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Preface 

The Centre de Geostatistique has had a long tradition of teaching geostatistics, 
starting with the summer schools in the early seventies. Over the past twenty years, 
the CFSG postgraduate course has trained more than 150 engineers and geologists 
to be mining geostatisticians. The aim of this 9 month postgraduate course which 
is partially funded by the French government via the CESMAT has always been to 
train professional geostatisticians - specialists who will work in industry after 
graduating. When the CFSG started, there were plenty of textbooks in both English 
and French. The legendary Fascicule 5, Matheron's course notes for the 1970 
summer school, provided the theoretical benchmark; the classic books by Andre 
Joumel and Charles Huigbregts, Michel David and Isobel Clark which were just hot 
off the presses, gave practical insights into how to apply the theory in the mining 
industry. These books are now a bit out of date. It seemed to be time for a new book 
on basic linear geostatistics - not that the theory has changed in the meantime, but 
ideas on how to apply it have evolved as more case studies were done. 

This book gives my view on how to apply linear geostatistics (variograms and 
kriging), especially in a mining context. Getting geostatistics to work in practice 
requires some theoretical knowledge together with practical know-how. Not 
enough theory and people make silly mistakes like choosing functions that are not 
positive definite as variogram models, giving rise to negative variances. Not enough 
practical know-how and people cannot see how to interpret experimental 
variograms. I hope that this book will contain the right mixture of theory and 
practice to allow engineers and geologists, particularly those living in remote 
locations, to apply geostatistics to their own data. 

The first chapter in the book illustrates two key concepts in geostatistics: the 
support effect and the information effect. Chapter 2 introduces the different 
stationarity hypotheses. The next three chapters concentrate on the variogram. 
Chapter 6 takes up the topic of support again, but this time from the point of view 
of regularization. The next three chapters are devoted to kriging, the name used for 
the different geostatistical estimation methods. The final chapter treats the topic of 
estimating the total reserves. Some reminders on basic mathematics and statistics 
are included in Appendix 1. Lastly given the increasing trend toward law suits, it 
seems important to propose guidelines on how to carry out case-studies in industry. 
The key to this is keeping a "logbook" for each case-study. This is described in 
Appendix 2. 



vi 

These course notes have evolved over the years through teaching the CFSG 
students. Their comments and suggestions have been very helpful. Particular thanks 
are due to Malcolm Thurston and Mike Harley who kindly allowed part of their 
CFSG projects to be published in this book. Last but not least. I would like to thank 
Michel Schmitt. Chris Roth and Jane Bocquel for their invaluable help in preparing 
the manuscript. 

Margaret Armstrong 
Fontainebleau. May 1998 
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1 Introduction 

1.1 Summary 

After outlining the types of problems in mining that geostatistics can be used to 
solve, an introductory exercise is presented. It illustrates rhe need for good 
estimators, particularly when selective mining is being used. The economic impact 
of the support and information effects on reserve calculations is stressed. Lastly 
some case studies comparing geostatistics with other estimation methods are 
reviewed. 

1.2 Introduction 

Over rhe past 30 years, geostatistics has proved its superiority as a merhod for 
estimating reserves in most types of mines (precious metals, iron ore, base metals 
etc.). Its application to rhe petroleum industry is more recent, but it has nevertheless 
demonstrated its usefulness, particularly for contour mapping and for modelling and 
simulating the internal heterogeneity of reservoirs. Its use has been extended to 
other fields such as environmental science, hydrogeology, agriculture and even 
fisheries, where the time component as well as the spatial variability is important. 

The basic tool in geostatistics, the variogram, is used to quantify spatial 
correlations between observations. Once a mathematical function has been fitted to 
the experimental variogram, this model can be used to estimate values at unsampled 
points. This estimation procedure is called "kriging" after the South African 
engineer, Danie Krige, who with Herbert Sichel carried out the first developments 
in geostatistics in the Witwatersrand gold mines. After reading an early paper 
written by Krige, the French mathematician, Georges Matheron, saw its 
implications and went on to develop the theory in the sixties and seventies. Before 
going into detail about the variogram and rhe different types of kriging, the main 
uses of geostatistics in mining are outlined. 



2 Introduction 

1.3 Applications of geostatistics in mining 

1.3.1 Estimating the total reserves 

The first important step in a feasibility study is to determine tile in situ reserves. 
Geostatistics can help tile mine planner get accurat.e estimates of fue total tonnage 
in situ, fue average grade and fue quality from fue available information, and fuus 
help him decide whefuer further investment in fue project is warranted. 

1.3.2 Error estimates 

No estimation mefuod can give exactly the right value all fue time since fuere is 
inevitably some error involved. So it is important to know how serious fuis error is. 
Decision makers need to know wOOfuer fue estimated grade is accurate to ± 0.1 % 
or to ± 1 %. As well as giving fue estimated values, geostatistics provides a measure 
of the accuracy of fue estimate in fue form of fue kriging variance. TIlis is one of 
the advantages of geostatistics over traditional mefuods of assessing reserves. 

1.3.3 Optimal sample (or driUhole) spacing 

The estimation variance (calculated by geostatistics) depends on the variogram 
model chosen for the deposit and on fue location of fue samples, but not on fueir 
numerical values. So once fue variogram has been selected for a particular deposit 
or region, fue estimation variance can be found. TI1is makes it possible to evaluate 
fue estimation variance for a wide variety of possible sample patterns wifuout 
actually doing fue drilling. and hence to find the grid that just gives the required 
accuracy. 

1.3.4 Estimating block reserves 

Once a decision has been made to mine a deposit, estimates of fue tonnage and fue 
average grade are needed block by block. Here a block might represent fue 
production for a shift, or for a monfu. In addition to estimating fue ore tonnage and 
the average grade of mining blOCKS, geostatistics can provide estimates of quality 
variables. For coal these include ash content, sulphur content, ES.L and calorific 
value. For iron ore, fuey are the percentages of silica and phosporus, loss on ignition 
and sometimes manganese content. 
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1.3.5 Gridding and contour mapping 

Although most mining companies usually want block estimates of their variables 
rather than contour maps, geostatistics can be used to estimate the values at the 
nodes of a regular grid. After this, a standard contouring package can be used to do 
the plotting. This has the advantage of being more accurate than other methods of 
evaluating grid node values. Over the past 25 years the petroleum industry has been 
turning more and more to kriging for this. More recently environmental scientists 
have also started using geostatistics. 

