so doing, the detail is lost. And
this detail can be very helpful in understanding the variogram.

To illustrate the concept, the variogram cloud has been calculated for the data
in Example 1. For the first distance class there were 12 square differences: 4, 4, 1,
9,1, 4,25,36, 1, 16, 1 and 9. For the next two distance classes, there were 11 and
10 pairs respectively. To be compatible with the variogram, these values were
halved before being plotted. Figure 4.6.a shows the resulting variogram cloud. The
experimental points sit in vertical columns because the data are regularly spaced
every Sm. Only 6 crosses are apparent in the first distance class because there are
only 6 distinct values for the half squares. While most of these squares are small,
a few are quite large. So their histograms for each distance class are skew.

To illustrate the impact of outliers, the cloud was recalculated for the case
mentioned earlier where a value of 17% occurs instead of 7% (Fig. 4.6.b).
Compared to the original cloud on the left, the vertical scale on the right is four times
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larger. For each distance class, the largest two square differences (i.e. the highest
two crosses) correspond to pairs involving the outlier.

20.0} 100.} )
7. .
10.4 50. )
e 25 . "
od o L]
0.0 50 10.0 15.0 :

0.0 50 10.0 15.0
4 a b

Fig. 4.6. Variogram clouds calculated using the 13 regularly spaced data (a) from
Example 1 and (b) the same data when a vaiue of 7% has been replaced by an outlier
of 17%. Note the change in the vertical scale between the two tigures. In both cases
some crosses represent several values (e.g. 1.0 for a lag of Sm)

4.8 Fitting a variogram model

This is best seen from practical examples. Experience has shown that the analytic
form of the model does not matter very much as long as its major features of the
phenomenon are respected. In order of importance these are:

— the nugget effect,

— the slope at the origin,

— the range,

— the sill,

-~ the anisotropies.

The behaviour at the origin (both the nugget effect and the slope) plays a crucial role
in the fitting of the variogram because it has a tremendous influence on the results
of the kriging and also on the numerical stability of the kriging system. The slope
can be assessed from the first three or four variogram values; the nugget effect can
be estimated by extrapolating back to the origin. The first variogram value is often
obtained from too few pairs of points to be reliable. Additional drillholes at short
distances can be helpful so as 1o get a betier idea of the nugget effect.

The range can usually be assessed visually. The sill is set at the value where the
variogram stabilizes. For stationary variables this should coincide with the overall
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variance but sometimes this is not (rue because of the presence of long range trends.
If there is more than one range the intermediate ranges can be distinguished visuaily
because the variogram has a change in curvature at these points. Modelling
anisotropies requires more experience. In general a good fit can be obtained with
the sum of two or three models. Using more than this increases the subsequent
computing costs considerably and should be avoided. The fitting is done by trial and
error, using a graphic terminal.

People often ask why we do not use least squares or other automatic methods
to fit variogram models. There are three reasons for this. Firstly the model must be
a positive definite function (otherwise the variance could turn out to be negative).
Polynomials obtained by least squares regression would rarely satisfy these
conditions. Secondly least squares assumes that sample points are independent
observations, which is clearly not true of the experimental variogram. It consists of
squares differences of combinations of values. Thirdly the behaviour of the
variogram very close (o the origin {i.e. for distances shorter than the first lag) is not
known and yet it is vital and least squares does not take account of this. Experience
and judgment are required. The first problem could be overcome by fitting only
positive definite models, but this still does not solve the other two problems.

4.9 Troublesome variograms

Experimental variograms found in practice are often much more erratic than the
examples presented in textbooks and journal articles. Since the causes of potential
problems are extremely numerous and varied, it would be impossible to present
them all. Armstrong (1984) shows some of the more common ones. Here are some
more examples.

4.9.1 Outliers

As was seen in the exercises on calculating experimental variograms, the presence
of even one outlier can lead to a highly erratic variogram. In a study on coal from
two seams in the Bowen Basin in Australia (Armstrong, 1980) the variograms for
three of the variables (seam thickness, ash content and FSI) were very similar for
both seams but the sulphur variograms were totally different. (Fig. 4.7.). This was
rather surprising. A closer examination revealed that the data from the top seam
contained two extremely high sulphur values among a group of 207 values. (These
can be seen quite clearly on a histogram). The first step was to check whether these
values were correct, by asking the geologist to inspect the remaining half—core. In
fact, the samples come from a high sulphur area and the cores showed visible pyrite.
So the values are real. After these two abnormal values were removed the variogram
dropped back to about one fifth of its previous values and looked just like the sulphur
variogram for the other seam. Removing additional points made no significant
difference to the variogram.
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Variogram for top seam
with 2 outliefs included

Variogram for lower seam

Top seam, no outliers

0 80 160 240 320

Fig 4.7. Three variograms for sulphur content in two coal seams The top one came
from top seam with 2 outliers included, the other variograms came from the lower
seam and the top seam after removing the outliers

In this case the solution was quite simple: eliminate the outliers. This was possible
for two reasons: firstly because the outliers lie in a geographically distinct area that
should be treated separately from the rest, and secondly because high sulphur coal
is less valuable than low sulphur coal.

However in other cases (notably highly skew distributions such as gold or
uranium grades) it is not quite so easy to find a good way of estimating the
variogram. The high grade samples are not usually in a separate area. They are
usually mixed in amongst lower grade material. More importantly the small
percentage of high grades often makes the difference between opening the mine and
not doing so. Eliminating the outliers or cutting them back to an arbitrary value is
not a good solution.

Several “robust” methods of calculating the variogram have been suggested
(Cressie and Hawkins, 1980; Armstrong and Delfiner, 1980). This subject was one
of the major topics of discussion at the NATO geostatistics workshop held at Lake
Tahoe in September, 1983 (See Verly, 1984).

4.9.2 Pseudo-periodic hiccups

The ash variogram calculated for a lag of 40m for coal from the Bowen Basin in
Australia illustrates the problem of “pseudo-periodic hiccups” (Fig. 4.8.a). At first,
the two rather strange peaks at h=150m and h=280m might seem to be a sign of some
sort of periodicity in the coal but this is not physically likely given the nature of coal.
Although it is not obvious initially, the samples lie on an almost regular grid.
Plotting the histogram of the distances between pairs of points for each distance
class shows that this was clearly the case. (Fig 4.8.b.) In this case the solution is quite
simple. All we need do is to change the step length. Calculating the variograms for
100m distance classes smoothed out the bumps.
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Fig 4.8. (a) Erratic experimental variogram for ash content in coal, (b) the histogram
showing the number of pairs of points for each variogram lag on right Note the peaks
in the histogram (160m & 320m)

4.9.3 Artefacts

The next two examples have been included to point out that many of the problems
with variograms are due to “‘operator error” rather statistical problems with the data.
Figure 4.9. shows a remarkable “saw-tooth” variogram. The variable under study
was highly skew, like gold or uranium. A substantial percentage of values below the
recording threshold had been recorded as zero. Since the data looked lognormal it
seemed advisable to take logs. To avoid problems with the zeros these were
arbitrarily set to 0.00001 and so became 5.0 after the log transformation (here to
base 10). As all the other logs lay in the range from -3.0 to +3.0, the -5.0’s were
then extreme values and their locations completely determined the shape of the
variogram. In this case, the solution was simple: set the below cutoff values to 0.001
rather than 0.00001, in which case their log is —3.0.

0 100 200 300

Fig 4.9. : Erratic saw tooth variogram
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The second exampie is on the same lines. In this case the problem was caused by
the presence of a number of zero values for seam thickness. These could indicate
that the seam had pinched out in this region but as this seems unlikely, the data were
re-examined. This revealed that the zero seam thickness corresponded to missing
values for both the top and bottom of the seam. As a value of -1 had been assigned
to all missing values, and as the student doing the study forgot to include a test for
missing values in his program to calculate seam thickness, the subtraction of -1
from -1 resulted in a goodly number of zeros, which determined the form of the
variogram.

These mistakes are rather silly. On reading them everyone naturally feels that
he would not make such a mistake but experience shows that these types of errors
are much more common than most of us care to admit. What is more the only way
to find out their cause and treat them is by carefully investigating the data. It would
be absolutely fatal to apply a “robust” variogram method to the data to sort out the
problems with the variogram. Fortunately computer technology now allows us to
work with linked windows. So it is possible to visualize several graphics (such as
the base map, the histogram and the variogram) simultaneously to find out what is
causing the erratic behaviour.

4.10 Exercises

Ex 4.1 Missing values. Figure 4.10. shows 13 sample locations spaced 5m apart.
The grades are available at 12 out of 13 points, the other grade is missing. Show that
there are only 10 pairs of points for the first lag, and that the value of the y*(5) =
4.7. Calculate the experimental variogram for the next two lags and plot it
Sometimes people mistakenly put a zero in the place of the missing value. Calculate
the first three lags of the experimental variogram and compare it to the previous one.

8 6 4 3 6 5 7 2 8 S 6 3
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Fig 4.10. Regular 1D data with 1 value missing

Ex 4.2 Outliers. The figure below shows 13 sample locations spaced 5m apart,
with one grade (90) much larger than the others. Calculate the experimental
variogram for the first three lags and plot it. To see the impact of the outlier, compare
this variogram to the one obtained earlier {Fig. 4.3.)

8 6 4 3 6 5 7 2 8 9% 5 6 3
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Fig 4.11. Regular 1D data containing an outlier
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Ex4.3 Variograms in 2D. The table below gives 35 grades on a regular 100m x
100m grid. Calculate the experimental variograms in the two principal directions
for up to 300m. Is this variogram isotropic?

Table 4.3. Thirty—five grades on a regular 100m x 100m grid

3.6 28 4.1 4.6 53 3.8 4.2
3.6 35 5.2 45 6.1 44 4.0
5.1 3.8 4.9 33 5.7 6.2 6.3
4.2 40 5.6 4.2 4.9 53 44
4.6 5.7 6.1 54 4.7 52 6.0
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5.1 Summary

Several case studies showing how to carry out a structural analysis are presented in
this chapter. Firstly, the principal decisions that have to be made by the
geostatistician are reviewed. Are the data stationary? Are they isotropic? Should we
work with the variables themselves or their accumulations? Should the study be
carried out in 2D or 3D?

The first case study is a relatively simple 3D study of an iron ore deposit. As the
horizontal and vertical variograms are well structured, it provides a clear illustration
of a straightforward variographic analysis. The second study concerns an Archaean
gold deposit that is being mined by opencut methods. So the grades of closely
spaced blastholes are available in addition to the more widely spaced exploration
drillholes. The third deposit presented is a sedimentary gold deposit with a periodic
variogram in one direction because the gold was deposited by stream action. In
contrast to the other two deposits, this one is only about Im thick and so the study
was carried out in 2D rather than 3D.

5.2 Steps in a case study

The first phase of any geostatistical study is the structural analysis; that is, the study
of the main features of the regionalization. The three main steps in this are firstly,
the preliminary checking of the data and getting a feel for the problem, secondly the
calculation of the experimental variogram and thirdly fitting a mathematical model
to the experimental variogram. As the second and third steps were dealt with in the
previous chapter, we will concentrate on the first one. Box 4 summarizes the three
main steps in a structural analysis and shows how it fits into the broader framework
of a case study.
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5.2.1 Step 1: Collect and check the data

After the data has been collected and put into the computer, it has to be checked
thoroughly to see that it is correct and representative of what is being studied. This
means that any numerical errors in the data or in the coordinates have to be
corrected, and some elementary statistics should be calculated. But more
importantly, the geostatistician has to familiarize himself with the data and the
problem to be solved. Most of the major errors in geostatistical studies occur at this
point because the person doing the study did not understand the background to the
problem correctly, or overlooked some of its essential features. At the outset of the
study, if you have not been involved in the project since its inception, it is important
to find a geologist or an engineer who worked with the sampling program and find
out:

1. what type of sampling procedure (or procedures) was used,

2. what sample volumes were collected, what types of analyses were carried out and
in which laboratories,

3. whether there were any changes in the procedures used during the exploration
campaigns. For example, were different drilling companies used at different
times? Were different types of gamma logging devices used at different times?

4. whether the area is geologically homogeneous, whether it contains major faults,

5. whether there has been preferential sampling of high grade areas.

If any of these factors is missed at the beginning of a study, the work may well have
to be repeated when they are discovered. These basic checks have always been vital
at the outset of any ore reserve calculation, but they are even more important
nowadays because in many countries, people carrying out these tasks are legally
responsible for any errors and omissions in their work. Geostatisticians working in
companies or as independent consultants should think carefully about the
implications of "due diligence” to ensure that their work is in compliance with the
changing legal situation. A brief discussion of this is given in Appendix 2.

5.2.2 The decisions to be made

Initially a series of decisions has to be made which guide the whole of the study.
Firstly the variables and the geographical zones to be studied must be defined. Then
the geostatistician has to decide:

. whether the variables are stationary,

. what their support is,

. whether they are additive,

. whether to work with the variables themselves or their accumulations, and

. whether to carry out the study in 2D or 3D.

W BN -

Stationarity. In Chapter 2 the question of determining whether a regionalized
variable could be considered stationary or not was discussed. So we will not go over
it here.
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BOX No 4 : Steps in a case—study.
Step 1: Collect and check data.

If you were not actively involved from the start of the project, find those who
were and ask them about

* the types of sampling and analyses used and any changes in procedure,
¢ different geological zones, faulting etc,

» preferential sampling, etc.

At the outset a series of major decisions has to be made.

»  Whether to work with grades in 3D or with accumulations in 2D.

* The limits of area to study, the support of the variables and whether they
are stationary,

Basic statistics (means, variances, correlations, histograms and scatter
diagrams) are calculated. Look for

e outliers or abnormal values

* nonhomogeneous data (mixed populations)

Step 2: Calculate experimental variograms.
Step 3: Fit a variogram model.

Step 4: Kriging or simulation

Support. The geostatistical term “support” refers to the size and shape of a volume.
Diamond drillholes and mining blocks have quite different weights and volumes
(kilograms compared to hundreds of tons of ore). So although the mean grades
should be the same, their variances are quite different. Diamond driliholes and
percussion holes could have the same diameter, and yet the statistical characteristics
of the data need not be the same.

Additivity and accumulations. In almost all applications in geostatistics the
variables studied have to be additive. (One of the rare exceptions is when the
objectives of the study are limited to contour mapping). Otherwise, the variables
must be additive; that is, the mean over a certain zone must be the arithmetic mean
of all the values inside it. This point can best be seen from an example.

Suppose we wanted to find the average reef thickness and the gold grade from
two cores, onc with a 2m thick intersection and with a grade of 5 g/t, the other with
a 3m thick intersection with a grade of 10 g/t.Clearly the average thickness is 2.5m,
but the average gold grade is not the arithmetic mean

5 +2 10 _ 75 g/t [5.1]
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Core No | Core No 2
2m 3m
5 g/t 10 g/t
Fig 5.1. Two cores of different lengths

Rather it is the weighted average:

2x5 + 3x10 _

s et 2]
The arithmetic average of gold grades (7.5 g/t) would give an entirely false estimate
of the grade that could be mined from this area. Hence the need to use the product
of the thickness times the grade. This is called the accumulation.

A geostatistician would normally carry out the study on the accumulation and
the thickness, and at the end make the change back to the ordinary variables by
dividing the kriged accumulation by the kriged estimate of the thickness.
Alternatively he might cokrige the accumulations and the thickness and then divide
to get grade estimates. Another point to note is that if the density of the ore varies
from place to place, it would be wiser to use the accumulation products: grade by
thickness by density and thickness by density.

Working in 2D or 3D. Deposits can be split into two broad categories depending
on their geometry and the mining method. The first one consists of relatively thin
deposits such as coal seams or the gold reefs while the second consists of thicker,
more massive deposits which are divided into blocks of constant height for mining.
In the first case, the whole mineralized thickness is extracted so there is no vertical
selectivity. Consequently the study is carried out in 2D using accumulations rather
than grades. In the second case, as the mining blocks have a constant height, the
grades themselves are additive and so the study is carried out in 3D on the grades,
using information from the levels above and below the one of interest. Open cut
mines are a good example of this. In between these two extremes there is a range
of orebodies such as thick seams where vertical selectivity is possible, and
underground mines where stopes have irregular shapes. Here we limit ourselves to
the basic cases. Examples of more complicated ones can be found in journal articles.

5.2.3 Standard statistics

As geostatistics assumes that the data come from a homogeneous population, it is
important to apply a few simple statistical tests before calculating the experimental
variogram. The means, variances and correlations should be calculated. The
histograms of the values should be examined carefully to check for outliers and to
see if there is more than one mode. If there are several peaks the data should be
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rechecked to make sure that they do come from a homogeneous population. After
this they should be plotted graphically to check for non-homogeneous regions or for
locally high or low values. Sometimes abnormal values can be picked up visually
even though they do not show up on the histogram. While these tests are rather
time-consuming, they are nevertheless vital. It is better to spend a little more time
at the beginning than to have to recommence the study.