1.3.6 Simulating a deposit to evaluate a proposed mine plan 

Since kriging is designed to give the minimum variance linear estimates, the kriged 
values are smoother than any other unbiased linear estimators but they are also 
smoother than the real values. This means that if a numerical model of a deposit is 
being set up to test various proposed mine plans, the kriged values should not be fed 
into this because they would seriously under-estimate the inherent variability. In this 
case a conditional simulation of the deposit should be used. More information on 
when to use simulations rather than kriging is given in Chapter 9. 

1.3.7 Estimating the recovery 

In many mining operations engineers have to predict the recovery and the recovered 
grades when blocks of a specified size are selected for treatment (or mining) if their 
average grade is above an economic cutoff. When the sample grid is about the same 
size as the selection blocks their grades can be estimated individually with 
reasonable accuracy. But if the blocks are much smai1er than the grid size as is 
usually the case at the feasibility stage, it can be misleading trying to get estimates 
of individual blocks. These are simply not accurate enough. The best that can be 
done is to predict the proportion of selection units that will be recovered, and their 
average grade. This leads in to nonlinear geostatistics. 

Similar problems arise in soil rehabilitation work where scientists have to 
predict the total amount of material that is contaminated, Le. contains unacceptably 
high levels of the pollutant. 

In the subsequent chapters we go on to see what the variogram is and how kriging 
is used to estimate values and to obtain the estimation variance. As this text deals 
only with linear geostatistics, it does not go into more advanced topics such as 
conditional simulaton or recoverable reserve estimation using nonlinear methods. 

1.4 The $64 question : does geostatistics work? 

Having seen some of the possible applications of geostatistics in the rnmmg 
industry, the $64 question is: "Does geostatistics work?" or "Does it work better than 
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Ihe alternative reserve estimation methods?". First we present a simplified example 
showing the financial impact of poor block estimates. Then several comparative 
case studies on ore evaluation techniques are reviewed. 

1.5 Introductory exercise 

One of the most common uses of geostatistics (in the mining industry) is to estimate 
Ihe average grades of mining blocks by kriging - for example, for day to day grade 
control. Many people wonder whether kriging really does give better results than 
other methods. This exercise has been designed to highlight the economic impact 
of estimation errors. First let us see the data. The grades of 64 blocks of size I x 1 
were available in an area 8 x 8. Figure 1.1. shows 16 of these grades, each from the 
top left corner of a block of size 2 x 2. The values of the other 48 samples will be 
used later for comparison purposes. 

I I I I 

735 I 45 I 125 I 167 I __ .J ___ __ .J ___ __ J ___ --_.&_--
I I I I 
I • • I 

I I I I 

450 : 337 : 95 I 245 I 

I I 

---'--- --~--- --~--- ---~---
I I I I 
I I I , 
I I I I 

124 : 430 : 230 • I 460 : 
_ .... --- _ .... _-- -- ... --- ___ A ___ 

I I I I 

I I I I 

I I I • 
I I I 

75 I 20 I 32 I 20 : I I I 

--~--- -- ... --- --04--- ---+---
I I I I 

I I I I 

I I I I 

Fig 1.1. Sixteen samples of size 1 x 1 to be used to estimate mining blocks of size 
2x2 

These 16 values will be used as the "samples" to estimate the values of mining 
blocks of size 2 x 2 (i.e. 4 times larger than the samples). The simplest way of 
estimating each of the 16 block grades is by equating the grade of the sample in each 
one to the block estimate. This is called the polygonal method. Figure 1.2.a gives 
these estimates. 

Now it is your turn to design a way of estimating each of Ihese 16 values. You 
may choose whatever method you like; for example by looking at the values and 
seeing how they vary, or by guessing, or by taking moving averages of neighbouring 
values. Write your estimates in Ihe space provided on the right of Fig. I.2.b. 
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735 45 125 167 

450 337 95 245 

124 430 230 460 

75 20 32 20 

8 b 

Fig 1.2. (8) Polygonal estimates of block grades obtained by equating the block 
grade with the sample value inside it; (b) space for the reader's personal estimate 

442 190 142 204 

354 276 212 279 

189 226 216 271 

99 81 88 125 

Fig 1.3. Kriged estimates of block grades 

A third set of estimates was obtained by having a geostatistician krige the block 
values (Fig. 1.3.). Kriging is just a special sort of weighted moving average. You 
are not expected to understand how these numbers were obtained yet. For the 
present, they are just another possible set of block estimates. 

1.5.1 Seledive mining 

In most mining operations, the high grade blocks are mined while the others are 
either left in place or are dumped as waste. Suppose that in this case the economic 
cutoff is 300. So mining a block with a grade of 301 leads to a profit of 1 unit, and 
conversely mining a block with a grade of 299 leads to a loss of I unit. For the time 
being we are going to ignore any geometric constraints due to the mining method, 
and we will assume that all pay blocks are mined. 
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The first step is to calculate the profits that would be predicted by each of the 
three estimation methods. We shall work through this together for the polygonal 
estimation and then you can repeat it for the other two. Firstly. shade in any blocks 
with a predicted grade above 300 (or equal to it). There are five of them. See Fig. 
1.4.a. 

So the expected profit is: 735+ 450 + 337 + 430 + 460 - 5 x 300 = 912 

Now we calculate the actual profits that would be made when the blocks estimated 
to be above cut off are mined. The true grades of the 2 x 2 blocks are given in Fig. 
1.4.b. For the polygonal method. five blocks (the shaded ones) are scheduled for 
exploitation. Their real grades are 505. 270. 328. 220 and 263 rather than the 
estimated 735. 450. 337, 430 and 460. 

So the actual profit would be: 505 + 270 + 328 + 220 + 263 - 1500 = 86 

Instead of earning a profit of 912 units, the mine makes only 86 units. The company 
could well end up in serious financial difficulties. Repeat these calculations for 
kriging. Show that only two blocks are scheduled for mining and that the actual 
profit is 175 compared to a predicted profit of 196. Lastly repeat the calculation for 
your own estimator and note the results. 

735 45 125 167 505 143 88 207 

450 337 95 245 270 328 171 411 

124 430 230 460 102 220 154 263 

75 20 32 20 101 54 44 155 

a b 

Fig 1.4. (a) Polygonal estimates and (b) true block grades. Shaded blocks with a 
grade above 300 are scheduled for mining. Note the difference between true and 
estimated grades 

1.5.2 Optimal recovery 

Before comparing these results, we should calculate the optimal recovery (i.e. what 
we would recover had we known the true grades before mining). Clearly only three 
blocks would have been selected (505,328 and 411) and the profit would have been 
344. Compared to this, the profit predicted by the polygonal method (912) was quite 
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illusory. Kriging gave a much more realistic prediction of 196 compared to an actual 
profit of 175 (Le. only 10% difference) but this is still suboptimal compared to 344. 

Now it is interesting to see why kriging works better, on average, than other 
estimation methods. We will see that the problems met when estimating blocks are 
due to two effects: the information effect and the support effect. 

1.5.3 Information effect 

The information effect is due to the incomplete information available at the time 
when we must discriminate between waste and ore blocks. We have only estimates 
for the block grades instead of the real ones. To visualize this, we draw scatter 
diagrams of the true grade (Y axis) against the estimate (X axis) for different 
estimation methods. Ideally the estimated grade would be equal to the true one, so 
the points would fallon a 45° line passing through the origin. Unfortunately they 
do not. They form a cloud of points which has been represented here as an ellipse. 

True 
grade 

Ore estimated 

True grade = Estimated grade 

/// 

300~~~----~~--~----~~------

to be ore 

&-----------~~--------------------~ Estimated grade 

Fig 1.5. Crossplot of true grade versus estimated grade. The cloud of points has been 
represented as an ellipse. Blocks with an estimated grade above 300 are scheduled 
for mining whereas those blocks actually above 300 should be mined 

When selecting blocks for mining, all the blocks whose estimated value is above the 
cutoff are considered to be ore. To show this graphically, a vertical line is drawn at 
X=300. The blocks to the right of this line are selected for mining. What we actually 
wanted was the blocks whose true grade is above 300. A horizontal line drawn at 
Y:::300 represents this. The blocks above this line should have been mined. This 
divides the whole area into four zones: 
1. True grade> 300; estimated grade > 300. These ore blocks are correctly estimated 

as ore. They correspond to the upper right part of the diagram. 
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2. True grade < 300; estimated grade < 300. These waste blocks are correctly 
estimated as waste. They lie in the lower left part of the diagram. 

3. True grade >300; estimated grade <300. These ore blocks have been considered 
to be waste; this estimation error can have costly consequences for the mine. 
These blocks lie in the upper left part of the diagram. 

4. True grade <300; estimated grade >300. These waste blocks have been 
considered to be ore. This second type of estimation error does not cancel out the 
preceding one and can have expensive consequences for the mine. These blocks 
are in the lower right part of the diagram. 

Going back to our example, Fig. 1.6. shows the crossplots corresponding to the 
polygonal method and to kriging. For kriging the slope of the regression is 
approximately 1.0 (i.e. at 45°) wheras it is less than 1.0 for the polygonal method. 
Now look at the "fatness" of the two clouds. Kriging effectively gives a "thinner" 
cloud. The reader can go back to the two scatter diagrams and see the misallocated 
blocks for each of the estimation methods (in the upper left and lower right 
quadrants). This confirms that kriging is better. In Chapter 8 we shall see that the 
criteria for judging an estimator include the slope of the regression line of the !.rue 
value on the estimated one. 

True 
Grade I 

I 
I 

III' I 
II 

III 

,....---1--------
I r 

III III l1lil1li I 

1l1li I 
III I Estimated Grade 

a Polygonal Estimates 

True 
Grade I 

I 
I III 

III' I 
l1li1 ---IIii1.------

I 
I 
I 

Estimated Grade 

b Kriged Estimates 

Fig 1.6. Crossplot of true grade versus estimated grade; (a) for the polygonal 
estimator and (b) for kriging. Ideally points should lie along the diagonal (true grade 
= estimated grade) 

1.5.4 Support effect 

In geostatistics the term "support" refers to the size and volume of a sample or a 
block. Here the samples have aim x 1 m support while blocks are 2m x 2m. In 
general, the support of samples is smaller than that of blocks. The true grades of the 
sixteen 2m x 2m blocks and of the sixty-four 1m x 1m blocks are shown in Figs. 
1.4. and 1. 7. Although the two means are the same, the variance of the samples is 
higher than that of the blocks. 
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735 325 45 140 125 175 167 485 

540 420 260 128 20 30 105 70 

450 200 33 190 95 260 245 279 

180 250 380 405 250 80 515 605 

124 120 430 175 230 120 460 260 

40 135 240 35 13(] 135 160 170 

75 95 20 35 32 95 20 450 

200 35 100 53 2 45 58 90 

Fig 1.7. The true grades of the sixty-four 1m x 1m blocks 

lbeir histograms (Fig. 1.8.) show that the small blocks are more dispersed than the 
large ones. For the 300 cutoff more ore will be recovered if 1m x 1m blocks are 
mined rather than 2m x 2m ones. As the polygonal method equates the grades of the 
samples (Le. a small support) with those of the blocks, it substitutes the histogram 
of the samples for the block histogram - even though they are quite different. 1bis 
shows that a good estimator must take account of the difference between the 
supports of the samples and the blocks to be estimated; that is, of the support effect. 

20% 

10% 

200 400 600 

1 

200 400 600 

b 

Fig 1.8. Histograms of the grades, (a) for small blocks and (b) for larger ones. 
Although the means remain the same (201) the variances are different and so are the 
shapes 
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So we have seen that the support effect and the information effect are two of the 
main causes of the incorrect prediction of reserves. We now know some of the 
properties that a good estimator should have. We can see that the way in which we 
combine data in the neighbourhood of the block to be estimated is important. The 
frrst part of this course will deal with the variogram; this is a statistical tool for 
assessing how similar values are, as a function of the distance between them. In the 
second part of the book the variogram is used to calculate the weights to be used 
when estimating blocks (for example); that is, when kriging blocks. 

1.6 Does geostatistics work in the real world? 

To answer this question we will have a look at some case-studies where the 
predictions made using geostatistics were compared with actual production figures. 
We will first look at two case-studies on coal, which is usually fairly easy to 
estimate, then at two others on gold, involving lognormal kriging and then review 
some more recent ones. 