5.3 Case studies

Three case studies will be discussed; one on iron ore and two on precious metals.
The first concerns an iron ore deposit with about 40 vertical driltholes. The cores
were cut into [5m high sections which were analysed for several quality variables
(silica, alumina, loss on ignition and sometimes manganese content) as well as iron
content. As this book deals with univariate geostatistics, the case-study will focus
on the primary variable, iron content. Those who are interested in multivariate
estimation can consult the book by Wackernagel (1995). This study was carried out
in 3D for two reasons: firstly because it is massive rather than seam—like and
secondly because the deposit will be mined as an openpit using 15 m high benches.

The second study which was carried out by M. Harley as his CFSG project.! It
deals with an Archacan gold deposit that is being mined by opencut methods,
Whereas the first deposit was relatively easy to estimate, the second one was more
complex. Its geometry is more complicated and the distribution of the grades (their
histogram) is quite skew. Another difference between these two studies is that in this
case two sets of data were available: the initial exploration drillholes and the
blastholes. The third study was carried out by M. Thurston as his CFSG project. It
is also on a gold deposit. Unlike the previous studies, this one was done in 2D. As
the gold in the Witwatersrand was laid down by stream action, the variograms in the
directions parallel and perpendicular to the current are different. The latter one
shows periodicity.

5.4 An iron ore deposit

The deposit under study is still at the feasibility stage but will be mined as an openpit
with 15m high benches. The area of interest contains about 40 vertical driltholes;
their layout is shown in Fig. 5.2.a. A total of 485 core sections 15m long were
analysed for several quality parameters such as silica content and alumina content,
as well as their iron ore grade. Here we will consider only the Fe grade.

! The CFSG (Cycle de Formation Specialisee en Geostatistique) is a 9 month
postgraduate course that trains geologists and engineers to be specialists in
mining or petroleum geostatistics.



64  Structural Analysis
4
,,,},,
g : 4
M S -
o + o+
N 0900
+ + +
I+ +
g fee F
s ST
50.0 850 600
8 b

Fig 5.2. (a) Base map showing the layout of drillholes; (b) histogram of 485 Fe
grades from 15m core sections. As is usual for iron ore, the grade histogram 1s
negatively skew with a tail of small values to the left

5.4.1 Vertical variogram

The vertical variograms were calculated down the holes using a lag of 15m for
distances up to 135m. Table 5.1. lists the variogram values and the number of pairs
of points for each distance class. As expected the number of couples decreases with
increasing distance, and secondly the variogram is well structured (Fig 5.3.a).
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Fig 5.3. (a) Vertical variogram and (b) the corresponding variogram cloud. Note the
change of scale on the vertical axis
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Table 5.1. Experimental values of the vertical variogram

Lag | 15m { 30m | 45m | 60m | 75m | 90m | 105m | 120m } 135m
Pairs | 388 | 329 | 284 | 247 | 209 187 169 153 139
Y 275 | 357 [ 382 | 449 | 456 | 497 | 477 | 480 | 5.13

5.4.2 Variogram cloud

Before fitting a model to this, the variogram cloud was calculated (Fig 5.3.b). The
dotted line indicates the sample variance (4.5); the continuous line is just the
classical variogram shown on the left. The (half) squares differences range in value
from virtually zero to 80 (i.e. nearly 20 times the variance). Although the vast
majority of couples occur at distances that are multiples of 15m, a few do not. In
those cases, one of the samples making up the pair was shorter than the standard
15m; in fact, these come from the bottom of a drillhole where it hit bedrock.

5.4.3 Fitting a model to the vertical variogram

Now to fit a model to the vertical variogram. Figure 5.3.a shows that it stabilizes
at a height of about 4.5 at a distance of 65-70m, which gives the total sill and the
range. Extrapolating back to the origin gives a nugget effect of at most 2. This
suggests trying a nugget effect of 2.0 plus either a spherical with a sill of 2.5 and
a range of about 65m or the equivalent exponential. Figure 5.4.a shows that a good
fit is obtained with a nugget effect of 1.8 plus a spherical with a range of 65m and
a sill of 2.7, but that the corresponding exponential fits badly (Fig. 5.4.b).

f Il i ]

0. 20. 40. 60. 80. 0. 20. 40. 60. 80.
a b

Fig 5.4. Two attempts at fitting the vertical variogram; b a nugget effect of 1.8 plus
a spherical with a range of 65m and a sill of 2.7, and a, the equivalent exponential
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This combination of a spherical plus a nugget effect is not the only model that
would fit properly. The nugget effect could be replaced by any structure having the
same sill and a range of less than 15m. To illustrate this, Fig. 5.5. compares a model
consisting of two sphericals with ranges of 10m and 65m and sills of 1.8 and 2.7
respectively with the spherical model earlier. It would, of course, be possible to use
a short range structure plus a nugget effect provided their sills sum to 1.8.

5' ¥ 1 ] i i ¥ T k 5‘ ¥ 1 ¥ i LI 1 i

Fig 5.5.: Two models which both fit the experimental variogram; (a) two sphericals
with ranges of 10m and 65m and sills of 1.8 and 2.7 respectively and (b) a nugget
effect of 1.8 plus a spherical with a range of 65m and a sill of 2.7

5.4.4 Horizontal variograms

The next step is to choose the parameters for calculating the horizontal variograms.
The base map (Fig 5.2.) shows that the spacing between drillholes is approximately
80m. In order not to miss any anisotropies, four variograms were calculated along
the directions, E-W, N-S, NE-SW and NW-SE, with an angular tolerance of 22.5°
so as to give complete coverage. One more parameter, the vertical slicing height,
also has to be chosen. A value of 15m ensures that only horizontal couples are
included. Figure 5.6.a shows that the four directional variograms are isotropic and
can be grouped into a single variogram (Fig 5.6.b). Not surprisingly the latter is
better structured.

5.4.5 3D variogram model

When the variogram model is used in kriging, we will require its vatue for oblique
vectors, that is, for distances with horizontal and vertical components (not just a
horizontal component or a vertical one). Consequently we need a 3D variogram
model not just separate horizontal and vertical ones.
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Fig. 5.6. (a) Four directional variograms in the horizontal plane. As there is no
anisotropy these were averaged (b) and a model was later fitted

As the sills are approximately the same (Fig. 5.7.), a model with geometric
anisotropy can be used. As a nugget effect of 1.8 seems appropriate horizontally as
well as vertically, the vertical model consisting of this nugget effect plus a spherical
with a sill of 2.7 and a range of 65m was used as the starting point. Several attempts
were made to fit this to the horizontal variogram just by varying the anisotropy ratio
but the curvature was not right. However a good fit was obtained by splitting the
spherical into two components with different anisotropy ratios. Figure 5.7. shows
the experimental variograms in the horizontal and vertical directions together with
the fitted model. Table 5.2. shows the parameters of the fitted model, which will be
used in the case study on point and block kriging in Chapter 9.
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Fig. 5.7. Experimental variograms in the horizontal and vertical directions and the
fitted 3D model
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Table 5.2. Parameters of fitted variogram model which is isotropic in the horizontal
direction but not in the vertical

Sill Horizontal Vertical

Range Range
Ist Spherical 1.2 80m 65m
2nd Spherical 15 400m 65m

5.5 Second case-study: an archaean gold deposit (M. Harley)

Archaean gold orebodies are common in many regions: Western Australia, Central
and West Africa, Brazil, Southern India and Guyana. Like most such deposits, this
one is being mined by open pit methods. The orebody strikes almost north—south,
dipping to the east at about 70°, It ranges in thickness from 10m to 60m.

During the exploration campaign, about 170 holes were drilled and samples 1m
long were taken for analysis. As the mining benches are 5 m high, the sample grades
were regularized over this height. Even after regularization, the histogram of gold
grades was quite skew with the maximum value being about 20 times the average.
Difficulties could therefore be expected when interpreting and modelling the
variograms. The experimental variograms calculated in the principal directions
{down hole, down dip and along strike) shown in Fig. 5.9.d, e, f confirm this.

As the mine is now in production, blasthole samples are availableona3m x 5
m grid. Their length is also 5 m. Figure 5.8. shows the histogram of about 7000
blasthole grades. Their coefficient of variation is 1.13. Their variograms were
calculated in the three principal directions. Whereas the drillhole variograms were
highly erratic, these are much better structured (Fig 5.9.a, b, ¢). This is because the
spacing is close enough to reveal the short range structures.

0.3

0.2

0.1

0.0

Fig. 5.8. Histogram of blasthole grades
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Fig. 5.9. Experimental variograms for an Archaean gold deposit: from closely
spaced blastholes (a, b and ¢) and from exploration drillholes {d, e and f)
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Table 5.3. Short and long ranges of the blasthole variogram model in the three main

directions
Direction Down Hole Down Dip Along Strike
Short Range Sm 10m 30m
Long Range 18m 15m 120m

The ranges of the variograms are different in the various directions, so a model
with geometric anisotropy was fitted. It consisted of 10% nugget effect, 40% short
range spherical plus 50% long range spherical. The ranges of these two spherical
structures are listed below for the three main directions.

5.6 Third study: a Witwatersrand gold deposit (M. Thurston)

The data for this study come from a sedimentary gold deposit. They are the gold
accumulations in cmg/t corresponding to 15m x 15m biocks; that is, the original
channel sample data have been averaged for each of the blocks. This reduces the
quantity of data to be handled from several thousand values to several hundred and
also smoothes it out. As is common with precious metal deposits, the distribution
of the values is skew (Fig. 5.10.).

20

10

Fig. 5.10. Histogram of gold accumulations

The experimental variograms of the gold accumulations were then calculated in
four directions, The principal two (parallel to the current and perpendicular to it)
are shown in Fig. 5.11. The NE-SW one has a longer range (about 220m), and so
indicates the direction of greatest continuity for the deposit. The other one has a
shorter range (about 75m) and also dips down at 150 to 160m and at 300 to 320m.
As the gold in this deposit was 1aid down by the action of water, this indicates that
the current flowed NE-SW. This confirms what the mine geologists already knew.

Another interesting feature is the periodicity in the direction NW-SE (the one
with the shorter range). The variogram reaches a maximum at a distance of about
75m, drops to a minimum at 150m, rises again and drops to a second minimum at
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about 300m. This is due to parallel channels in the streams that deposited the gold.
The direction NW-SE cuts across these channels which are parallel and occur
regularly every 150m in this arca. Whereas the geologists knew the flow direction,
they had not realized that the channels were 150m apart on average. So the detailed
variogram study added to their knowledge.

2 2-
14 14
0: NE-SW ] 0_ NW-SE |
0 100 200 300 400 0 100 200 300 400
a b

Fig. 5.11. Directional variograms of the gold accumulations; (a) parallel with the
direction of the current and (b) perpendicular to it

Having said that, the next question is to decide whether to choose a variogram model
that incorporates the periodicity. For kriging, we only use data up to about 100m
from the block to be estimated. So the variogram model only has to fit up to this
distance. A model with geometric anisotropy with a range of 80m in the direction
NW-SE, and arange of 200m NE-SW was appropriate. A spherical model with these
ranges and a nugget effect equal to about 35% of the total sill gave a good fit. So
as far as kriging is concerned, there was no real point in modelling long range
features like the periodicity.

Lastly as the data were approximately three—parameter lognormally distributed,
the experimental variograms of the log were also calculated for comparison with the
raw variograms (Fig. 5.12.). The shapes are generally similar to the raw variograms
but the fluctuations are less accentuated. The variogram of the logs is more stable
numerically, and shows the range and the sill more cClearly.

T ¥ T

0 100 200 300 400

Fig 5.12. Variogram of the logs of the gold accumulations



6 Dispersion as a Function of Block Size

6.1 Summary

This chapter deals with the effect of the support of a regionalized variable (i.e. its
physical shape and volume) on its histogram and its variogram. In an introductory
exercise, the histograms and the basic statistics are calculated for two support sizes:
Im x 1m blocks and 2m x 2m biocks. Although the means of the two distributions
are identical, the variance of the larger support is much smaller and its histogram
isalmost bell shaped whereas the other one is skewed.

The formulas for the variance of a point within a block and of one support v
inside another V are then given. Krige’s additivity relation is proved. Then we see
how the regularized variogram is related to the point support variogram. An exercise
illustrates the effect that regularizing has on the variogram.

6.2 The support of a regionalized variable

In many practical situations a regionalized variable is measured as the average over
a certain volume or surface rather than at a point. The basic volume on which a
regionalized variable is measured is called its support. Changing its support leads
to a new regionalized variable which is related to the preceding one but which has
different structural characteristics. For example the grades measured on 2 inch cores
(i.e. with a 50 mm diameter) have a higher variance than those measured on larger
diameter cores, or on blocks or bulk samples. The problem is to know how one
variable is related to the other. In other words, what can we say about the grade of
blocks knowing the grade of cores? The answer will be given in two stages. First
we consider the dispersion of the values as a function of the support. Then we see
how their variograms are related.
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6.2.1 Dispersion versus block size

To illustrate the effect of support, we consider the data from the introductory
example in Chapter 1. Table 6.1 gives the grades of the 64 adjoining Im x 1m blocks
and also the average yields for the sixteen 2m x 2m blocks obtained by averaging
4 adjacent Im x 1m blocks. These values came from about 1000 millet yield values
studied by Sandjivy (1980). As expected, the means of the data are the same (201)
except for differences due to roundoff. But the variances are not. The variance for
the 2m x 2m blocks is 16,641 which is smaller than that of the lm x 1m blocks
(27,592), If the values were statistically independent the variance for the larger
support would be % of the other one. Because of the correlations it is higher.

Figs. 6.1. and 6.2. show that the shape of the histogram has changed too. The
second one is less skew. The implications of this change are very important in
mining. In selective mining only those blocks with a grade above a cutoff can be
mined profitably. So it is vital to be able to predict the proportion of ore above a
cutoff. As was shown in Chapter 1 when the polygonal method is used for reserve
estimation, the grade of the sample inside the polygon is taken as the estimate for
the whole polygon. This leads to equating the histogram of core grades to that of
blocks, and hence to serious errors in estimating the recoverable reserves because
the histograms are quite different, as can be seen by comparing Figs. 6.1. and 6.2.
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Fig. 6.1. Histogram of the grades of the 64 Im x Tm blocks

10 200 360 400 500 600 700

Fig. 6.2. Histogram of the grades of the 16 2m x 2m blocks



Table 6.1.Grades of (a) the sixty—four 1m x Im blocks and (b) the sixteen
2m x 2m ones

Dispersion as a Function of Block Size
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6.3 Variance of a point within a volume

We now go on to see how to evaluate the variance of blocks given the variogram
of samples. For the sake of generality, the supports will be called v and V. If the data
are 2-D), these would be areas rather than volumes. In our model, the variable under
study is considered as a realization z(x) of a random function Z(x). If all the values
within the volume V were available it would be possible to find the mean over this
volume and also the variance of the values within this volume. The mean is

1
my = VJ z(x) dx [6.1]
v
Similarly the variance of the values within the volume V is given by

s2 (0|V) = % J (z(x) — m\,)2 dx (6.2]

v

Here 0 denotes a point i.e. something with a zero volume. If we let the realization
vary, the variance of z(x) within V can be obtained as the expected value of 52 (0IV)
over all possible realizations:

o’ (0]V) = E [s? (0| V)] [6.3]

It can be shown that this variance is related to the variogram by the formula:
o (0[V) = 35 ” ¥(x - y) dx dy [6.4]

This integral is the average obtained by varying x and y independently throughout
the volume V. It is therefore denoted by y(V, V). This gives

o? (0]V) = ¥(V.V) (6.5]

In practice ¥(V, V) is calculated by discretizing the biock V. Exercise 6.1 at the end
of the chapter shows readers how to program the calculation.

6.4 Variance of v within V

We now consider a new random function defined as the spatial average inside a
volume v:

Zy(x) = & j Z(x + t) dt [6.6]

v
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The aim is to find the dispersion of this new variable Z(x) as it moves over a larger
voiume V. Typically v could represent a core while V could be a block, or v could
be a selective mining unit and V could be the whole deposit.

Fig. 6.3. Small block v centered on point x inside the volume V

The variance of v within V is denoted by 02 (vIV) and is given by:

o> (v|V) = E (—1\7[ (Zy®) — my)? dx

[6.7]
Expanding this gives:
@ (vIV) = 35 ”v(x—y)dxd -3 ”v(x~y)dxdy
vV Vv v v
= Y(VIV) - ¥(v,v) [6.8]

6.5 Krige’s additivity relation

Combining the results [6.5] and [6.8] gives an equation called Krige’s additivity
relation.

o’ (v|V) = ¥ (V,V) -~ ¥ (v,v) = a¥0}V) - ao?(0}v) [6.9]

This can be generalized to any three volumes v, V and V' where: v C V C V':
o’ (v|V) = o’ (v]V) + & (V|V)) [6.10]

For example, v could be a core section, V a block and V' a large panel or the whole
deposit. In that case the formula can be interpreted as “‘the variance of a core section
within the deposit is equal to that of a core within a block plus the variance of a block
within the deposit”. We now check this experimentally for the millet data given
earlier. Here v corresponds to a Im x 1m block while V corresponds to a 2m x 2m
block.



78  Dispersion as a Function of Block Size

From before we have:
02 (v|V‘) = 02 m = 27, 592 [611]
o’ (V!VI) = ¢? w = 1(), 641.1 [612]

The value of o2 (vIV) can be calculated experimentally as the variance of the four
small blocks with each larger one. This gives 10,951. It is easy to verify that this
value equals 27,592 - 16,641 and hence satisfies the additivity relation. In fact this
is true for all cases where the small blocks v exactly fill the next size block up, here
V.

6.6 Exercise: stockpiles to homogenize coal production

Often the grade of the run of mine coal arriving at the entry to a coal wash plant or
a power station fluctuates too much. The probiem is to decide whether it would be
economically worthwhile to blend the coal in stockpiles so as to homogenize its
quality. Linear geostatistics can be used to calculate the variability (the variance)
of the average value of blocks of certain sizes. This assumes perfect mixing.

Suppose that the ash content of coal has a spherical variogram with a range of
300m and a sill of 5.0. Each day the company mines a block 60m x 100m (denoted
by v); each week six adjoining blocks are extracted by strip mining. The width of
the strip is determined by the length of the boom on the dragline and is 60m. So V
is 60m x 600m. Evaluate y(v, v) and y(V, V), and hence work out the variability of
one day’s production in that of a 6 day working week.

6.6.1 Solution

The first step is to calculate y(v, v) and Y(V, V). There are two ways of doing this,
either by writing a small computer program or by reading the appropriate values
from standardized charts. Exercises 6.1 and 6.2 indicate how to apply these
methods. The results are

Yvw)=105 and Y(V,V)= 3.40 [6.13]

Now it is easy to calculate the dispersion variance a2 (viv).
a? (ViV) = Y(V,V) - y(v,v) = 2.35 [6.14]

The corresponding standard deviation (the square root) is 1.53. Using m * 20 as an
approximate confidence interval, the daily averages will usually be within about 3
units (i.e. 2 x 1.53) of the weekly average. A more precise answer could be obtained
by conditionally simulating the deposit and carrying out a mining scenario on the
numerical model. See for example, Chica—Olmo and Laille (1984) and Deraisme
and de Fouquet (1984). But this is outside the scope of this book.
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6.7 Change of support: regularization

Let Z(x) denote a random function defined on a point support. Its average over a
volume V defines a new random function Z.(x) with support V. It can be shown that
the variogram of this new regularized variable is:

yv(h) = (V. V) - ¥(V,V) [6.15)

where Vy, denotes the support V moved through h (translated by the vector h), and
Y(V,Vy) represents the average value of the variogram between an arbitrary point
in Vyand another in V.

A\ Vh
Fig. 6.4. Volume V translated through a vector h to volume Vy,

When the distance h is small compared to the size of V, the distances from an
arbitrary point in V to an arbitrary point in Vy, can vary considerably. For example,
if V is a rectangle of length /, then the horizontal distances go fromh-/toh + /.
However when the distance h is large compared to the size of V, the distances are
very close to h. Consequently the mean variogram value Y(V,Vy) is approximately
equal to y(h). So we obtain the relation:

yv(h) = y(h) - ¥(V,V) [6.16]
coy |Point Sill . ‘
R c26d i T(V,V)
Cy(0)| Regularized Sill - [P B

Fig. 6.5. Point support variogram and the regularized variogram

6.8 Exercise: calculating regularized variograms

The data available for reserve calculations do not always all have the same support
size. For example, some drillholes may be 8” in diameter whereas others are 2” in
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diameter. It is then important to be able to calculate the variograms corresponding
to the two supports. As an exercise, we calculate the variogram models for 2m x Zm
and 3m x 3m blocks given that Y(V,V) = 11,150 for 2m x 2m blocks and y(V,V) =
13,900 for 3m x 3m blocks.

6.8.1 Solution

For 2m x 2m blocks

Yr (h) = v, (h) - 11,150 [6.17)

For 3m x 3m plots

Yr (h) = Y14 (h) - 13,900 [6.18]

Consequently the theoretical sills of the regularized variograms are 16,450 and
13,700 respectively. Fig. 6.6. shows the three experimental variograms. Their sills
are in close agreement with those calculated theoretically.

1m x 1m blocks

27,600 |~- " Tm T T m T A

2m x 2m blocks

16,450 |- Tl
13,700 ="~ " T 2A

3m x 3m blocks

Fig. 6.6. Experimental variograms for all three support sizes
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6.9 Exercises

To do these exercises, one has to be able to calculate the values of Y(V,V). There are
two ways of doing this: by writing a small computer program to discretize V or by
using standardized tables such as those given by Journel and Huijbregts (1978)
pp125-147. The first exercise outlines a suitable computing procedure while the
second one shows how to use the tables.

Ex 6.1 Calculating y(V,V) by discretizing the block. This exercise outlines a
procedure for calculating the average variogram value by discretizing the block V.
First the number of grid nodes along each axis has to be chosen because this
determines the coordinates of discretized points.
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The procedure consists of a double do—loop which takes every pair of points in turn,
calculates the vector distance between them, evaluates the corresponding
variogram value and sums these. At the end the total is divided by the square of the
number of discretized grid nodes to obtain the average variogram value.

The choice of the number of grid nodes is critical. Too few nodes and the average
will not be accurate; too many nodes and the computing time explodes. For
example, if a square is discretized into 100 x 100 points; there are 10? points and
108 variogram terms to calculate. Typically using between 25 and 100 points
suffices in 2D, and up to 200-300 in 3D.

Write a computer routine to calculate Y(V,V) and y{v,v) where V is a 100m x 100m
block and v is a 10m x 10m block and where the variogram is

{a) a spherical with a range of 100m and a sill of 3.0,

(b) an exponential with a practical range of 50m and a sill of 3.0,

(c) a pure nugget effect with a sill of 3.0.

Start the calculations using ~a 2x2 discretization and work up to 10x10 noting the
stabilization in the value of y(V,V) and the increase in the computer time.,

Ex 6.2 Calculating Y(V,V) by using the tables. This exercise is designed to
illustrate the use of standardized tables that can be found in texts like Journel and
Huijbregts (1978). Charts 4 and 5 (p128-9) give the standardized values of Y(V,V)
for the spherical with unit range and unit sill, for 2D and 3D blocks respectively.
Similarty for Charts 14 and 15 (p138-9) for the exponential. The key to using these
Charts is to convert the block size into multiples of the range (or the scale parameter
“a” for the exponential) and then read the values off the table.
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For example, if the block is 100m x 100m and the variogram is a spherical with a
range of 200m and a sill of 3.0, then the block is equivalent to 0.5 x 0.5 ranges. The
chart gives a value of 0.375. Multiplying by the sill gives

Y(V.V)=3.0x0.375 = 1.125

Use the charts to calculate Y(V,V) and ¥(v,v) where V is a 100m x 100m block and
vis a 10m x 10m block and where the variogram is

() a spherical with a range of 100m and a sill of 3.0,

(b) an exponential with a practical range of 50m and a sill of 3.0,

(c) a pure nugget effect with a sill of 3.0. (Hint : range = 0).

Compare your results with those obtained in the previous exercise.

Ex 6.3 Calculating Y(V,V) theoretically. In some very simple cases Y(V,V) can be

calculated by integration, using equation [6.4]. Let V be a core section of length d

(in 1D).

(a) If the variogram is linear with slope C, show that y(d.d) = C d/3.
Remember that y(h) = Clhl.

(b) Calculate Y(d,d) for the case where the variogram is an exponential with a sill
of C and a practical range of 3.

(¢) Calculate Y(d,d) for the case where the variogram is a pure nugget effect with
asill of C.

Ex 6.4 Dispersion variance. Use the values of Y(V,V) and Y(v,v) found above to
calculate the dispersion variance of 10m x 10m blocks inside a zone of size 100m
X 100m for the cases where the variogram is

{a) a spherical with a range of 100m and a sill of 3.0,

(b) an exponential with a practical range of S0m and a sill of 3.0,

(c) a pure nugget effect with a sill of 3.0. (Hint : range = 0).

Ex 6.5 Dispersion variance. A small mining company extracts 4 blocks of size
10m x 10m x 5m from its open pit each day. The mine manager can choose to take
adjoining blocks (i.e. 40m x 10m x 5m) or blocks from four different parts of the
mine which are far enough apart to be considered independent. The problem is to
predict the daily variance of the mean grades for the two methods. The material
being mined has a spherical variogram with a range of 100m and a sill of 3.0.

Ex 6.6 Regularized variograms. The copper grade for Sm long core sections has
a spherical variogram with a vertical range of 50m, a sill of 0.1 and a nugget effect
0f 0.05. As the bench height during mining will be 15m, the data will be regularized
over this height. We want to calculate the vertical variogram for this new variabie.
Firstly calculate y(d,d) where d is a 15m core section, then sketch the variograms
for 5Sm and 15m core sections on the same graph.



7 The Theory of Kriging

7.1 Summary

This chapter presents the theory of kriging. Kriging is an estimation method that
gives the best unbiased linear estimates of point values or of block averages. Here
“best” means minimum variance. Three types of kriging estimators are discussed:
ordinary kriging (OK) used when the mean is unknown, kriging the unknown mean
value and simple kriging (SK) used when the mean is known.

The equations for these three estimators are derived for the stationary case, and
are extended to the case of intrinsic variables for ordinary kriging. The additivity
theorem which gives the links between the OK and SK estimators is proved. For
ordinary kriging, the formula for the slope of the linear regression of the true grade
on its estimate is given, and its importance in relation to conditional unbiasedness
is discussed. Lastly, kriging is shown to be an exact interpolator.

7.2 The purpose of kriging

Sampling provides accurate information at data points. However this does not tell

us what is happening in between them. We need an accurate way to estimate the

values at intermediate points or the averages over blocks. The accuracy of the
estimates depends on several factors:

1. the number of samples and the quality of the data at each point.

2. the positions of the samples within the deposit. Evenly spaced samples achieve
better coverage and thus give more information about the deposit than clustered
samples do.

3. the distance between the samples and the point or block to be estimated. It is
natural to rely more heavily on neighbouring samples, rather than on more distant
ones. Similarly we expect the accuracy to be best in the vicinity of the samples
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and to deteriorate further away. The dangers of extrapolating outside the zone
sampled need not be spelled out here.

4. the spatial continuity of the variable under consideration. It is easier (o estimate
the value of a fairly regular variable than one which fluctuates wildly. For
example, for a given sample layout, the estimates of the copper grade are more
precise than those of gold.

“Kriging” is an estimation method which takes account of all these factors. It was
named after Dr D.G. Krige, a South African mining engineer, who first developed
a moving average technique for estimating gold grades to remove the regression
effect. Prof. G. Matheron improved on this and the new method was called kriging.
In essence, it is a way of finding the best linear unbiased estimator (in the sense of
least variance). That is, we choose the weighted average of the sample values which
has the minimum variance.

7.3 Deriving the kriging equations

The probiem is as follows: we have N data values z(x;), ... Z(xn) at our disposal and
we want to estimate a linear function of the variable Z(x). For example we might
want to estimate its value at a particular point, Z{xo), or its average over a certain
region. (Some other linear functionals such as the gradient can also be estimated by
kriging.) To avoid having to write out all the cases separately, we denote the quaniity
to be estimated by:

zy =3 I 2(x) dx [7.1]
A\

The volume V could be the whole deposit, or a mining block, or it could be as small
as a single point in the case of point estimation. It could even be an irregular shape.
See Box 5 for more information on kriging irregular shapes. To estimate Z(V), we
consider a weighted average of the data:

zyv = 2 ha(x)

where ); are the weighting factors. By convention the star will be used to denote the
estimated value as opposed to the real but unknown value. The problem is to choose
the weighting factors in the best way. This is where we make use of the geostatistical
model. We consider the regionalized variable:

Z, = > MNZx)

[7.2]

{7.3]

‘The weights are chosen so that the estimator is:
1. unbiased: E[Zy — Zy] = 0
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2. minimum variance: Var{Z |, — Z,] is a minimum.

This variance will be called the kriging variance.

7.4 Different kriging estimators

In the first instance we assume that the regionalized variable Z(x) is stationary and
that its mean, m, is unknown. Kriging with an unknown mean is called ordinary
kriging, which is abbreviated to OK. We first derive the system of equations for
ordinary kriging for the stationary case in terms of the variogram and then the
covariance, before indicating how to extend these results to the intrinsic case.

BOX No 5§ : Can irregular blocks be kriged?

Some people think that only regular blocks can be kriged. But this is completely
incorrect. The kriging equations are quite general. The target ”V” could be as
small as a point or as large as the whole deposit. Most often it is a regularly
shaped block, but it could be an irregular shape such as an area marked out for
blasting.

Block to be
estimated

The only problems arise when discretizing V in order to calculate ¥(V,V) and
¥(x,V). With a regular shape it is easy to choose a grid size that guarantees a
reasonable number of discretized points inside the zone to be estimated. This
is more difficult with irregular shapes. As can be seen from the two figures
below, a slight change in the grid spacing dramatically changes the number of
nodes inside the zone.
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The next step is to see how 10 estimate the unknown mean m. After that we will
see what happens to the kriging estimator if the mean, m, is known. This is called
simple kriging and is abbreviated to SK. In all these cases a set of linear equations
called the kriging system has to be solved to obtain the kriging weights and the
kriging variance.

7.5 Ordinary kriging

Unbiasedness. The variable Z(x) is assumed to be stationary with mean m. Its mean
at every point is equal to m and so is the mean of any block. That is,

E[Z(x)] = m = E[Z/] [7.4)

Most estimators are weighted moving averages of the surrounding data values; that
is, they are linear combinations of the data:

Zy = > hZx) (7.5]
The mean of the estimation error [Z y — Z,] is just

E[Shze) = 2] = D hm - m = m[ Y, - 1] (7.6]
In order to be unbiased, the expected error must be zero, so either m = 0 or the kriging

weights must add up to 1. In the first case the mean is known. (This leads to simple
kriging). If m is unknown then the weights must sum to 1.2

Minimum variance. The variance of the error [Z y — Z,] can be expressed in
terms of either the covariance or the variogram:

ol = ZZ AhClxy,x ;) + C(V,V) -2 Z AC(x;,V)
DR IR B IR CIEDES (AT (7.7]

where y(x;, V) is the average of the variogram between x; and the volume V, i.¢.

TELY) =g fv(xi - x) d

2 The idea that the kriging weights must sum to 1 rather than 0 sometimes
causes confusion. The sum of all the weights is still zero because there is the
weight of —1 in front of Z(V) in the expression for the estimation error.
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As was seen in Chapter 6, Y(V,V) is the average of the variogram between any two
points x and x’ sweeping independently throughout the volume V.

x Vv
® WV, V) = < : ‘Y dx dx’
% Y(V; )—"\75 Y(X—X)

@

In the same way C(x;,V) and C(V,V) are the averages for the covariance. In order
to minimize the estimation variance under the constraint that the sum of the kriging
weights must be equal to 1, we introduce a Lagrange multiplier i into the expression
to be minimized. Since the sum of the weights must be 1.0, adding the term in u does
not change the value of the expression.