1.6.1 Early coal case studies 

The studies on coal are Sabourin (1975) and Wood (1976). Both were favorably 
impressed by the results given by kriging. Sabourin estimated the sulpbur content 
of blocks using channel samples. He then compared his estimates with the actual 
production figures. The average relative error between the estimates and the actual 
value was 9.8 %, which be judged to be "very satisfactory". It is important to note 
that this deposit had a marked trend in the sulphur values, which necessitated the 
use of universal kriging. As this is more complicated than ordinary kriging, the close 
agreement with the production figures is particularly impressive. 

Wood did not run into the problem of a trend in the data in his study of South 
African coal. He was therefore able to use ordinary kriging. The aim of his study 
was to predict the seam width at a distance of 18m (one pillar) in advance of the 
workings in the No 2 seam at the Witbank Mine. Four estimation methods were 
considered: 
1. the average of all measurements in the last 3 pillar advances, 
2. the average of all measurements in the last pillar advance, 
3. the closest single measurement, and 
4. kriging. 

The tests were carried out in two parts of the mine (one with 133 sets of data values, 
the other with 101 sets). The differences between the estimated values and the actual 
production figures were calculated for all four methods (Table 1.1.). This showed 
that the kriged estimates were consistently closer to the true values than the other 
methods considered. 
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Table 1.1. Mean square of the standardised estimation errors, taken from Wood 
(1976) Report No 2 South African Chamber of Mines 

Region A Region B Both regions 

No of estimates 133 101 234 

Mean of last 
7.50 3 advances 2.69 5.42 

Mean of last 
advance 7.38 1.84 4.99 

Closest sample 5.79 3.17 4.66 

Kriging 4.89 1.38 3.38 

1.6.2 Gold case studies 

We now go on to look at some comparative case-studies on gold deposits, which are 
clearly much more difficult to estimate because of the skewness of the distributions. 
Two interesting ones are Rendu (1979) and Krige and Magri (1982), who worked 
on South African deposits. 

Rendu set out to test whether geostatistical predictions were verified in practice. 
He had about 5000 gold grades from one section of the Hartebeestfontein Mine. As 
the data were on a very close grid (25 ft), blocks of size 125 ft x 125 ft contained 
25 samples and averaging these gives an accurate idea of the true grade of each 
block. Rendu then took the central one of the 25 grades as the "sample" and 
estimated the block grades by kriging using the "samples". By moving the center 
of the "sample" grid, he was able to carry out his procedure on 4808 blocks. 

Since the data had a three parameter lognormal distribution, he used lognormal 
kriging as well as ordinary kriging and also two classical methods (polygons of 
influence and inverse distance weighting). To present his results he calculated the 
regression of the true grade against the estimated one (on a bi-Iogarithmic scale) for 
all the estimation methods considered. Ideally the regression line should be at 45 
degrees. Lognormal kriging with a known mean came closer to this than any of the 
other methods. If the regression line is not at this angle, the estimates are said to be 
conditionally biased. When that occurs, the slope is usually less than 1.0 and so the 
grade of rich blocks is over-estimated, whereas that of poor ones is under-
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estimated. 1bis was certainly the case for the polygonal method. As we have seen, 
the economic consequences of this can be very serious when the estimates are being 
used to select blocks above a cutoff grade for mining, and for predicting the 
recoverable reserves. 

The second comparative study by Krige and Magri was on the gold grades of a 
very variable reef in the Lorraine gold mine and on the lead grades in the Prieska 
copper-zinc mine. Their findings confirmed those by Rendu. 

1.6.3 More recent case studies 

Several more comparative studies were presented at the Ore Reserve Estimation 
Symposium held in Montreal in May 1986. Two particularly interesting ones were 
those by Raymond and Armstrong (1986) who worked on a porphyry copper deposit 
and by Blackwell and Johnston (1986) who studied a low grade copper molybdenum 
deposit. Raymond and Armstrong found a very close agreement between the grade 
of milled ore over a 17 month period. They used lognormal kriging (which is a 
special form of kriging designed for skew data with a lognormal distribution). In the 
other paper the authors described how they used both DDH data and blasthole data 
when kriging blocks. In their conclusion they cited three advantages of using 
geostatistical methods: 
1. The mineral reserves results are easily duplicated by different mine personnel, 

as there is little need for subjective interpretation after the variogram models are 
selected. 

2. Geostatistics effectively improves estimated grades, even when using grade data 
of differing size and reliability. 

3. The improved mineral reserve permits better long and short range planning and 
allows the operator flexibility when dealing with downtime, breakdowns, wall 
slope instabilities, metal price changes. 

Since these comparative studies confirm the superiority of kriging over other 
commonly used estimation methods for deposits ranging from coal to gold, it seems 
worthwhile looking more closely at the technique. We shall start by seeing how to 
use geostatistics to model these types of variables. 

1.7 Exercises 

Ex 1.1 The four tables below show the estimated grades obtained using three 
different methods and also the real grades found after mining. 

Calculate the average for the 16 block grades for each method and for the true 
grades. Which of these estimators are unbiased? 

Plot the scatter diagrams of the true grade (on the vertical axis) against the estimated 
grade. Look at their regression slopes (true against estimated) and see which is 
closer to 45° (i.e. a slope of 1.0). 
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Table 1.2. Grades estimated by three different methods (a, b and c) and the true 
grades (d) 

30 30 20 45 10 30 10 55 

20 50 50 35 5 20 50 35 

40 25 35 25 40 15 40 30 

15 40 20 20 5 35 10 10 

a b 

15 35 20 35 20 25 15 40 

15 20 45 25 15 25 45 30 

40 10 30 30 35 15 35 25 

15 35 20 10 10 35 20 10 

c d 
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2.1. Summary 

In tills chapter the basic definitions in geostatistics including the concepts of random 
function and regionalized variable are presented. The underlying hypotheses 
(second order stationarity and the weaker intrinsic hypothesis) are introduced. The 
variogram and the spatial covariance are defined. The problem of how to decide 
whether to treat a variable as stationary, intrinsic or nonstalionary is discussed. 
Some of the basic properties of the spatial covariance are introduced in tills chapter 
as they are helpful in deciding on the degree of stationarity. The relationsillp 
between the variogram and the spatial covariance is derived but the rest of the 
variogram properties are left to the next chapter. 