¢ = Va(Z, -Z\) -2 (Z A= 1) (7.8]

The partial derivatives of the quantity are then set to zero. This leads to a set of N+1
linear equations called the kriging system. Box 6 shows the details of the
differentiation step. When written in terms of the variogram model the kriging
system is:

I
ijv(xnxj)+u =7 (x;,V) i=1 2,..N
i1 (7.9

N
D, = 1

The minimum of the variance which is called the kriging variance, is given by:

ok = DM TELV)-F(V,V) + [7.10]

Clearly the equations could also have been obtained in terms of the covariance by
minimizing the first form of [7.7]. The kriging system is then:

DA, Cxx) +w =C(x,V) i=12.N
j=1

2h = 1

{7.11]
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BOX No 6 : Deriving the ordinary kriging equations
The esssential step in deriving the kriging equations is minimizing the
expression for the estimation variance:
¢ =2> & V(% V) =D DA & v(x,x) - TV, V) + 2u(1 = > &)
This is done by differentiating with respect to each of the unknowns and setting
the partial derivatives to zero. Here we show this in detail for the case where
there are 3 samples. The procedure is the same in the general case where there
are N samples. If we let y; = v(x;, x))and v,y = ¥(x,, V). then
=20V y+2 T,y + 207, - ( MY+ Ay + A Yy

+ 20 M Yan + 20 Ay 4 2y ) - TV, V)

+ 2“(1_)\1—12_13)
Differentiating with respect to A, gives
9 _
a,

Hence

271\/“{2}‘-1 Yii+t2h Y2+ 20 v+ 20 = 0

MYu+hy+thys+pr =7,

Similariy differentiating with respect to A, and A, gives:
MY+ hYa+hy,+tr =7,
Mys+hys+thynte =T,

Lastly differentiating with respect to p gives
M+A+A =1

Consequently the kriging system is:

It

3
DAY xox) +p =7 x,V) i=1273
j=1

in the general case, one would have to differentiate with respect to each of the
N unknown weights, and the sums in the kriging system would go from 1 to N
rather than from 1 to 3. Otherwise the principles are just the same.
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The two Lagrange multipliers are related by W' = — p. The corresponding
kriging variance is given by:

o = TV,V) = - >4, Tk, V)

{7.12]
To solve the system, it is convenient to write it in matrix form: AX = B.
Yu V2 Yw 1 4 7, V)
Yn Va2 Yw 1 Ay 7 (x, V)
- [7.13]
Ymi Ym2 Yww 1 An y (XN, 4]
1 i 1 0 ®" 1

If vy is an admissible model and if there are no multiple points, the matrix A is always
non singular. Its inverse A ! exists. So a solution exists and it can be proved that
itis unique. The unigueness is important because it is used later to link the different
types of kriging. The kriging variance can be written:

ol = X"B - §(V,V) (X" = X transposed) {7.14]

Beware the matrix A itself is not positive definite.

7.6 The OK equations for intrinsic regionalized variables

In the preceding section the OK equations were derived for the case of a stationary
regionalized variable. What happens if the regionalized variable Z(x) is intrinsic but
not stationary? In the definition of intrinsic variables we saw that the underlying
idea was to work only with increments rather than with the variable itself. In
particular, two hypotheses were made:

E[Z(x + h)y - Z®x)] = 0 [7.15]
Var[Z(x + h) - Z(x)] = 2y(h) (7.16]

where y(h) depends on h but not on x. So under this hypothesis the estimation error
[Zv —~ Z,] is an increment provided that the sum of weights is 1.0, and
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consequently its expectation and variance exist and can be calculated. From this
point on, the procedure is the same. The variance of the estimation error is
calculated and is minimized. This leads to the same OK system in terms of the
variogram as before. This is one of the reasons why we use the intrinsic hypothesis
rather than just stationarity.

7.7 Exercise: Ordinary kriging of a block

.ZZ

* 73 VA /5

LA 4
Fig. 7.1. Data configuration with the block to be ¢stimated

The shaded block (200m x 200m) is 1o be kriged using 5 sampies on a regular 200m
grid. Suppose that the regionalized variable is stationary with an isotropic spherical
variogram with a sill of 2.0 and a range of 250m. To make it possible to do the
calculations with a pocket caiculator, the values of Y(V,V) and Y(V,x) are given.

¥(x,, V) = 088 ¥(x,,V) =18 F(V,V) =113 [7.17]
7.7.1 Solution

The first step is to write down the kriging system, As there are 5 samples, it is 6 x
6 system.

Yu Y2 Yis Yu Yis 1 Ay Yy (Voxy)
Yn Y Ys Yu Y 1 A, Yy (Vixy)
Y Y2 Yn Yu Y 1 Ay oy Vixs)
[7.18]
Ya Yo Y Yu Y 1 Ag Yy (Vixy)
Ysi Ys2 Vs3 Vsa Vs 1 As y (V,x5)
1 1 1 1 1 0 u 1
- R I SRS R N —d
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The terms in the matrix are found by calculating the distances between the points
and then evaluating the corresponding variogram values. For example, for y(x2, X3),
the distance between the points is 200V2. As this is greater than the range, the value
equals the sill. The resulting system is:

0 189 189 189 189 1 A 0.88
18 0 2 2 2 1 A, 1.86
i89 2 0 2 2 1 A, || 186
[7.19]
18 2 2 0 2 1 A 1.86
189 2 2 2 0 1 As 1.86
1 1 1 1 1 0 i 1
This can easily be solved to give:
A1 =0.60
M=k=k=ks=0.10 [7.20]
u=0.12
So the estimate of the average value over the square is:
Z*=060Z;+0.10 Zy+Z3+ 24+ 7Zs) [7.21}
The estimation variance is given by:
0k = > AT(V,x) + p-¥(V,V) = 026 [7.22]

The only tricky point when setting up kriging matrices comes from the nugget
effect. In the case above, if there had been a nugget effect of 1.5 in addition to the
spherical structure, all the nondiagonal terms would be increased by 1.5 but the
diagonal terms remain 0. Conversely when the system is written in terms of
covariances, the diagonal terms equal the total sill including the nugget component
but this is absent from nondiagonal terms.
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7.8 Kriging the value of the mean

In ordinary kriging the objective was to estimate a linear function of the
regionalized variable such as the grade at a point or the average grade over a block.
Here the objective is to estimate the value of the unknown mean m. If we use the
index m to distinguish the weights in this estimator from those in the previous one,
then the estimator can be written as

N
m' = A mi Z(X i)
; {7.23]

As before this estimator must be unbiased and minimum variance. In order {0 be
unbiased the estimation error must have an expected value of 0. That is,

E [m' - m] =E[§N:kmi Z(x;)-m] =0

As the mean of Z(x) is m, this implies that

Dk =1

[7.24]
The variance of the estimation error is
N
Var [m’ — m] = Var Z A Z(x,)—m
i=1
= > > hmihay Cxiuxy) {7.25)
N

As in ordinary kriging, this variance is minimzed subject to the constraint on the
weights by using a Lagrange multiplier. The kriging equations are therefore

Z)‘mjc(xnxj)zﬂm i=1,2,..N
i

> Ao =1

[7.26]

The corresponding kriging variance can be calculated. Interestingly, this gives a
meaning for the Lagrange multiplier in this case.

2 = * =
Ok = Var (m ) = Bm [727]
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7.9 Simple kriging

We are now going to derive the kriging system when the mean m of the regionalized
variable is known. Firstly we consider a regionalized variable Y(x) with zero mean.
Clearly the initial regionalized variable is obtained from this as Z(x) = Y(x) + m.
Our estimator of Y(x) is going to be

N
Yy = > A Y(x) (7.28]
in1

We use primes to distinguish the simple kriging weights from the ones for ordinary
kriging and from those for kriging the mean. As before this estimator must be
unbiased and minimum variance. In order to be unbiased the estimation error must
have an expected value of 0. That is,

N
E[Yy-Yy] = E {Z AOY(x) - Yv] =0 [7.29]
i=1

As the mean of Y(x) is 0, this estimator is automatically unbiased. So there is no
condition on the sum of the weights. The variance of the estimation error is

Var [Yy - Yy] = E[> A/ Y(x;) = Yy]?

= ZZ AN Cx,x;) + C(V,V) - 221; C(x;, V) 7.30]

i

As there is no condition on the sum of the weights, there is no need for a Lagrange
multiplier. Consequently the kriging system is just

[7.31]

>y Ckxx) = Cx,V) i=12 ..N
j=1

The corresponding kriging variance, is given by:

0%, = C(V,V) - Zki' C(x,, V) [7.32}

Solving the kriging system [7.32] gives the kriging weights and hence the estimator
of Yv. The estimator of Zy can be deduced from this by replacing Y(x) by Z(x) — m.
This gives

Zy =Yy +m = ZX’i[Z(xi)—m]+m
= ShZ(x) + m [1 - Zx;] = SA Z(x ) + m Ay (7.33]
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The term 3, is called the weight of the mean in simple kriging.

Simple kriging is rarely used in day to day practical applications because the
mean is rarely known. It is sometimes used in large mines such as in South Africa
where the mean of each area is known because the region has been mined for many
years. It is also used when kriging transformed data (e.g. after a gaussian
anamorphosis) when the mean has been set by the transformation o a known value,
usually zero; for example, in disjunctive kriging. But one of the most important
reasons for studying simple kriging is that the weight of the mean provides one of
the best criteria for testing the quality of a kriging. More information on these
quality criteria will be given in Chapter 8.

Looking at the estimator {7.33] it is clear that the form of the estimator has
changed. Compared to ordinary kriging and kriging the mean, it is no longer just a
linear combination of the data. A constant term has been added. This is important
when kriging is considered in terms of projections (Journel, 1977).

7.10 The additivity theorem

In the preceding sections we saw how to estimate variables when the mean was
known (simple kriging) and when it was unknown (ordinary kriging). We also saw
how to estimate the value of the mean in the second case. It is interesting to see how
these three estimators are linked. It turns out that substituting the kriged estimator
for the mean m into the expression for the SK estimator gives the OK estimator. The
proof is given in Box 7. As part of the proof two interesting results appear. These
are

Av by = 1 [7.34]

0bx = 0% + (Ay)? Var (m’) [7.35]

The first of these provides an interpretation of the Lagrange multiplier for OK in
terms of the weight of the mean in SK and the Lagrange multiplier for kriging the
mean. The second equation shows that the ordinary kriging variance can be split into
two parts: the first is the simple kriging variance when the mean is known, the
second is the variance of the estimator of the mean multiplied by the square of the
weighting factor of the mean in simple kriging. The second term gives a measure
of the loss of accuracy caused by not knowing the true mean,
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BOX No 7 : Proof of the additivity theorem

Starting out from the SK estimator

Zy = DA Z(x) + mhy

we replace m by its kriged estimator m*. If ), denotes the weight of the mean
in simple kriging

Zy = D 20) M+ Mdhail [7.36]
At first this does not look like the OK estimator. But as the OK estimator is
unique, if this satisfies the OK equations, it must just be another expression for

it. We now show that [7.36] does satisfy these equations. Firstly we check that
the sum of the weights is 1.0. Summing these gives

D+ Audad = DA Hhy =1 (7371
since z}‘mi = 1. Now we show that the equations [7.11]
Z A C(xpx) = C(x;, V) — @' j =1, 2,.N (7.38]
are also satisfied. After substituting L, + Ay A, in place of A, the first
term becomes:
DA + Ay hpy) Cxix;)

= DN CELX) + D Ay kg C(x;,x;) [7.39]

From the SK system, the first term is —C-(X,-,V). Similarly from the kriging
system for the mean [7.26] the other term is A, u . Consequently

SUIA + A wha ] Clxyx)

i=1

i

C(xjiv ) + }"M o [740]

]

Sobysetting Ay Ry = — ' 1, itis clear that these weighting factors
do satisfy the equations. So expression [7.36] satisfies all the OK equations.
Lastly by substituting A, = A + A A, into the expression for the kriging
variance, a new expression is obtained for the OK kriging variance:

Ok = Og + (hy)’ Var (m’) [7.41]
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7.11 Slope of the linear regression

In the introductory exercise at the beginning of the book, the true biock grades were
plotted against the estimated grades for several estimation methods including the
polygonal method and kriging. For a perfect estimator, Z, would always equal Z.,,
but this is not possible in practice, The next best situation would be to have
estimators that are conditionally unbiased; that is,

E(Zy | ZV] = Z (7.42)

This means that the regression of Z,, on Z,, must be linear with a slope of 1.0

True = Estimated

True True
Gradg Gradd
1
Estimated Grade o Estimated Grade
a b

Fig. 7.2. Regressions of the true grades against the estimated ones, (a) conditionally
unbiased and (b) conditionally biased

It 1s important to note that although kriging is by definition globally unbiased since
E[Zy — Zy] = 0,itis not necessarily conditionally unbiased. In this section we
will see that assuming that the regression is linear, simple kriging is always
conditionally unbiased but ordinary kriging is not.

The slope of the linear regression of Z,, on Z\, will be calculated for the OK
estimator. In practical cases the distributions of Z,, and Z,, are rarely known; so the
true shape of the curve E[Z|Z, ] considered as a function of Z;, is unknown. The
linear regression slope can nevertheless be used to see how far the OK estimator is
from conditional unbiasedness. It is wellknown that the slope, p, of the linear
regression is given by

p = Cov |Z,, Zy] / Var [Z] {7.43]
For simple kriging,
zZy = Z)"'i Z(x;) + m[1 - Z)"'i] {7.44]

and consequently
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Cov [Zy, Zi] = D ;T (x,,V)
Var [Zi] = > DN N, CxLx,) [7.45]

From the SK equations, these two terms are equal. Consequently the slope is 1.0.3
Similarly for ordinary kriging

Cov[Zy, ZVv] = > 4 T(x;,V)

Var [ Zy ] = D> D Ay Ay Clx;,x;) [7.46]
But as ) M T V) = D D A Cxix) + 1
Cov |Z,, Zy] + p = Var [Z,] [7.47]

and hence the slope p of the linear regression of Z,, on Zy is given by
Cov|{Zy, Zy }
(Cov [Zy, ZV ] — u) [7.48]

p:

Here the value of the Lagrange parameter has been calculated from the kriging
system written in terms of covariances. The sign reverses if the variogram form of
the equations is used. In general the slope is less than 1.0. This result concerning the
slope of the linear regression of the true grade on the estimate will be used to guide
us in the next chapter in choosing how large a kriging neighbourhood to use.

7.12 Kriging is an exact interpolator

When some estimation methods (e.g. trend surfaces) are used 10 ¢stimate the value
of a regionalized variable at a data point, the resulting estimate is not necessarily
equal to the sample value. Methods which always return the sample value as the
estimate at sample points are said to be exact estimators. The simplest way to show
that kriging is an exact interpolator is via an example.

Continuing the OK example in which 5 data points were used to krige a 200m
x 200m block, suppose we now want to estimate the value at one of the sample points
(say the central one) from the available data including that point. It is easy to see
that the matrix on the left hand side is exactly the same as before. Only the vector
on the right hand side changes. The new system is

3 This also shows that the kriging error Zy* — Zy is orthogonal 10 the estimator
Zv*. This result is needed later in order to condition simulations. Secondly it is
important when kriging is considered in terms of projections.
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r— cmereey prias.  amomay promeecon oy
0 189 189 189 189 1 Ay 0
189 o0 2 2 2 1 A, 1.89
189 2 0 2 2 1 Ay j-] 189
[7.49]
1.9 2 2 0 2 1 Ay 1.89
189 2 2 2 0 1 As 1.89
1 1 1 1 1 0 i 1
This can easily be solved to give:
M=10
M=h=kh=Ais=0 {7.50}
u=0

The corresponding kriging variance is zero. This result should not be surprising. It
is intuitively clear that the estimate that minimizes the estimation variance is just
the sample value itself. This property relies on the fact that the terms in the first row
and column are equal to the corresponding terms in the right hand vector.

If a constant (e.g. a nugget effect representing measurement error) had been
added to all the variogram terms in the matrix and in the vector, it could be filtered
out of them all by using the row of 1s in the last row of the matrix.

Sometimes people confuse this property of the kriging estimator with the
variogram crossvalidation procedure. Please note that in the case considered here
the point to be estimated is included in the data set, whereas when kriging is used
to crossvalidate the variogram model, the data point of interest is dropped out of the
data set while its value is re—estimated. The crossvalidation technique is discussed
in more detail in the next chapter.

7.13 Geometric exercise showing the minimization procedure

The aim of this exercise iS to provide a geometric illustration of the relationship
between ordinary and simple kriging. To keep things simple, we assume that only
two samples are available in order to krige the grade of a block V. The reason for
taking only two samples is that it is easy to plot functions of two unknowns. For
simplicity, the regionalized variable representing the grade is considered to be
stationary and its covariance C(h) has a unit sill.
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7.13.1 Quadratic form to be minimized

The weights for any type of kriging are obtained by minimizing the estimation
variance under the appropriate conditions. As estimation variances are quadratic
functions of the weights, they are called guadratic forms. The general estimation
variance that has to be minimized when there are two samples, is

0o = M C@A,1) + M C(2,2) + 2, A, C(1,2) + ﬁ(V, V)

-2, €1, V) ~ 24, C(2,V) [7.51]
where C(1,1) = C(2,2) = 1. This can be written as
Ofsr = —a)Y + (A - b)Y +2c(h, —a)(A, - b)+ d [7.52]

where
_ %, v) - (1,2 T2, V) [7.53
1 - C(1,2)
_ CT,v) - €(1,2) T, V)
b = 1 — C(,2) 734
c = C(1,2) [7.53]

and where d is a suitably chosen value. Fig. 7.3. shows two ways of visualizing the
estimation variance as a function of the weights. The 3D graphic shows that it is a
basin shaped surface. From the equation, the minimum obviously occurs when the
weights take the values a and b respectively, and then its value is d. Readers can
solve the SK systems to check that a and b are just the SK weights and that d is the
SK variance. The iso—variance contour lines (on the left) are a projection of the
“basin”.

Fig. 7.3. On the right, a 3D representation of the estimation variance as a function
of the weights; on the left, the corresponding isovariance contour lines
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Fig. 7.3. On the right, a 3D representation of the estimation variance as a function
of the weights; on the left, the corresponding isovariance contour lines

&
A

O,1)

A

(1,0)

Fig. 7.4. Line representing the OK constraint A, + A, = 1 has been superimposed
on the isovariance contour lines. The coordinates of the point where it tangents one
of the ellipses are the OK weights.

Having visualized the minimization for simple kriging we now go on to ordinary
kriging. Because of the unbiasedness condition the weights must now sum to 1, i.e.
A + A, = 1.Fig.7.4.showstheline A, = 1 — A, joining the points (0,1) and (1,0)
which represents this constraint. The minimum occurs at the point where this line
tangents one of the eHipses. The corresponding values of the weights are just the OK
weights, and the height at that point is the OK variance. As this is not usually the
bottom of the basin, the height at that point is higher than the bottom. In other words,
the OK variance is equal to or greater than the SK variance. This can also be seen
via the equation. Substituting A = 1 - Aj into the quadratic form gives

22 (1 —-¢c)-2n(@a-b+1-¢)+d-2 [7.56)
This can be rewritten as
2
— a->b
¢ =2(1 ~ C)[M - ( sa-og t 0.5)] + K 757)

From this, it is clear that the minimum estimation variance occurS when the first
weight is:

A= ( -2-%%"—6 + 0.5) (7.58]

Readers can check that this is just the first OK weight written in another form.
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7.14 Exercises

Ex 7.1 Pure nugget effect. Suppose that we have samples at two points (1,0) and
(2,0) and want to estimate the value of the regionalized variable at an arbitrary point
(x,y). The variogram is a pure nugget effect with a sill of 1.0. Calculate the ordinary
kriging weights and the kriging variance. Deduce what the weights would be if there
were N samples.

The weights would all be equal. So the kriged estimate would just be the arithmetic
average of the sample values. Kriging cannot provide any more detail because even
adjacent points are uncorrelated. The data are only used to estimate the overall mean
of the regionalized variable.

What would happen in this case if the value of the mean was known and simple
kriging was used?

Ex 7.2 Spherical variogram. As before we have two samples at the points (1,0)
and (2,0) and we want to estimate the value at an arbitrary point (x,y). But this time
the variogram is a spherical with a sill of 2.0 and a range of 0.75. Show that the
ordinary kriging weights are given by

Yo~ Yo 0 9, = % + Y10~ Y20 [7.59]

Y1 2yy,

where Y20 and vy denote the variogram values between one of the sample points
and the target point and v denotes the variogram value between the sample points.

Al=%+

Draw a circle of radius 0.75 (i.c. the range) around each sample point. Outside that
zone there is no further correlation between the target and the samples, and both
weights are equal to 0.5. The results are the same as for a pure nugget effect. All that
can be estimated is the overall mean.

Ex 7.3 Exponential variogram. As before there are two samples at the points (1,0)
and (2,0) and we want to estimate the value at an arbitrary point (x.y). This time the
variogram is an exponential with a sill of 2.0 and a scale parameter of 1. Calculate
the ordinary kriging weights and the kriging variance. Repeat the calculation for the
case where the sill equals 4, keeping the scale parameter the same. Although
doubling the sill doubles the kriging variance, the kriging weights remain the same.

Ex 7.4 Linear variogram — Markovian lack of memory. As before there are two
samples at the points (1,0) and (2,0) but the variogram is a lincar with an arbitrary
slope. The objective is to estimate the value of the regionalized variable at a point
(x,0) lying along the x axis. Show that if the target point is to the left of the first point,

(1,0), its ordinary kriging weight is 1.0 and the other one is zero, and conversely to
the right of the second one.

This can be extended to the case where there are many samples in a line. If the target
point lies to the left of the first point, the weight of the first point is 1 and the others
are zero. Similarly to the right of the last one. Only the closest point has a nonzero
weight. It is as if the others were “forgotten™. All the available information is
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condensed into the closest sample. See for yourself what happens if the target point
lies in between the samples. Note: these effects only happen in 1D.

This property is called the Markovian property. It is well known in time series,
particularly in finance. For example, the last quoted share price is considered to
reflect all previous information, The same type of effect is used in option pricing
in the Black & Scholes model.

Ex 7.5 Factorizable variograms — perpendicular screen effect. As before there
are two samples at the points (1,0) and (2,0). But this time, the variogram is a
gaussian with a unit sill and a unit scale parameier. The objective is to estimate the
value of a regionalized variable at a point (1,y) lying vertically above or below the
first sample. Show that the simple kriging weight of the second point is zero. Only
the point directly below/above the target gets any weight. This result depends on the
fact that the gaussian can be factorized into two components.

2

2
C(h) = exp{~— :—2} X exp[—- %3] where h? = x2 + y? {7.60]

Show that the result is also true for the factorized exponential covariance:

C(h) = exp[— —’z—] b cxp[—-«’—zl] where h? = x? + y? {7.61}



8 Practical Aspects of Kriging

8.1 Summary

This chapter is designed to give an overview of the practical aspects of kriging:
negative kriging weights, the impact of the choice of the variogram model on the
kriging weights, crossvalidation, the screen effect and last but not least, some
criteria for testing the quality of a kriging.

8.2 Introduction

This chapter concentrates on the practical aspects of kriging. Some theoretical
results are introduced (e.g. the idea that kriging weights can be negative) but the
thrust of the chapter is of a more practical nature. Most of the concepts treated are
presented through examples.

The first section deals with the question of negative kriging weights which can
lead 1o negative kriged estimates. The two common situations when these negative
weighis tend to arise are when points are clustered or when highly structured
variogram models are used (e.g. a gaussian model with no nugget effect or a power
model with an exponent greater than 1.0). Examples showing both cases are
presented.

In the second section, the influence of the variogram model on kriging is
discussed. The shape of the variogram near the origin is shown to be critical.
Variograms with different proportions of nugget effect (i.e. as a percentage of the
total sill) or with different shapes (linear vs quadratic) give rise to quite different
kriging weights and kriging variances, and hence to different looking kriged maps.
Having said this, it is important to note that superposable models give rise to
(virtually) identical kriging systems and hence to similar kriging weights and
variances. So kriging is, in this way, stable against minor differences in the
variogram models.
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‘The third section deals with the screen effect. When the variogram model is well
structured (long range, small nugget effect), information near the target effectively
screens out the influence of more distant data. The kriging weights of outer points
are zero or negligible. However with a poorly structured model the screen effect is
“lifted”, and so a much larger kriging neighbourhood is required. Increasing the size
of the neighbourhood leads to a drop in the kriging variance and to a significant
improvement in the estimator.

The fourth section is on symmetry in the kriging configuration. In practice, data
are often on a regular grid. If a symmetrical layout of the data relative to the target
is used, some of the weights will be equal. Recognising this at the outset can allow
geostatisticians to regroup sets of kriging weights, thus reducing the size of the
kriging system and hence the computer time required.

The fifth section presents some crileria for testing the quality of a kriging
configuration. The most obvious one, the kriging variance, often proves to be
relatively insensitive. Two other parameters, the weight of the mean in simple
kriging and the slope of the linear regression, are more helpful, particularly when
selecting the size of the kriging neighbourhood.

The last section treats the question of cross—validating variogram models. Points
are removed one by one¢ from the data set. The absent point is rekriged. If the
variogram model is in good agreement with the data, the kriged estimates should
be close to the true values. Several statistics for quantifying “closeness” are
discussed.

8.3 Negative weights

It is important to realize that while kriging variances should never be negative,
kriging weights can be. (Negative kriging variances can result from using a
variogram model that is not positive definite or from programming errors ¢.g. in
discretising blocks). The following example shows two simple cases where negative
weights arise. The first involves two highly structured variograms (a gaussian and
a power model with an exponent of 1.5) while the second involves a cluster of points.

Example 1. Suppose that samples have been taken at 4 points Py, P>, P;. and P, that
are regularly spaced 1m apart on a line. The value at their midpoint P, is to be
estimated. The locations of the points are shown in Fig. 8.1.

P; P Po P3 Ps
] B [ | | |

Fig 8.1. Location of the four samples Py, P;, P;, and P, and the target P,
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For comparison purposes, four variogram models were used to krige the point.

These were

1. a power function model with exponent 1.5 (i.e. y(h) = 1hl '),

2. a gaussian with a distance parameter a = 0.8 and a sill of 1.0 and no nugget effect,

3. a gaussian with a distance parameter a = 0.8, a sill of 0.75 and a nugget effect of
0.25 (i.e. a total sill of 1.0} and

4. a spherical model with a range of 1.38 and no nugget effect.

The practical range of a gaussian is /3 times its range; here 1.38. The spherical has
the same range but is linear at the origin instead of quadratic. Table 8.1. gives the
kriging weights corresponding to these variograms. By symmetry the weights for
P, and P; are identical, as are those for P; and P,.

Table 8.1. Kriging weights corresponding to the four variogram models The
numbering of the weights is the same as in Fig. 8.1.

Kriging Model to Gaussian Gaussian Spherical
weight power 1.5 | + Nugget No Nugget No Nugget
) —0.047 —0.083 0.008 0.010
Az 0.547 0.583 0.492 0.490
Kriging var. 0.201 0.227 0.563 0.5%0

The weights for the outer points are negative for the first two models (the power
model with exponent 1.5 and the gaussian with no nugget effect) because these are
highly structured models. In contrast to this the last two models (the gaussian with
25% nugget effect and the spherical) are less well structured and consequently do
not result in negative weights. When choosing a variogram model it is important to
realise that a model that is quadratic at the origin (particularly with no nugget effect)
corresponds to a more structured pheromenon than one that is linear at the origin.
Consequently it is more likely to give rise to negative weights and hence to negative
kriged grades (which are not desirable in mining).

Example 2. In this example we consider clustered points. Having some closely
spaced points can help in estimating the behaviour of the variogram near the origin
but these points can cause problems of numerical stability when inverting the
kriging matrix.

Suppose we want t0 estimate a square 100 x 100m given 5 samples, one at each
of the comers of the block and one in the centre of the block. Later a sixth sample
is added close to one of the comers. Let the variogram be a spherical model with
a range of 200m and a sill of 2.0. Note that this model is linear at the origin and is
therefore less likely to produce negative kriging weights than would a gaussian, a
cubic or a power model with an exponent above 1.0.
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(~50,50) (50,50)
m (0,0)
(-50,-50) (50,~50)
B(51,-51)

Fig 8.2. Layout of sample points relative to the target block

Table 8.2. gives the kriging weights for the 5 and 6 point data configurations. As
there is no nugget effect the kriging weights for 4 of the points change very little
from the 5 point to the 6 point configuration. The sum of the weights for the fifth
and sixth points is (roughly) equal to the fifth weight in the 5 point configuration.
The sixth point even receives a negative weight. There is also little change in the
kriging variance in this case from the 5 to the 6 point configuration. So we see that
for structures with no nugget effect, the results obtained using 6 points are very
similar to those obtained by regrouping the last two points. One advantage of
regrouping the points is that it avoids having an extra row and column in the matrix
which can sometimes lead to numerical instabilities.

Table 8.2. Kriging weights and kriging variance for a spherical model for a 5 point
and a 6 point configuration

Kriging Weight 5 points 6 points
0,0) 0.436 0.436
(-50,-50) 0.141 0.141
(-50,50) 0.141 0.141
(50,-50) 0.141 0.141
(50,50) 0.141 0.152
(51,51) - -0.011
Kriging Variance 0.085 0.085

The results would have been quite different if there had been a significant nugget
effect. The weighting would be spread more evenly over all available data points.
Adding an extra point would also have led to a marked drop in the kriging variance.

These simple examples show two cases where negative weights occur: when the
model is highly structured (e.g. quadratic at the origin) and when the points are
clustered. We see that when a less structured model such as a spherical, is chosen
or when some nugget effect is introduced the negative weights tend to disappear or
at least be attenuated. Those who are interested in finding out more about this
problem can consult Barnes (1984) and Chauvet (1988).
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8.4 How the choice of the variogram model affects kriging

8.4.1 Similar looking variograms

In the section on fitting variograms, the importance of the choice of the nugget effect
and of the shape of the variogram near the origin was stressed. No sophisticated
statistical techniques were proposed for fitting models because it is possible to
obtain several (visually) similar models that give equally good fits to the
experimental variogram. Provided these models all have the same behaviour near
the origin the resulting kriged estimates will be very similar, and so will their kriging
variances. This is because the rows and columns in the kriging system are virtually
identical.

To illustrate this consider the following two visually similar variogram models:
firstly an exponential with a sill of 2.06 and a distance parameter a=30m (and hence
a practical range of about 100m) and secondly the sum of two sphericals both with
sills of 1.0 and with ranges of 40m and 100m respectively. Suppose that the
objective is to krige a square biock 100m by 100m from 5 data points (the four
corners of the square and the centre). Table 8.3. shows how similar the kriging
weights and the kriging variances are for the two models.

2 2
1 1
0 0
0 25 50 75 100 0 25 50 75 100
a b

Fig. 8.3. Two visually similar models; (a), the sum of two sphericals with ranges
of 40m and 100m and sills of 1.0, (b), a single exponential with a distance parameter
of 30m and a sill of 2.06

Table 8.3. Kriging weights and kriging variance for two visuaily identical models,
when used to krige a 100m by 100m block

Kriging Weights Exponential Sum of 2 Sphericals
Center Point 0.338 0.339
Each Corner 0.165 0.165
Kriging Variance 0.285 0.299
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8.4.2 The effect of the choice of the nugget effect

The choice of the value of the nugget effect is extremely important since it has a
marked effect on both the kriging weights and the kriging variance. The problem
when choosing the nugget effect is that there is often no way of knowing the
behaviour of the variogram at the origin, or at least for distances less than the first
point on the experimental variogram. Unless some additional closely spaced holes
are available, the geostatistician must guess the shape of the variogram near the
origin. So it is important to understand the impact that the choice of the mode! has
on the results of the kriging. This example is designed to illustrate the effect the
model has on the kriging weights and the kriging variance.

2 2 3 mmma SRR T
1 1
0 0
0 200 400 600 0 200 400 600
a b

Fig. 8.4. Two models respecting the experimental variogram values but with
different short scale behaviour; (a) a spherical with a range of 200m and a sill of 2.0,
and (b) a pure nugget effect of 2.0

Fig. 8.4 shows two possible models fitted to an experimental variogram which had

already reached its sill by the first point. Taking the extreme cases, it could be

modelled by (1) a spherical variogram with a sill of 2.0 and a range of 200m (zero

nugget effect) or (2) a pure nugget effect with a sill of 2.0 Unless we have some

prior knowledge about this type of variable there is no way of knowing whether to

use the pure nugget effect model or the more structured one, or anything in between.
75

.Z3 .ZS .Zl

° Z4
Fig 8.5. A 200 x 200m block to be kriged from 5 samples

Suppose that we want to estimate a 200 x 200m block using the central sample plus
the next 4 data on a regular 200 x 200m grid. (N.B. The kriging exercise in the
previous chapter had the same data configuration but the range of the variogram was
250m instead of 200m).
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Table 8.4. Kriging weights and kriging variances for 5 point configuration

Kriging Weights Pure Nugget Effect Spherical
Center Point 0.20 0.540

Each Quter Point 0.20 0.115

Kriging Variance 0.40 0.290

The kriging weights and the kriging variances are shown in Table 8.4. The
difference between the two kriging variances is striking. With a pure nugget effect
it is much higher than for the other model. The effect on the kriging weights is more
subtle. The pure nugget effect model gives cqual weight to all points and hence less
to the central sample and more to the peripheral ones whereas the structured model
attributes a relatively high weight to the central sample. Since the lower nugget
effect model gives less weight to the central sample, it leads 10 smoother contour
maps, which is not intuitively obvious. This will be illustrated in Chapter 9.

The 5-point configuration used here is unrealistically small. In practice a much
larger neighbourhood would be chosen. It is interesting to see what happens as this
neighbourhood is enlarged. The next step up would be to 9 points on a regular 200
x 200m grid. Table 8.5. shows the kriging weights and variances for this new
configuration.