2.2 Modelling regionalized variables 

Since the information available about the variable under study is fragmentary, we 
need a model to be able to draw any conclusions about points that have not been 
sampled. There are many ways of setting up models. Several will be discussed. 

Genetic models. One of the most intuitively appealing ways of developing a 
mathematical model is by modeHing the genesis of the phenomenon. As 
sedimentary processes are amongst the simplest to describe, attempts were made to 
model them in the early seventies by Jacod and Joathon (1970 a, b). Unfortunately, 
the geological factors controlling even simple sedimentary processes are extremely 
complicated and require many parameters to represent them. Not surprisingly it 
proved difficult to get meaningful estimates of these from limited sample data. 
These problems led researchers to give up this approach at the time. Recent work 
by Hu, Joseph & Dubrule (1994) in modelling oil reservoirs made up of prograding 
lobes has met with more success, but the idea of Simulating the genesis of deposits 
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mathematically has been dropped. The geology of reservoirs and deposits is too 
complicated and not yet well enough known for this approach to work - at least at 
present. 

Trend surfaces. By the late sixties, computers had become much more common 
which made it possible to carry out the calculations involved in statistical methods 
such as trend surfaces. So at the same time that lacod and loathon were working on 
reservoir genesis, two Americans applied trend surface analysis for predicting the 
properties of coal. The implicit assumption underlying these types of regression 
methods is that the surface under study can be represented, at least locally, by a fairly 
simple deterministic function such as a polynomial, plus a random error component. 
Here "random" means that the error is uncorrelated from one place to another and 
does not depend on the function. The difficulty with this approach can be seen from 
Table 2.1 which shows the equation fitted by Gomez and Hazen (1970) for the 
proportion of pyritic sulphur in a certain coal. The equation is very complicated and 
contains many terms like sines, cosines and exponentials. The problem is that most 
geological variables display a considerable amount of short scale variation in 
addition to the large scale trends that can reasonably be described by deterministic 
functions. InSisting on having uncorrelated errors means that the function has to 
twist and tum a lot, which explains the presence of all the exponential and 
trigonometric terms in Table 2.1. This suggests that it might be better to allow for 
correlations between values different distances apart. This is the basic idea behind 
geostatistics. 

Geostatistics. The term regionalized variable was coined by Matheron (1963, 
1965) to emphasize two apparently contradictory aspects of these types of variables: 
a random aspect, which accounts for local irregularities, and a structured aspect, 
which reflects large scale tendencies. The common statistical models including 
trend surfaces put all the randomness into the error term while all the structure is 
put into the deterministic term. Unfortunately this is not realistic for geological 
phenomena. A better way of representing the reality is to introduce randomness in 
terms of fluctuations around a fixed surface which Matheron called the "drift" to 
avoid any confusion with the term "trend". Fluctuations are not "errors" but rather 
fully fledged features of the phenomenon, with a structure of their own. The flfst 
task in a geostatistical study is to identify these structures, hence the name 
"structural analysis". The geostatistician can go on to estimate or simulate the 
variables. 

2.3 Random functions 

The observed value at each data point x is considered as the outcome, z(x), of a 
random variable, Z(x). Its mean is called the drift, m(x). At points where no 
measurements have been made, the values z(x) are well defined even though they 
are unknown. They can also be thought of as being the outcomes (or realizations) 
of the corresponding random variable Z(x). 
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Table 2.1. Regression equation for pyritic sulphur in coal (From Gomez & Hazen, 
1970) This method assumes uncorrelated errors, which forces the trend surface to 
twist and turn rapidly, hence the trigonometric and exponential terms 

Equation A-I (Pyritic sulfur, coarse coal) = 14.0548 - 5.97910 x AS 

+ 1.35753 x SU + 1.34232 x SU x (AS - SU) - 0.419448 x AS 

x SU x (AS - SU) + 4.95307 X 10-3 [AS x SU x (AS - SU)]2 

- 2.69728 X 10-4 (AS X SU x (AS - SU)P + 5.88963 X 10- 11 x e(ASxsU) 

- 1.38995 x 10-6 [e(ASX(AS-SU»)] + 0.0103637 [e[SUx(AS-sU»)] 

- 16.70984 (AS x SUje(AsxsU)] + 5.67080 x 10-3 (AS X (AS - SU) 

je (AS X (AS-SU») ] - 1.96079 x 10-5 [SU X (AS - SU) Ie [SUx(AS-SU»)] 

+ 0.104688 x sin(AS x SU)3 x cos(AS X SU)2 - 9.53418 X 10-3 

x sin[AS x (AS - SU)]3 x cos[AS x (AS - SU)]2 - 0.0848224 

x sin[SU x (AS - SU)jl x cos[SU x (AS - SU)]2 - 2.08676 x sin(AS) 

- 2.19124 x sin(SU) + 1.49662 x sin(AS - SU) - 0.107983 x eAs 

- 0.0504733 x eSu + 0.312656 x (AS-SU) - 0.0491919 x sin(AS3) 

x cos(AS2) + 0.0434771 x sin(SU3) x cos(SUl) - 1.81229 X 10-4 

x sin(AS - SU)3 x cos(AS - SU)2 - 2.01703 X 10-4 x e(As+sU) x e(AS-sU) 

Variables used in equation. 
AS = Ash in coal, percent 
SU = Sulfur in coal, percent 

In mathematical terms, the family of all these random variables is called a random 
function. (Synonyms: stochastic process, random field). A random function bears 
the same relation to one of its realizations as a random variable does to one of its 
outcomes. except that the realization of a random function is a function whereas the 
outcome of a random variable is a number. A random function is characterized by 
its finite dimensional distributions, i.e. by the joint distributions of any set of 
variables Z(XI), Z(X2), ... Z(Xk), for all k, and for all points x], x2, '" Xk. It would 
be impossible to do anything with this model unless we are prepared to make some 
assumptions about the characteristics of these distributions. The next section 
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presents the most commonly used hypotheses. Before going into these in detail, 
readers may be interested to know what types of variables can be modelled as 
random functions. Box No I1ists some of the more common ones. 

BOX No 1 : Variables that can be modeUed by random functions. 