Table 8.5. Kriging weights and kriging variances for 9 point configuration

Kriging Weights Pure Nugget Effect Spherical
Center Point 0.11 0.51
Each Inner Point 0.11 0.08
Each Outer Point 0.11 0.04
Kriging Variance 0.22 0.26

Compared to the 5—point neighbourhood, there are marked changes in the
kriging weights and the kriging variance for the enlarged neighbourhood, for the
pure nugget effect model but not for the spherical model. As will be seen in the next
section on the screen effect, the points close to the target effectively screen out more
distant ones when the variogram is well structured but not for poorly structured
models with a high nugget effect or with a short range.

8.5 Screen Effect

Sampling programs often produce hundreds or thousands of data values. From a
computational point of view it would clearly be prohibitive to use them all to
estimate each block. Common sense suggests that the estimates will be almost as
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precise if only the neighbouring data are taken into account. The question is to know
how many points to include. A general rule is 10 take only the first few aureoles (i.¢.
rings) around the target if the variogram is well structured, that is, if the nugget effect
is relatively small. The reason for this is that the first few aureoles screen out the
effect of more distant samples. This can best be seen from an example.

e s o o
s & o e o o® o
e | 8 | o ® @ i ] & @
e o o e o © o
e o o o

a b

Fig. 8.6. Block with 1 aureole of data (a), 2 aureoles of data (b)

Suppose that we want to estimate a 200m x 200m block centered on a sample, using
data on a 200m x 200m grid. The number of samples can be increased from 1 (the
central one), to 9 (1 aureole) and then to 25 (2 aureoles). Once the variogram model
is known, the kriging weights and the kriging variance can be calculated for each
data configuration. Clearly each time more samples are added the kriging variance
will decrease (or stay the same). To illustrate how the screen effect works, three
cases are considered: spherical variograms with a sill of 2.0 and ranges of 250m and
100 m respectively, and thirdly a pure nugget effect of 2.0 (which could be thought
of as a spherical with a zero range). Figure 8.7. shows the kriging weights for the
9 point and 25 point configurations for the three variogram models.

For the well structured spherical mode! (range 250m, at the top of the page) most
of the weight is concentrated on the centre point and the four closest points.
Consequently increasing the number of points 1o more than 25 does not lead to any
significant improvement in the kriging variance. As the weights do not change
much, nor does the estimated value. So there seems little point in using more than
the closest few data in this case. In contrast to this when the variogram is poorly
structured (pure nugget effect or a spherical with a short range) the kriging variance
continues to drop as more sampiles are added and the weights for the outer points
do not tend to zero quickly. So in this case a larger kriging neighbourhood is
required. Please note that even points outside the range from the block to be
estimated can have nonzero OK weights. They are not necessarily zero.
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Spherical Range =250m, Sill =2. ¢ ¢ o5 08 08

2.6 82 26 08 12 70 12 08
82 | 567} 82 05 701}150} 70 0S5
2.6 82 26 08 12 70 12 08

08 08 05 08 08
ol =0.22 0?2 =0.20

Spherical Range = 100m, Sill =2. 33 33 33 313 33

94 94 94 33 33 33 33 33
9.4 | 25.0 9.4 33 33§ 190§ 33 33
94 94 9.4 33 33 33 33 33

33 33 33 33 33
o2 =0.35 0,2 =0.25

Pure Nugget Effect, Sill =2. 40 40 40 40 40

1.1 111 111 40 40 40 40 40
111} 1L.1} 161 40 401 40 40 40
1.1 111 111 40 40 40 40 40

40 40 40 40 4.0
o =0.22 o2 =0.08

Fig. 8.7. Kriging weights and kriging variance for configurations with 1 or 2
aureoles of data, for three variogram models
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8.6 Symmetry in the equations

When kriging was first developed, computer facilities were poor. Inverting large
matrices in order to solve large sets of linear equations was very time consuining.
This led geostatisticians to look for ways of reducing the size of kriging systems.
One way is by taking account of symmetry in the system. For example, the exercise
on ordinary kriging given in the previous chapter involved kriging a block using 5
data, four of which are set symmetrically outside the block. These four weighting
factors are clearly identical.

.22

'Z3 '21 'Z5

*Z4

Fig. 8.8. A symmetric data configuration

These four samples can be regrouped and considered as a single unit S with a single
weighting factor. Each of the individual samples will get one quarter of this. If the
first kriging weight is associated with the central point Z,, and the second weight
with the group S, the kriging system can be rewritten as:

Y(Zl’zl) Y(Zl’ S) 1 ;\'1 Y(ZI’V)
Y(Z;, S ¥(S,S) 1 A, = ¥, V) (8.1}
1 1 0 U 1

As it is not obvious how to calculate the various variogram values, this will be
presented in detail.

Y(Z:.Z,) =0, ¥(Z;, V)

0.88 {8.2)

VZi, ) = 3 1¥Zi Zo) + o + Y(Z1,Z4)] = 1.89 [8.3)

VS, S) = 1 [Y(Zo Z2) + - + Y(Zs, Z5)]
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_1 A -
=3 [ v(0) + 2 y(100v2) + y(200)] 1.5 {8.4]

S, V) = vz, vy + .+, V)
= Y(Z,, V) = 1.86 [8.5)

This leads to solving a 3 x 3 system instead of a 6 x 6 one:

0 18 1 A 0.88
189 150 1 As = 1.86
1 1 0 u 1.00
- _— I— e [8.6]
The solution is A; = 0.60, Ag = 0.40 and p = 0.12 and hence:
2¥=0.602; + 040 (zp + 23+ 24+ 25) / 4. [8.7]

Of course, ok 2 is the same as before. Here we have succeeded in reducing the system
from 6 x 6 to 3 x 3 without any loss of precision. Since the time taken to invert a
matrix is roughly proportional to the cube of the size of the system, halving the size
effectively reduces the time and hence the cost to about one eight of its original
value. This clearly represents a considerable saving.

Having seen that the size of the kriging system can be significantly reduced in
some cases without loss of precision, it is important to be able to distinguish
symmetric configurations from those which might at first glance appear to be
symmetric. For the weights to be identical, the data points must be symmetric with
respect to each other and to the point or block to be kriged. In the next configuration
the data points are symmetric with respect to each other but not 1o the block.

.ZZ

® Z4
Fig 8.9. A symmetric data configuration with the block off center

Another case that often leads to mistakes is when the data and the block are
symmetric relative 1o each other but when the variogram model is anisotropic.
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Suppose that the data configuration is as shown on the left of Fig. 8.10., but that the
variogram model has a range of 500m in the NS direction compared to 250m in the
EW direction. After taking account of the anisotropy the dimensions in the EW
direction are twice those in the NS direction. Consequently, the weights for Z; and
Z; are identical and so are those for Z, and Z,. But the four weights are no longer
identical. This has to be kept in mind when regrouping data points.

'Zz .ZZ
. Z3 'Zl ° ZS = e 23 -Z] OZS
'Z4 .Z4

Fig. 8.10. The kriging configuration before and after taking account of the
anisotropy

8.7 Testing the quality of a kriging configuration

Looking at how the kriging weights and the kriging variance evolve as the number
of points is increased gives us some idea of what size neighbourhood is optimal. But
experience has shown that the kriging variance is a fairly insensitive parameter for
testing the quality of a kriging configuration. The weight of the mean in simple
kriging and the slope of the linear regression of the true grade on the estimated value
turn out to be far more sensitive quality control parameters and hence more useful.
The additivity theorem in Chapter 7 proved that the OK estimator could be written
as

Z, = D NZ(x )+ m hy [8.8]

where m* is the kriged estimate of the mean, and that the OK variance can be split
up into the SK variance plus a term that depends on the weight of the mean in SK
and on the kriging variance of the estimate of the mean:

Oy = 0% + (Ay)? Var (m’) (8.9]

The first equation shows that when the weight of the mean in simple kriging A , is
low (near 0), the estimated grade depends mainly on the local values of Z(x), i.e.
the data in the kriging configuration and not on the estimate of m. So the degree of
stationarity required is less. In addition the OK estimator and the SK estimator are
closer.

The second equation shows that when the weight of the mean in SK is low the
OK variance is close to the SK variance. Little precision is lost in having to estimate
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the mean. Conversely when it is high, the OK variance is markedly higher than the
SK variance. Rivoirard (1984, 1987) has shown that the less information that is
available in the kriging neighbourhood, the greater the importance of the mean. So
this parameter gives an indication of how sparse the data are relative to the
variogram model and also 10 what extent the hypothesis of stationarity will be relied
upon.

8.7.1 Example: Adding extra samples improves the quality of the estimate

In South African gold mines, blocks of about 20 x 5m are estimated from channel
samples on an approximately 5 x Sm grid. In general the closest three rows of
samples are used. Sometimes an extra row of samples next 1o the block is available.
Clearly using additional samples close to the block will improve the quality of the
estimate but by how much? Figure 8.11. shows the two possible layouts,

20m 20m
5m Sm
o -] o a o o ® -] [ a
a [ ] a8 -] a8 B -] - a a8

Fig. 8.11. The two sample layouts considered

Suppose that the variogram is spherical with a sill of 1.0 and a range of 20m. The
kriging variance for the first layout is 0.368 compared to 0.114 for the second one.
The slope of the linear regression rises from 0.531 to 0.863, while the weight of the
mean in SK drops from 0.623 (which is high) to 0.255. All three quality parameters
show that the inclusion of an extra row of samples leads to a marked improvement
in the quality of the estimator.

8.8 Cross-validation

As several different variogram models can often be fitted to an experimental
variogram, one would like to know which is the “best”. Cross—validation is often
used for this. The procedure consists of climinating one data point from the set
temporarily and then kriging its value using the remaining samples as data. If this



116 Practical Aspects of Kriging

is repeated for all the points (or for a representative subset of them) we obtain a
series of estimation errors for each data point and for each variogram model. If the
variogram suits the data, the mean of the estimation errors and the mean of the
standardised estimation errors should be zero, and the variance of the standardised
estimation errors should be 1.0.

Let Z;; denote the kriged estimate of the i® point obtained using the j
variogram model and let 0?,- be the kriging variance. If its true value is Z,, then the
corresponding estimation error Z; ; — Z,. Thatis, we would expect:

EZ;-2)=0 [8.10]
Z, - Z,
E —%, ]~ 0 [8.11]
Z, - Z
Var —o, =1 {8.12]
This leads us to calculate the following statistics:
D A(Zi - Z) [8.13]
(Zi; - Z,)
z — [8.14)
Z(Z.’j -Z )
o}, [8.15]

As all these statistics are strongly aftected by any extreme values (i.e. by outliers)
it might be preferable to use robust forms of these. But no matter whether robust or
ordinary statistics are used, it is not common for ali three statistics to show the same
model as being “the best”. So a choice has to be made.

There are practical problems in using this technique with drillhole data because
when one sample is removed and re—estimated, the resulting kriged estimate
depends mainly on the nearest samples (i.e. those vertically above and below).
Consequently cross—validation only tests the goodness of fit of the vertical
component of the variogram and not the rest of the model.
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9.1 Summary

The case study in Chapter 5 presented the structural analysis for an iron ore deposit.
We now show how to use the fitted 3D variogram model to krige point values then
block grades. As the model has a high nugget effect, a large kriging neighbourhood
is required. The fourth section shows what happens when smaller neighbourhoods
are used. The last section illustrates why it is not advisable to krige small blocks
from sparse samples, in order to calculate the recoverable reserves.

9.2 Iron ore deposit

The data available to krige this deposit consists of nearly 500 15m core sections
coming from about 40 vertical drillholes. The fitted variogram mode! consists of a
nugget effect of 1.8 plus two anisotropic spherical structures. Their sills and their
ranges in the horizontal and vertical directions are shown in Table 9.1.

In the mining industy block estimation is more common than point estimation
which is used sometimes as the input for contouring packages. In this chapter we
will illustrate the use of both point and block kriging, Comparing the results
highlights the effect of the size of the support. The first step in kriging is to choose
the gnid size.

Table 9.1 Parameters of fitted variogram model which is isotropic in the horizontal
direction but not in the vertical

Silt Horizontal Vertical
Range Range
Nugget effect 1.8 - -
1st Spherical 1.2 80m 65m
2nd Spherical 1.5 400m 65m
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9.2.1 Grid size for kriging

As the drillholes are about 80m apart, the horizontal dimensions of the grid to be
kriged were set at 100m x 100m. The height of grid cells has been set to 15m because
this is the length of the core sections. The resulting grid consists of 19 cells (EW)
x 12 cells (NS) x 36 vertical levels. It is not advisable to krige very small blocks (say
10m x 10m horizontally) or blocks which are shorter than the core section length
(15m). The reasons for this will be given in detail later in the chapter.

9.3 Point kriging using a large neighbourhood

Having fixed the dimensions of the kriging grid, the next step is to choose the
parameters for the kriging neighbourhood. As the model has 40% nugget effect, it
is not well structured and so a large neighbourhood containing many points is
required. After some preliminary testing it was decided to use a neighbourhood
containing a minimum of 8 samples and an optimum of 80 samples. The search
ellipse was limited to a horizontal radius of 500m and a vertical one of 300m. In
section 9.5 we will show what happens when a small neighbourhood with only a
few samples is used for kriging.

Figure 9.1. shows the contour lines for one level (number 14) which is near the
middle of the deposit. The outer blocks that are hatched have not been kriged at all
because insufficient data were found in the neighbourhood. Figure 9.2, shows the
kriging standard deviation map. No 1abels have been put on the isolines because they
were difficult to read but it is clear that the kriging standard deviation is high at the
edges of the area and low where the samples are more dense. Table 9.2 gives the
basic statistics of the kriged estimates and the corresponding kriging standard
deviation.

9.4 Block kriging using a large neighbourhood

The same size neighbourhood was used to krige blocks of size 100m x 100m as for
point kriging. One difference between kriging points and blocks is that the blocks
have to be discretized in order to calculate terms like Y(V,x) and Y(V,V). Here a 6
x 6 x 1 discretization was used. As the core length equals the block height, the
vertical discretization had to be 1.

Figures 9.3. and 9.4. show the kriged estimates and the corresponding kriging
standard deviations while Table 9.3 gives the basic statistics. The overall shape of
the contour lines is the same as for point kriging. Comparing the statistics of the
kriged values for blocks with those for points we see that the average grades for the
whole area are identical but that the minimum value for the kriged points is lower
than for the blocks. Conversely the maximum for the points is higher than for the
blocks. That is, the histogram of the kriged block estimates is tighter around the
mean than the one for points.
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Table 9.2 Basic statistics of kriged point estimates and the corresponding kriging

standard deviations
Number Minimum | Maximum Mean St Dev
Point 7501 52.91 59.12 56.84 0.704
Estimates
Standard 7501 1.655 2.380 2.127 0.103
Deviation

Fig. 9.1. Contour lines for level 14 obtained for point kriging using 8 angular sectors
with an optimum of 80 samples, and a minimum of 8 samples
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Fig. 9.2. Contour lines for the kriging standard deviation for level 14 obtained for

point kriging
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Table 9.3 Basic statistics of kriged blocks and the corresponding kriging standard

deviations
Number Minimum | Maximum Mean St Dev
Block 7501 53.27 58.97 56.84 0.605
Estimates
Standard 7501 0.720 1.636 1.238 0.166
Deviation
7/ ~%
\

Fig. 9.3. Contour lines for level 14 obtained for block kriging using 8 angular

sectors with an optimum of 80 samples, and a minimum of 8 samples

7
7

Fig. 9.4. Contour lines for the kriging standard deviation for level 14 for block

kriging
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The difference between the standard deviations for the points and the blocks is quite
startling. The best estimates for points have a standard deviation of 1.655 whereas
it is 1.636 for the worst blocks. This is because it is much easier to estimate the
average value over a large volume accurately than a very small one.

9.5 Point kriging using smaller neighbourhoods

In section 9.3 a large neighbourhood containing many points was used for point
kriging. It is instructive to see what happens when a smaller neighbourhood
containing only a few points is used. Figure 9.5. shows the contour lines obtained
using only the closest three samples. Clearly something has gone wrong, but what?
Before going into detail, we should note that there are fewer hatched blocks in the
comers. More blocks have been kriged this time because fewer samples are required
in a kriging neighbourhood before the grid node could be estimated.