- Metal grades, for precious metals, uranium, base metals, coal, diamonds, 
beach sands, industrial minerals, 

- Quality parameters e.g. for iron ore, silica, alumina, loss on ignition and 
sometimes manganese; for gold, arsenic; for coal, calorific value, ash & 
sulphur content; for cement, iron content, magnesium oxide, moisture, 

- Topographic variables such as seam thickness, overburden thickness, 
depth to a geological horizon, position of the sea floor, 

- Rock type indicators e.g. for distinguishing between sandstone and 
shale in oil reservoirs, or between different facies in general, 

- Porosity and permeability, for both oil reservoirs and aquifers, hydraulic 
head and transmiSSivity in hydrology, 

- Geochemical trace element concentrations in soil samples and stream 
sediments, 

- Pollutant concentrations in soil & water and in the atmosphere, 

- For soil science, trace element concentrations (e.g. Cu & Co), nematode 
counts in soil, 

- In fishery science, fish & egg counts, water temperature, salinity; density 
of shellfish per unit area, 

- In hydrology, rainfall and runoff measurements, 

- Tree density in tropical forests. 

2.4 Stationary and intrinsic hypotheses 

In statistics it is common to assume that the variable is stationary, i.e. its distribution 
is invariant under translation. In the same way, a stationary random function is 
homogeneous and self-repeating in space. For any increment h, the distribution of 
Z(Xl), Z(X2), ... Z(Xk) is the same as that of Z(XI + h), Z(X2 + h), ... Z(Xk + h) This 
makes statistical inference possible on a single realization. In its strictest sense 
stationarity requires all the moments to be invariant under translation, but since this 
cannot be verified from the limited experimental data, we usually require only the 
flTSt two moments (the mean and the covariance) to be constant. This is called 
''weak'' or second order stationarity. In other words, the expected value (or mean) 
of Z(x) must be constant for all points x. 
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That is, 

E(Z(x» = m(x) = m [2.11 

Secondly the covariance function between any two points x and x+h depends on the 
vector h but not on the point x. That is, 

E[Z(x) Z(x+h)] - m2 = C(h) [2.2] 

There is no need to make an assumption about the variance because it turns out to 
be equal to the covariance for a zero distance, C(O). 

In practice, it often happens that these assumptions are not satisfied. Clearly 
when there is a marked trend the mean value cannot be assumed to be constant. 
Another branch of geostatistics has been developed to handle "nonstationary" 
regionalized variables. It is outside the scope of this text. Interested readers could 
consult Matheron (1973) or Delfiner (1976). 

For the moment we shall only consider cases where the mean is constant. 
However, even when this is true, the covariance need not exist. A particularly 
startling practical example of this was described by Krige (1978) for the gold grades 
in South Africa. On both theoretical and practical grounds it is convenient to be able 
to weaken this hypotheSis. This is why Matheron (1963, 1965) developed the 
"intrinsic hypothesis". It assumes that the increments of the function are weakly 
stationary: that is, the mean and variance of the increments Z(x+h) - Z(x) exist and 
are independent of the point x. 

E[Z(x+h) - Z(x)] = 0 [2.3] 

Var[Z(x+h) - Z(x)] = 2y(h) [2.4] 

The function y(h) is called the semi-variogram (variogram for short). It is the basic 
tool for the structural interpretation of phenomena as well as for estimation. 

Regionalized variables that are stationary always satisfy the intrinsic hypothesis 
but the converse is not necessarily true. Later in this chapter we will see that if a 
regionalized variable is stationary, there is an equivalence between its variogram 
y(h) and its covariance C(h). 

Most estimators used in the earth sciences are linear combinations (i.e. weighted 
moving averages) of the data. This is true for the inverse distance method, and for 
kriging (as will be seen later) and even for the polygonal method where all the 
weights except one are zero. So it is important to be able to calculate the variance 
of linear combinations in terms of the variogram and/or the covariance. In contrast 
to the stationary case, when working with intrinsic variables the operations are 
defined only for increments. We will show later that the variance of linear 
combinations can be calculated only if the sum of the weights is O. By using intrinsic 
regionalized variables instead of just stationary ones, we have to work with 
increments but the range of variogram models available is considerably enlarged. 
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2.5 How to decide whether a variable is stationary 

Before going into more detail about the variogram, it is important to see how to 
decide whether a particular variable can be considered stationary or not. In practical 
situations the variogram is only used up to a certain distance. This limit could be 
the extent of a homogeneous wne within a deposit or the diameter of the 
neighbourhood used in kriging (i.e. estimation). Consequently, the phenomenon 
only has to be stationary up to this distance. The problem is to decide whether we 
can find a series of moving neighbourhoods within which the expected value and 
the variogram can be considered to be constant and where there are enough data to 
give meaningful estimates. This assumption of quasi-stationarity is really a 
compromise between the scale of homogeneity of the phenomenon and that of the 
sampling density. This can best be seen from an example. 

Ion 
o 1 2 3 4 5 6 7 8 

________ ~,----__ -B--IO-w+,--u-p-o-f-ce-n-tr-al~~-ec-u-·o_n ____ ~: 
3 4 5 6- - - - - - - -

Fig 2.1. Diagrammatic representation of sulphur grades and a blow-up of the central 
section. Over the whole 8km length, the sulphur content is clearly not stationary 
because of the increase in the average. But over shorter sections it can be considered 
as being locally stationary because the fluctuations dominate the trend 

Consider the sulphur content of coal along a transect (Fig 2.1.). Over the total 
distance shown (8 kIn) there is a clear increase from left to right. However looking 
at a blow-up of the central section, the fluctuations appear to cover up the trend. This 
means that at this scale the sulphur content could be considered as a locally 
stationary or, at least, intrinsic variable whereas it is clearly nonstationary over 
longer distances. In practice the blocks of coal to be estimated are about 100m x 
100m for underground mines and 200m x 60m in strip mining operations. Samples 
are generally on a 500m x 500m grid for wide spaced holes, down to 100m x 100m 
later on. With samples at these distances. there is no point in searching for data 
several kilometers away. There is plenty much closer. 
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2.6 Spatial covariance function 

Before going into the properties of the variogram in detail, we present some of the 
basic properties of the spatial covariance and derive the relationship between it and 
the variogram for stationary random functions. (Note: no covariance exists for a 
random function that is intrinsic but not stationary). Three important properties are 
listed below. Proofs are given in Box No 2. 

C(O) = 0 2 [2.5] 

C(h) = C(-h) [2.6] 

IC(h)1 ::;; C(O) f2.7] 

Note that absolute values appear in some equations because the covariance can take 
negative values. Our next task is to establish the basic rl~lation between the 
variogram and the corresponding covariance: 

y(h) = C(O) - C(h) 

Proof. The proof starts out from the detinition of the variograrn: 

2 y(h) = E [(Z(x + h) _Z(x)}2] 

:::: E [{ (Z(x + h) - m)2 + (Z(x) - m)2 - 2(Z(x + h) - m)(Z(x) - m)] 

:;; 2C(O) - 2C(h) 

[2.8] 

[2.9] 

Hence the result. This shows that the corresponding covariance is obtained by 
"turning the variograrn upside down". Figure 2.2. illustrates this idea. 

y(h) 

'" ........... ___ CQ!.) ____ _ 

Fig 2.2. Whereas the variogram starts from zero and rises up to a limit, the spatial 
covariance starts out from the variance and decreases 



22 Regionalized Variables 

BOX No 2 : Proofs of the properties of the covariance. 

First property. For stationary variables, the mean m exists. The covariance is, 
by definition: 

C(h) = E [(Z(x+h) - m){Z(x) - m) ] 

Substituting h = 0 gives 

C(O) = E [(Z(x +0) - m) (Z(x) - m)] = (J 2 

Second property. By definition 

C(-h) = E [(Z(x - h) - m)(Z(x) - m)] 

Putting t = x - b gives 

C(-h) = E [(Z(t) - m)(Z(t + b) - m)] = C(h) 

Third Property To prove the third property, we must prove that 

C(b) < C(O) and C(h) > - C(O) 

We start out from the relation 

o < E [(Z(x + h) - Z(x)}2] 

= E [(Z(x + b) - m)2 + (Z(x) - m)2 - 2(Z(x + h) - m)(Z(x) - m)] 

= 2C(O) - 2C(h) 

Hence C(h) < C(O) 

[2.10] 

[2.11] 

[2.12] 

[2.13] 

[2.14] 

[2.15] 

[2.16] 

Similarly the other inequality can be obtained by starting out from the relation 

o <E [(z(x + h) + Z(x)}2] 

Hence C(h) > - C(O) [2.17] 

So we obtain 

lC(b)1 < C(O) [2.181 

This is called Schwartz's ineqUality. 
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Clearly this is possible only when the variogram is bounded above. It can be shown 
mathematically that variograms with an upper bound come from stationary 
regionalized variables. It would be more accurate to say that only stationary 
regionalized variables have bounded variograms. Consequently, unbounded 
variograms come from intrinsic regionalized variables or nonstationary ones. 

Lastly it can be proved that for stationary and intrinsic variables 

lim y(h) = 0 
h~" h2 

[2.19] 

'This result is not easy to prove. Interested readers can consult Matheron (1972). This 
result means that if the variogram rises more rapidly than a quadratic for large h, 
the variable is nonstationary. Otherwise it can be considered to be stationary or 
intrinsic. This is helpful in deciding whether a variable is stationary or intrinsic or 
whether it has to be treated as nonstationary. 

2.7 Exercises 

Expressing variances in terms of covariances. One of the key steps in geostatistics 
is expressing the variance of a linear combination (a weighted average) in terms of 
the weights and the covariance function, and later the variogram. The first exercise 
develops the basic formula; in the second one, it is applied to a particular case. 

Ex 2.1 Let Z(x) be a stationary random function. Its spatial covariance is denoted 
by C(h). Let Z* be the weighted average of the values at two points: 

[2.20] 

where Al and 1..2 are two weighting factors and Xl and X2 are the two points. What 
is the expected value of Z*? Express its variance in terms of the weighting factors 
and its covariance C(h). 

Now generalize this to an arbitrary linear combination Z** 

Z" = I Ai Z(Xi ) [2.21 ] 

What is the expected value of Z**? Show that its variance can be written in either 
of the following ways: 

Var(Z·· ) = I A~ Var(Z(x;) + 2 I 2:>i Aj C(Xi - Xj) 
i j>i 

[2.22] 
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Ex 2.2 Let Z(x) be a stationary random function, and let Z* be a weighted average 
of the values at the four corners of a 100m x 100m square: 

[2.23] 

Evaluate the variance of Z* when the spatial covariance of Z(x) is an exponential: 

C(h) = 2.5 exp (-lhll200) [2.24] 

(In the next chapter we will see that this is an acceptable model for a covariance). 



3 The Variogram 

3.1 Summary 

This chapter and the following one are devoted to the variogram. In this one, after 
defining the variogram, its theoretical properties are discussed (e.g. zone of 
influence, behaviour near the origin, anisotropies, presence of a drift, etc.). The 
common variogram models are presented. Images of variables having some of these 
variograms have been simulated to highlight the differences between the models. 
The formula for calculating the variance of a linear combination of regionalized 
variables in terms of the variogram is proved. The reason why only positive definite 
functions can be used as models for the variogam is stressed. 

3.2 Definition of the variogram 

In Chapter 2, the variogram of an intrinsic random function was defined as: 

y(h) = 0.5 Var [Z(x+h) - Z(x)) [3.1 ] 

For stationary and intrinsic variables, the mean ofZ(x+h) - Z(x) is zero, and so y(h) 
is just the mean square difference. Consequently, 

y(h) = 0.5 E [Z(x+h) - Z(x)]2 [3.2] 

Here x and x+h refer to points in an n-dimensional space where n could be I, 2 or 
3. For example, when n = 2 (Le. in the plane), x denotes the point (x" X2) and h is 
a vector. Consequently, the variogram is a function of the two components hi and 
h2, or alternatively, of the modulus of the vector h and its orientation. For a fixed 
angle, the variogram indicates how different the values become as the distance 
increases. When the angle is changed, the variograms disclose: directional features 
such as anisotropy. Figure 3.1. shows a typical variogram. 
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sill 

h 

range 

Fig 3.1 .. A typical variogram which reaches a limit called its sill at a distance called 
the range 

It presents the following features: 
- it always starts at 0 (for h = 0, Z(x+h) = Z(x». It could be discontinuous just after 

the origin. 
- it generally increases with h, 
- it rises up to a certain level called the sill and then flattens out. Alternatively it 

could just go on rising. 