)
%,

Fig. 9.5. Contour lines obtained for point kriging using only three samples

9.5.1 What is causing the ugly concentrations of lines?

In order to work out what has gone wrong, we focus on four adjoining grid cells in
an area where there is an ugly concentration of isolines. These are rows 2 to 5 in
column 12 of level 14. Table 9.4 gives the coordinates of the three samples used in
kriging each cell, together with their values and the weighting factors. In three out
of the four cases, all the samples come from a single drillhole. The exception occurs
where the closest drillhole stops just above level 14. The bottom sample from it is
used together with two samples from the next closest drilthole. The kriged estimate
and the corresponding standard deviation are also given for each grid node. Note
how erratic the kriged grades are.
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Table 9.4 Coordinates, kriging weights and values of the samples effectively used
for kriging four selected grid nodes

Block (12,5,14): Kriged estimate = 54.83, kriging standard deviation = 2.14

X coord Y coord Z. coord Weight Value
15t Sampie -1450 -995 17.25 351% 56.6
2nd Sample -1450 -995 18.75 32.4% 56.9
3d Sample | 1450 995 15.75 32.4% 51.05

Block (12,4,14): Kriged estimate = 53.68, kriging standard deviation = 2.27

X coord Y coord Z coord Weight Value
15t Sample -1475 -1092 17.25 32.3% 550
2nd Sample -1475 -1092 15.75 33.8% 54.25
3rd Sample -1475 -1092 18.75 33.8% 51.85

Block (12,3,14): Kriged estimate = 55.05, kriging standard deviation = 2.27

X coord Y coord Z coord Weight Value
15t Sample -1494 -1195 20.25 35.3% 51.6
2nd Sample -1295 -1236 17.25 36.6% 570
3d Sample | -1295 -1236 18.75 28.1% 56.5

Block (12,2,14): Kriged estimate = 58.75, kriging standard deviation = 2.33

X coord Y coord Z coord Weight Value
1%t Sample -1319 -1330 17.25 44.1% 589
2nd Sample -1319 -1330 18.75 279% 58.6
3rd Sample -1319 -1330 20.25 28.0% 58.65

Table 9.5 sumimarizes the numerical values of the kriged estimates for the grid nodes
in level 14 from rows 2 to 5, from columns 10 to 14. The four target cells lie in the
central column. Looking at these values it is easy to see why there is such a dense
concentration of isolines in the region. As the target grid node moves, the drilihole
effectively being used as data for kriging changes. These jumps cause abrupt
changes in the kriged estimate and hence the unsightly concentrations of isolines.
Problems of this type were first identified by Renard and Yancey (1984) when they
were kriging the top of an oil reservoir using seismic data lying on straight line
profiles. They realized that the erratic jumps in output values occurred as “noisy”
sample points moved into and out of the moving kriging neighbourhoods.
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Table 9.5 Kriged grid node values for rows 2 to 5, columns 1010 14 in level 14, They

were obtained using only 3 samples

55.38

55.66

57.41

53.72

54.83

53.82

53.34

55.03

54.83

53.68

55.05

58.75

5395 54.03
5547 5529
56.61 56.57 |
5876 55.70

9.5.2 How to eliminate these concentrations of contour lines

In order to eliminate these patterns in the contour lines, more sample points have
to be included in the kriging system, but just increasing the total number of samples
is not enough. For example if the number were increased to 5 or 9 samples, the
closest points would still come from a single drilihole and the problem would not
be solved. We need to ensure that samples from several drillholes are incorporated
into the kriging system. One simple and convenient way to do this is by using
angular sectors. Figure 9.6. shows eight angular sectors centered on grid cell (12,

4, 14).

—-500.
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i
~2000. ~1000. ~1500.

Fig. 9.6. Target grid cell (12, 4, 14) with the area around it split into 8 angular sectors
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As the maximum search radius was set to 500m earlier, samples outside this are not
taken into account. The circle shows how big this area is. The crosses in the figure
mark the position of samples on the same level. The numbers represent the kriging
weights, expressed as a percentage, for the samples that were effectively taken into
account. Samples on other levels would also have been used.

After the number of sectors has been specified, the kriging routine locates and
uses the closest sampie or samples in each sector and uses these. The user can
usually specify how many empty sectors can be tolerated. A second attempt at
kriging the grid nodes was made using 4 angular sectors each containing at least 3
samples (Fig. 9.7.).

] 7
///////, Aoif-\ lam /AN

Fig. 9.7. Contour lines obtained for point kriging using 4 angular sectors each
containing at least 3 samples.

These results are clearly an improvemeni over those obtained using only three
points but are not good enough. There are still some concentrations of contour lines.
The contour map given initially (Fig.9.1.) was obtained using 8 angular sectors,
which is a common choice. It is much more satisfactory. This example shows how
important it is to include enough samples in the kriging system.

9.6 Kriging small blocks from a sparse grid

One of the main uses of geostatistics in the mining industry has been to estimate the
block grades during the feasibility and prefeasibility stages of project evaluation.
At this stage the available data is usually widely spaced. In order to design the mine,
planners often krige very small blocks. It is then tempting to count up the blocks
above various cutoff grades so as to estimate the recoverable reserves. The aim of
this section is to show how dangerous and misleading this can be.

The problems of kriging small blocks have been well known for many years.
Many authors including Journel and Huijbgrets (1978), David (1977, 1988), Royle
(1979) and Clark (1982) have pointed out that the kriged grades are much smoother
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than the real grades of the small blocks would be. Ravenscroft and Armstrong
(1990) illustrated this for a Witwatersrand—type gold deposit. Blocks of size 2m x
2m were kriged using data on a 10m x 10m grid. For reasons of confidentiality, the
grades were scaled to have a mean of 1. Figures 9.8.a and b show the histograms
of the true block grades and the corresponding kriged grades taken from that paper.

015] 0.15
0.10 | 0.10
0.05 | 0.05
0.00 0.00

Fig 9.8. Histograms of (a) the true block grades and (b) the kriged estimates
obtained from widely spaced samples, from Ravenscroft and Amstrong (1990)

Although both histograms have the same mean {1.0), they have different shapes and
different variances. As expected, the variance of the kriged estimates was smaller
than that of the true block grades. Consequently the grade tonnage curve calculated
from the kriged block grades is quite different from the real one. This shows that
kriging should not be used for estimating the grades of small blocks from widely
spaced data. In fact linear estimators in general should not be used for this. That
includes inverse distance and inverse distance squared methods.

More sophisticated methods are required for estimating recoverable reserves.
These can be split into two broad categories:
1. conditional simulations, and
2. nonlinear estimators such as indicator kriging and disjunctive kriging.

As the scope of this book is limited to linear geostatistics, we shall not go into these
methods. Readers who are interested in nonlinear methods such as disjunctive
kriging can consult Matheron (1976), Marechal (1975) or Rivoirard (1994). Those
interested in indicator kriging can consult Isaaks and Srivastava (1989) or Journel
(1983).

Over the past 15 years the use of simulation methods has taken off in the
geostatistical community. Applications to many different fields can be found in the
proceedings of recent conferences. See for example the volumes edited by Baafi and
Schofield (1997), Armstrong and Dowd (1994), Dimitrakopoulos (1994) and Soares
(1993).
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9.6.1 What size blocks can be kriged?

Having stressed that it is not advisable to krige small blocks from sparse data, it is
natural to want to know how small the blocks can be. Experience has shown that it
is best to keep the blocks approximately the same size as the separation between
samples. At the outside, the horizontal dimensions of the blocks can be half those
of the sample grid. In the iron ore case study it would lead to a minimum size of
blocks of 40m x 40m x 15m or 50m x 50m x 15m. That is, four times as many blocks
would be kriged as there are data.

Another point to note when kriging blocks of this size is their location relative
to the samples. Figure 9.9.a shows a plan view of samples on a regular 100m x 100m
grid together with blocks half that size. Each block has one comer touching a
sample. So if the same kriging neighbourhood is used for all blocks, they would all
have the same kriging variance. This would not be true of the layout shown in Fig.
9.9.b. Blocks containing a sample in the centre would have a low kriging variance;
those marked with (2) would have a higher variance and those marked (3) would
have a very high variance because they are far from samples. A person looking at
a map of kriged grades obtained using the second layout would not necessarily guess
that some of the estimates were much better than others. So it is important {0 look
carefully not only at the block size but also the layout.

R R A R AR

[ W — | =& | | = | I = |
T T A RS Ny IO
T I
F—d——t——L— R T Y R B
R U W N T R e R R R
A Y B S Y
I I ————t—— + —=-
=T I A Wt
SN W O S A R A B
—_— ] [ ] ]

il R Wit NS P

a b

Fig. 9.9. Two possible layouts for blocks of size 50m x 50m relative to samples on
a 100m x 100m grid. In (a) all blocks have the same kriging variance whereas in (b}
those marked (2) and (3) have a higher variance than the ones containing a central
sample. Layout (a) is therefore preferable



10 Estimating the Total Reserves

10.1 Summary

Once a suitable prospect has been found, an exploratory drilling campaign is carried
out to establish the limits of the mineralization (if they are not aiready known), and
to determine the total ore tonnage and the average grade. As well as knowing the
total reserves, it is very important to know how accurate the estimates are. Provided
there are not too many samples, kriging can be used to estimate the reserves and the
kriging variance will give a measure of its accuracy. However when there are too
many points to invert the kriging system a different approach is required.

This chapter presents several approximations for estimating the variance
associated with the total reserves when kriging cannot be used. The variance
depends on whether the limits of the orebody are known a priori or not. After
presenting the concept of extension variance, the first part of the chapter treats
different approximations for evaluating the global estimation variance while the
second half considers the question of “optimal” drilling grids.

10.2 Can kriging be used to estimate global reserves?

Up to this point we have seen how kriging can be used to give local estimates of point
or block values. So it is natural to ask whether it can be used to estimate global
reserves; that is, the reserves contained in the whole deposit or a large part of it. In
general the term “global estimation” refers to the estimates made early in a project
during the feasibility study when only widely spaced samples are available. During
production many more samples are available, for example from blastholes or
channel samples.

Two different situations have to be distinguished: (1) when there are relatively
few data and (2) when there are a large number of points (say more than several
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hundred points). In the first case kriging can be used but the problems of inverting
the matrix preclude it in the second.

One way of attacking the problem in the second case would be to divide the
region into zones containing fess than say 100 to 200 points and krige the zones
separately. This would give an accurate estimate of the mean grade. However it still
leaves the problem of how to calculate the global variance unsolved. It would be
tempting to sum (or average) the individual kriging variances but this gives the
wrong answer. David (1973) describes a theoretically sound way of recombining the
variances but it is very complicated. At the feasibility study stage a simpler method
is required. If the samples are evenly spaced, the global reserves can be estimated
by using the arithmetic mean of the grades.

This chapter presents several methods for assessing the associated estimation
variance. Two approximations (direct composition of terms, and the use of line and
slice terms) will be discussed. The problem of estimating the reserves within an area
known to be mineralized will be treated before going on to discuss the case where
the geometry of the deposit is also unknown. But first we show how to calculate the
extension variance of a sample since this is used in what follows.

10.3 Extension variance

Suppose that we want to estimate the average grade inside a region V; that is, we
are interested in the integral:

Z(V) = & f Z(x) dx
v v [10.1]

Suppose that the only information available is the average value for a small volume
v. Typically V is a mining block or a panel and v is a drillhole or some other type
of sample. So we have to estimate Z(V) from Z{v) where:

Zev) =1 j Z(x) dx
v (10.2]

It seems natural to take the value of Z(v) as the estimated value of Z(V}). What error
is made in doing this? First of all, if Z(x) satisfies the stationary or the intrinsic
hypotheses, Z(v) is an unbiased estimator of Z(V). We need to be able to calculate
the variance of extending the grade of v into V. It is sometimes denoted by o%(v, V)
or g}, for short.

Conceptually it is simply the variance of estimating Z{V) by Z(v). In
geostatistics, the term “extension variance™ is usually reserved for the case where
a block is being estimated from its central sample. The more general term
“estimation variance” is used in more complicated situations where several samples
are taken into account. The theoretical value of the extension variance is given by:
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2w, V) = % (x — y) dx d
o:(v\V) = 3§ Y y y
v v

—;1-2[ fv(x—x')dxdx'wv%f fv(y-—y'}»dydy' [103]
v v

v v

Consequently

oi(v,V) = 23(v,V) - ¥(v,v) — ¥(V,V) [10.4]

where ¥(v, V), ¥(v,v) and ¥(V, V) are the average variogram values when the end
points of the vector h sweep independently through V and v respectively.
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Fig. 10.1. Meaning of the average variogram terms

The formula {10.4] holds for any shape of v and V. In particular v does not have to
be included in V. The factors influencing the extension variance are:

— the regularity of the variable (through v),

—the geometry of V,

— the geometry of v,

— the location of v relative to V.

This formula can be rewritten as:
oi(v,V) =¥ V) - 7V, V)] = [F(%V) - F(v,v)] [10.5]

This makes it clear that the variance decreases when

— the sample v is more representative of the region V to be estimated. In the limit
when v=V, 02 (v,V)=0.

— the variogram is more regular, i.¢. the variable is more continuous.

Another obvious but nevertheless important property of the extension variance is
that it involves the variogram and the geometry of the area 1o be estimated but not
the actual sample values. This was also seen with the kriging variances and the
kriging weights.
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10.4 Relationship to the dispersion variance

People tend to confuse the dispersion variance o [viV] with the exiension variance
oZ(v,V). The dispersion variance has a physical meaning; it measures the
dispersion of the samples of a given volume v within another volume V. In contrast
to this the extension variance is an operational concept characterizing the error
associated with a particular sampling pattern. Theoretically, the two types of
variance are related in the following way: the dispersion variance is the average of
the extension variance when the sample v takes all possible positions within V.

We now go on to calculate the total reserves (and the average grade) for large
regions known to be mineralized.

10.5 Area known to be mineralized

Suppose that the area is known to be mineralized throughout and that the deposit
is two dimensional (e.g. a coal seam or a gold reef). For simplicity’s sake it is
represented as a rectangle but the same procedure can be applied to any shaped
region.

10.5.1 Direct composition of terms

In the first instance, we assume that the samples are on a regular or a nearly regular
grid. To estimate the total ore tonnage we multiply the area of the region by the
average seam or reef thickness (here average means the arithmetic average). Tests
involving kriging using a large number of samples on a regular grid have shown that
the weighting factors are very close to 1/N where N is the number of samples. So
our estimator is just:

. 1
Z'(V) = Zﬁ Z, [10.6]
The corresponding estimation variance is

%Z Jv(x; - y)dy - —\%J [Y(Y = y')dy dy’ — #Z > ¥(x - x) [10.7]

If N is large, this formula becomes very unwieldy. So an approximation to it is made
based on the assumption that the sum of the covariance terms between extension
errors is zero. In Fig. 10.2. there are N squares each with a sample at its center. Let
Z(v;) be the true but unknown average over the ith square,
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Fig. 10.2. Grid containing regular samples

As the average over the whole area is just the average of the individual squares, the
error made in using the average of the samples as the estimator is then:

> zw) - z) [10.8]

That is, it is the average of the partial errors. To simplify the calculations we now
assume that the sum of the covariance terms between these is zero. Checks made
by David (1973, 1977 p201) have shown that this is quite a good approximation.
Consequently the estimation variance is

o = Var Dz - Z(v))

= #Z Var(Z, — Z(v,)) [10.9]

Now Var (Z; - Z(v;)) is just the variance of extending the central value to the whole
square v;. As all the squares are the same size,

ol = & 040, V) [10.10]

This provides a simple way of estimating the total reserves and of evaluating the
estimation variance in terms of the variogram function. (Note: the same method can
also be applied when the blocks v; ar¢ not all the same size. See Journel and
Huijbregts (1978) pp 415-417 for details).

This method is based on the direct composition of terms. It is valid only when
blocks are roughly square. If the ratio of the length to the breadth is more than about
3:1 the composition by line and slice terms described in the next section should be
used. When deciding which approximation principle to use, the anisotropy in the
variogram must be taken into account. The ratio of length to breadth should be
calculated in terms of the variogram range rather than distance units. For example
in Fig.10.3. if the samples are actually on a square grid (a) but the variogram has
an anisotropy ratio of 2.1 the sample configuration after taking account of the
anisotropy is elongated as is shown in (b).
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Fig. 10.3. (a) Original grid, (b) grid after taking account of anisotropy

10.5.2 Composition by line and slice terms

The method presented above is used when the samples are evenly spread in space.
It is not suitable if the data are much more dense in one direction than in the other,
as for example happens in seismic surveys, sonar measurements of fish stock or
sometimes in underground development sampling. When data are closely spaced
along lines that are widely spaced, another approximation method must be used to
calculate the estimation variances. It involves combining the errors made when
extrapolating the sample values along the lines, and then extrapolating the line
values out into the slices around them.

Fig. 10.4. illustrates the case for two profiles. The area under study has been
sampled along two profiles d, and d,. If the distance between samples along the lines
is s, thereare n, = d,/s samples in the first line. If there are more than two profiles,
the separation between them is assumed 10 be constant. Slices of that width are
drawn centered on the profiles. Here they are denoted by v; and v,. So the whole
area V is the union of the slices.

As usual we let Z(V) be the true but unknown grade of the whole area V. Let Z(vi)
and Z(d;) be the true grades of the slice vi and the line section di. At first we assume
that the line sections have been analysed accurately, so we know Z{d,) exactly. To
estimate Z(V) we have to weight each Z(d)) by its area v;. As the distance between

profiles is constant, v,/d, = v,/d; and we have
dviz@) D d Z(d)

R P v}

; [10.11]
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Fig. 10.4. Two profiles (slices) of length 4, and d,

In the same way the true but unknown grade Z(V) is

dSviZw) D d Zw)

Z(V) = - =

SV, ‘Z¢ (10.12]

i

So the estimation error is the weighted average of the elementary estimation errors,
that is, of Z(d,) ~ Z(v) :

> d [ 2d) - Z(v)]
Z'(V) - Z(V) = - {10.13]

24
By the approximation principle the estimation variance is

I ECH

of = VarfZ'(V) - Z(V)] = —e=——
(>.d ) [10.14]

where 0% is the elementary extension variance of the central line section to its slice
of influence. Note that these are weighted by the squares of the lengths d,.

More realistically the line sections are obtained by averaging the sample grades
along the line section. As the samples are equally spaced, the average of the p,
samples is used to estimate Z*(d,):

Zd) = > Z6s) / m

[10.15]

The total estimation error Z'(V) ~ Z(V) can be split into two terms.
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2.4i[zd) - zv)] Y (Z7d) - 2(d)]
i + i

>d, > d;

The left hand term corresponds to the extension of the line sections to the
surrounding slices while the right hand one corresponds to the extension of the
samples to the line section. If we let Z(s, ) and Z*(s, ) be the true and the estimated
grades of the kth sample in the ith section, then the second term can be rewritten as

Edi /n; Z [Z*(Sik) - Z(Sik)}
S

As usual the sum of the covariances is considered to be zero so we can sum the
variances. We finally get:

}: #ol D do¥0,5)/n,

[10.16]

[10.17]

of = — + [10.18]
[> 4P [> d]
If N denotes the total number of samples (N = Z n,;) then
> dz a
— 2
2 ¢ 2O [10.19]

Of = -
(> d ) N
So the total estimation variance is the composition of a slice term that accounts for

the extension of the line sections to the slice and a line term

0%(0, s)
N

[10.20]

that accounts for the error made when extending the samples to the line section. We
shall now go on to describe how to calculate the estimation variance when the whole
of the zone is not known to be mineralized.

10.6 When the limits of orebody are not known a priori

In some cases the limits of the orebody are not known beforehand from the geology.
So they have to be determined from the drillhole data as information becomes
available. This uncertainty about the geometry of the orebody introduces a second
source of error, called the geometric error, which must then be added to the one
described previously.
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Fig. 18.5. Data layout showing mineralized holes and waste ones

Fig. 10.5. shows a region containing 48 drillholes. Seventeen hit the orebody
(indicated by a 1), the rest did not. The simplest way to define the extent of the
orebody is as the union of ail the grid squares with positive results.

Matheron (1971 a and b) developed a formula for the ratio of the geometric error
to the square of the mineralized area A:

oh _ 1 [N (Ny)? [10.21]
XZ——NZI:6+0061 Nz

where N is the number of positive samples (here 17). The paraimneters Ny and Nj are
found by counting the vertical and horizontal sides in terms of grid squares. To be
more exact Ny and N3 are obtained by dividing the total number of grid squares in
each direction by 2. Note N; must be greater than or equal to N;. In the example
there are 12 horizontal sides and 10 vertical ones. So Ny = 6 and N = 5, giving

2
e [- + 006 &F ] [1022)

This turns out to be (6.6%)% which is not very high.

One point to note when counting Ny and Nj, is that all the indentations in the
border must be counted, including the perimeter of internal holes. Fig. 10.6.
illustrates this point. Lastly the geometric error must be incorporated into the
estimation variance. Some care is required when doing this. For details see the
worked examples given in Journel and Huijbregts (1978) pp428 — 438. A similar
formula exists for 3D cases.
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Fig. 10.6. Data layout showing mineralized holes and waste ones

Fig. 10.6. shows a configuration with a waste zone in the center of the ore. This
complicates the counting of N; and N,. Working in the vertical direction first, the
total number of grid squares in the outer border is 16 whilst that of the hole is 6,
giving a total of 22. Similarly parallel to the horizontal direction, the total perimeter
is 26 (20 + 6). This means that N is 13 and N3 is 11. The rest of the calculation
follows as before.

10.7 Optimal sampling grids

Once we know how to calculate the estimation variance we can work out the optimal
drilling grid for a particular variable. Here “optimal” means the grid which gives
the required estimation variance for the fewest drillholes (or samples), and hence
at the lowest cost. For an isotropic deposit, a regular square grid should be used.
When there is anisotropy, the ratio of the spacing between samples along the axes
should be in proportion to the ratio of anisotropy.

Suppose that we want to estimate the average seam thickness and the average
grade (here we will consider the sulphur content in coal) in a 4 km x 4 km area. For
argument’s sake the seam is assumed to exist throughout the area and the
regionalization is isotropic. It would be possible to drill 16 holes on a 1km grid, or
64 on a 500m grid and so on, as shown by Fig. 10.7.
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Fig. 10.7. Two possible drilling grids

Suppose that the thickness variogram is spherical with a range of 1500m and a sill
of 1.0 and that the sulphur variogram is also spherical with a range of 200m and a
sill of 0.4.

10.7.1 For the 1km grid

The extension variances can be worked out using tables or a small program. Here
the values were found to be:

oi(0}v) = 0.27 for thickness
= (.38 for sulphur

So the estimation variance is:

of = 0.27/16 = 0.0169 for thickness
= 0.38/16= 0.0238 for sulphur

10.7.2 For the 500m grid

These calculations were repeated for the 500m grid giving:

o = 0.0020 for thickness
= 0.0055 for sulphur

To make meaningful comparisons between the estimation variances for two
variables, the coefficients of variation were calculated. That is, the standard
deviations were divided by the mean. It is often helpful to plot the coefficient of
variation against the number of driltholes on a bi-logarithmic scale.

To get arough idea of the accuracy, the interval, the mean + twice the standard
deviation, can be taken as an approximate 95% confidence interval. For the 1000
m grid, the thickness values are accurate t0 +  6.6% whereas the sulphur values
are only accurate (0 + 61.2%. These values reflect the ranges of the two variogram
models (1500m compared to 300m). Consequently even if this sampling grid was
optimal for thickness, it would not be anywhere near precise enough for sulphur.
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Table 10.6. Relative precision for sulphur content and seam thickness for the two
possible drilling grids

Grid Size
1000 m 500 m
Thickness 0.033 0.011
Suplhur Content 0.309 0.148

The optimal drilling pattern also depends on the size and, to a lesser extent, on the
shape of the region to be estimated. Above all, the dominant factor determining the
estimation variance is the total number of drillholes (samples) rather than the
distance between them. Consequently although a 1000 m grid might be optimal for
one variable for a certain area, it would not be dense enough for a smaller area and
would be unnecessarily expensive for a larger one.

When the limits of the orebody are not known at the outset of the campaign, it
is best to drill on a fairly wide grid at first and to infill as the limits become known.
In that case the estimation variance and the optimal spacing cannot be determined
at the outset since the effect of the geometric error depends on the size and shape
of the mineralized area.

10.8 Exercises

Ex 10.1 Fifty vertical holes were drilled on a regular 200m x 200m grid {0 estimate
the global reserves for a coal seam in a zone 1000m x 2000m that is known to be
mineralized. The variogram for seam thickness is a spherical with a range of 500m
and a sill of 3.25. Which approximation principle should be used to calculate the
global estimation variance? Calculate its value.

The variogram for ash content consists of a spherical with a range of 250m and a
sill of 4.65 plus a nuggest effect of 1.35. Calculate the global estimation variance
for ash content too.

As only 50 drillholes are involved, it would have been possible to have used kriging.
You can recalculate the estimation variances in this way and compare the values
obtained with those given by the approximation principles.
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Ex 10.2 Eighty vertical holes were drilled on a regular 200m x 200m grid to
estimate the global reserves for an alluvial gold deposit in a zone 1600m x 2000m
that is known to be mineralized. The variogram for the gold accumulation is an
anisotropic spherical model with a sill of 5. The anisotropy is geometric with the
longest range of 500m in the NS direction and with the shortest range of 100m in
the EW direction. Which approximation principle should be used to calculate the
global estimation variance? Calculate its value.

Ex 10.3 In aseismic survey of a square area 4km x 4km, the variable of interest was
measured every 10m along 4 profiles. Calculate the global estimation variance,
given that the variogram is an exponential model with a range of 500m and a sill
of 10.1 plus a nugget effect of 3.9.

Ex 10.4 A mining company is carrying out an exploration campaign to determine
the limits of mineralization for an alluvial deposit. They have dug 80 pits on a
regular 50m x 50m grid (Fig. 10.8.). The 1s indicate pits that hit mineralization
while the Os shows nonmineralized ones. The geologist in charge of exploration
wants to calculate the variance of the geometric error. Work out the values of N, Ny
and N, and hence calculate the variance.

Note that this figure is almost the same as Figure 10.6., except that the central waste
zone has been removed. Compare the value obtained here for the geometric
variance with the one obtained earlier,

Fig. 10.8. Location of exploration pits. The 1s show pits that hit mineralization



Appendix 1: Review of Basic Maths Concepts

Al What maths skills are required in linear geostatistics?

Four types of basic mathematical skills are needed in linear geostatistics (i.e. up to

variograms and kriging):

1. being able to calculate the means and variances of random variables (and later
of regionalized variables),

2. being able to use single and double summations rather than write out long lists
of variables

3. being able to differentiate in order to find the minimum of a function, and

4. being familiar with matrix notation for simultaneous linear equations.

As the third and fourth topics are common in mathematics, readers will have no
wrouble finding suitable textbooks on these. So we will only review the first two
points.

Al.1 Means and variances

In geostatistics we use linear combinations (i.e. weighted moving averages) of the
data to estimate the values of the variable at points or the averages over blocks. For
example, a typical linear combination is

Zo =M, + MZy + ... + hioZyo

Kriging optimizes the choice of the weights by minimimzing the estimation
variance. So we need to be able to express variances as a function of the weights,

Aj Ay Ay, and later, of the variogram model as well. To start with you need to
know the mean and variance of the linear combination:

E[Zs} = MEIZ) + ME[Z,] + ... + A ElZ,]

Var[Zs] = A2 VarlZ,] + M VarlZ,] + ... + A2, Var(Z,] +
+ 20 Ay COVIZ,, Zo] + wes + 24 Ayp CoviZs, Z,]
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These results are well known in statistics. The proofs can be found in statistics
textbooks. From there we go on to calculating the mean and variance of the
estimation error. If our aim is to use the linear combination given earlier to estimate
the value of the variable at point xg, then the estimation error is

Z; - Z() = )"IZI + )\.222 + ..+ )\.10210 - Zo

This is just the previous linear combination with an exira term (with a weight equal
to —1) added. So its mean and variance are

E[ZS —Zy) = )"lE[Z!] + ME[Z;] + .+ )\mE[Zw] — E[Z,]

VariZ; — Zo] = A2 Var[Z,] + A2 Var(Z,] + ... + A}, VarlZ,,] + 1?Var(Z,]
+ 20, A, CoVIZpZol + oo + 20y gy COVIZo, Zs)
- 2)\.() A’l COV[ZQ, 21] = e - 2)\.0 ;\.10 COV[Zo, ZlO]

In Chapters 2 and 3 we will see how to evaluate these variances for regionalized
variables rather than random variables by using the variogram or the spatial
covariance to take account of their layout in space. Then in Chapter 7 we will see
how to minimize these variances.

A1.2 Single and double summations

The equations for the expected value (mean) and the variance are long and
unwieldy. It would be much better to have a shorthand way of writing them without
having to list all the terms. Summations were invented to do this. The Greek letter
T (pronounced sigma) is used to denote a summation. Using this convention, the
expected value can be written as a single summation:

10
ElZi] = > M EIZ)]
i=1
= MEIZ\] + LE[Z,] + ... + AGE[Z)6]
In a similar way, the sum of the variance lerms can be written as

10
DA Varlz] = A} VarlZ,] + M Var(Zy]... + M VariZy]

i=1
Lastly we need an abbreviated way of writing the sum of all the covariance terms.
As each one contains two subscripts, a double summation over two variables is
required:

9

10
3 S Mk CovZ,Z) = 200 by CoVZy, Zol + e + hg Mo COVIZo, Zyo))

i=1 j>i
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More care is required with the double summation. Some exercises on single and
double summations are provided to allow you to get familiar with them.

A1.3 Exercises using summations

Ex 1. Expand the summations given below:

iMZU ixg Var{Z] , l/NiZ,, [ix] , iq;" Ha(y)
i i=1

Ex 2. Expand the following double summations:

iixixjyﬁ, [Zx}[Zx] iixixj

i=1 j=1{

Ex 3. Show that:

[gxi]z = iix,x, ix +2ZZAA

i=1 j=1 i=1 i=1 j>i

Ex 4. Show that:

Var [i)"‘ Z, ] = i ZN:)H A, CovlZ,Z)]
i=1 i



Appendix 2: Due Diligence and its Implications

A2.1 Stricter controls on ore evaluation

Over the recent years many mining projects have failed, and the lending institutions
and shareholders have lost their money. So the stock exchange regulations and in
some countries the corporate law have been made much stricter. One of the common
causes of project failure has been inaccurate estimations of the reserves, generally
overly optimistic appraisals. In some cases those who have lost their money have
sued the initial company to get their money back. This can lead to the expert who
has done the ore evaluation being called to justify his results. As can be seen from
the article by Williamson—Noble and Lawrence (1994), in Australia errors or
misrepresentations by an expert in public statements such as in share prospectuses
are severely punished: a fine of up to $20,000 plus 5 years jail for the individual.
The only legally acceptable defence is “due diligence™.

AZ2.2 Due diligence

Due diligence means appropriately attentive care. Experts have to be able to show
that they carefully checked the input data and used background information (such
as geological interpretations) in a suitable way, and that they carried out the study
in accordance with a suitable set system of procedures with appropriate quality
controls. But what does this mean for geostatisticians?

Before giving some guidelines as to this, we should remind everyone that when
a mining project fails, the control of the company generally passes from the
directors to legally appointed receivers who are on the lookout for scapegoats. The
inability to provide clear documentary evidence as to how the study was carried
would make it very difficult for a consultant to argue that he worked with “due
diligence”. This is why we insist that students at Fontainebleau maintain a logbook
for their case-studies.

A2.3 The logbook

(1) The logbook should be a bound volume not a spiral bound exercise book.
Preferably the pages should be numbered. You should write in black ink rather than
blue ink or pencil.
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(2) Never tear pages out of your logbook. If you make a mistake, cross out the
relevant section in red, put the date of the change and write down the reasons.

(3) Each day as you start work you should write the date (including the year) at the
point where you start work. Then you note each computer operation that you carry
out. For example when calculating an experimental variogram, note the exact set
of data used including the selection name, the variogram lag, the angles chosen, the
tolerances (angular and distance), etc. so that you could exactly duplicate the
variogram calculation at a later date ~ even 5 years later. It is not uncommon for
the Centre to get requests from mining companies to provide them with duplicate
copies of data files, working notes or reports which they themselves have lost. Up
until now we have succeeded in doing this.

(4) At the outset of the study you will have been given a lot of information about
the orebody (maps showing drillhole collar locations, geological sections, reports
on the geologists’ interpretation,...). Carefully note exactly what information was
provided in your logbook and again at the beginning of your report; e.g. the maps
sheet numbers, their dates etc. The geological interpretation of the deposit changes
with time, so you should note what it was when you start the study and any
subsequent modifications during the study.

(5) Sometimes during the study, changes wili be made to the data set. Points can be
eliminated or new ones added. Note these in your logbook and send the client a fax
or a memo confirming what you have done. Phone messages are easily forgotten or
lost. Take the precaution of confirming in writing. Glue a photocopy of the fax/
memo into your loghook. The original (or a copy) should be retained in the standard
filing system for outgoing letiers.

(6) During a study you will accumulate lots of computer printouts; some are useless,
others are very important. Some of these (the statistics on data sets) should be glued
into your logbook because this helps specify exactly which data were actually used.
The other important ones should be carefully stored (with their dates and maybe a
note in the corner) in a file. Be sure they do not get crushed so that you can photocopy
them for the final report.

These are just some suggestions on how to set up and organize a logbook. The list
is by no means exahaustive. If you come across any points that have been missed,
I would appreciate hearing about them.
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