The properties of the variogram will now be treated in detail. 

3.3 Range and zone of influence 

The rate of increase of the variogram with distance indicates how quickly the 
influence of a sample drops off with distance. After the variogram has reached its 
limiting value (its sill) there is no longer any correlation between samples. This 
critical distance, called the range, gives a more precise definition to the notion of 
the "zone of influence". For stationary variables, y(h) equals the variance for 
distances past the range. That is, 

y(h) = 0.5 Var [ Z(x+h) - Z(x)] 

= 0.5 [Var ( Z(x+h» + Var ( Z(x»] = 0 2 [3.3] 

Not all variograms reach a sill. Some, like the one shown in Fig. 3.2.b, keep on 
increasing with distance. This is one fundamental difference between the variogram 
and the covariance. The latter only exists for stationary variables and is bounded. 

The range need not be the same in all directions. This merely reflects the 
anisotropy of the phenomenon. What is more, even for a given direction there can 
be more than one range. This occurs when there are several nested structures acting 
at different distance scales. Examples of anisotropy and nested structures will be 
given later. 
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Fig 3.2. Bounded and unbounded variograms 

3.4 Behaviour near the origin 
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h 

b 

We have just examined the behaviour of the variogram for large distances, But it 
is even more important to study its behaviour for small values of h because this is 
related to the continuity and the spatial regularity of the variable, Four types of 
behaviour near the origin are shown in Fig. 3.3. 

1. Quadratic:. This indicates that the regionalized variable is highly continuous. In 
fact it is differentiable. A quadratic shape can also be associated with the presence 
ofa drift. 

2. Linear. The regionalized variable is then continuous but not differentiable, and 
is thus less regular than above. 

3. Discontinuous at the origin i.e. y(h) does not tend to zero as h tends to O. This 
means that the variable is highly irregular at short distances. 

4 Flat. Pure randomness or white noise. The regionalized variables Z(x+h) and Z(x) 
are uncorrelated for all values of h, no matter how close they arc. This is the limiting 
case of a total lack of structure. It is, incidentally, the model adopted in trend surface 
analysis. 

The variograms of most geological variables, including metal grades, have this 
discontinuity at the origin. It is called a nugget effect because it was ftrst noticed 
in gold deposits in South Africa where it is associated with the presence of nuggets 
of gold. The grade passes abruptly from zero outside the nugget to a high value 
inside it. Gold is not the only substance that contains nuggets. Particles of pyrite 
randomly distributed in coal lead to erratic changes in its sulphur content. The term 
"nugget effect" is also applied to short range variability even when it is known to 
be due to some other factor such as micro-structure, measurement error or errors in 
location. 
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y(h) - Alhl2 
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nugget effect 
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Fig 3.3. 'Ine behaviour of the variogram near the origin. The quadratidc shape (a) 
indicates a high degree of continuity in the variable; linear behaviour (b) shows 
moderate continuity. Discontinuities at the origin (c, d) indicate erratic short scale 
behaviour called a nugget effect 

3.5 Anisotmpies 

When the variogram is calculated in different directions, it sometimes behaves 
differently in some of them (i.e. anisotropy). If this does not occur, the variogram 
depends only on the magnitude of the distance between the two points and is said 
to be isotropic. Two different types of anisotropy can be distinguished: geometric 
anisotropy and zonal anisotropy. 

3.5.1 Geometric anisotropy 

Figure 3.4. shows examples of geometric anisotropy. On the left, the variograms 
have the same sill in all directions even though their ranges are different while on 
the right they are both linear but have different slopes. 
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y(h) 

direction 1 

h 

Fig 3.4. Elliptic or geometric anisotropy 

We can draw a diagram showing the range or the slope as a function of direction. 
(Fig. 3.5.). If the curve is an ellipse (in 2-D), then the anisotropy is said to be 
geometric (or elliptic). In these cases a simple change of coordinates transforms the 
ellipse into a circle and eliminates the anisotropy. 

direction 2 

direction 1 

a 

Fig 3.5. Ellipses showing the major and minor axes in the case of geometric 
anisotropy 

This transformation is particularly simple when the major axis of the ellipse 
coincides with the coordinate axes as is shown in Fig. 3.5. (a). Then if the equation 
of the variogram in direction 1 is Yl(h), the overall variogram after correcting for 
the anisotropy is of the form: 

y(h) = Yt(j hi + k2 h~ ) [3.41 

where hi and h2 are the two components of hand k is the anisotropy ratio, namely: 

range 1 slope 1 
k = or k = """""";"---

range 2 slope 2 [3.5] 
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When calculating the variogram, it is important to use at least four directions. If the 
variogram was calculated in only two perpendicular directions it would be possible 
to miss the anisotropy completely. lltis would be the case if the major axis was at 
45° to the directions in which the variogram was calculated. as in Fig. 3.5.b. 

3.5.2 Zonal (or stratified) anisotropy 

There are more complex types of anisotropy. For example, the vertical direction 
often plays a special role because there is more variation between strata than within 
them. In such cases the sills of the variograms are not the same in all directions. It 
is standard practice to split the variogram into two components, an isotropic 
component plus another one which acts only in the vertical direction: 

Isotropic component 

Yo (jhi + h~ + hD 

The overall variogram y(h) is 

y(h) = Yo (h) + YJ(h) 

3.6 Presence of a drift 

Vertical component: 

[3.6] 

[3.7) 

As was mentioned at the end of Chapter 2. theory shows that for intrinsic and 
stationary variables, the variogram increases more slowly than a quadratic for large 
distances. To be more specific. 

y(h) -+ 0 as h -+ 00 

h2 

y(h) 

Fig 3.6. Variogram shape in presence of a drift 

[3.8) 

true underlying variogram 

h 

However, in practice it often occurs that variograms increase more rapidly than h2. 

This indicates the presence of a drift (Fig. 3.6.). The experimental variogram 
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provides an estimate of O.5E(Z(x+h) - Z(x»2, which is calJed the raw variogram, 
rather than the true (or underlying) variogram. These two coincide only if the 
increments have a zero mean. Otherwise 

E[Z(x + h) - Z(xW = Var[Z(x + h) - Z(x)] + (E[Z(x + h) 

raw variogram = underlying variogram + (bias tenn)2 

Z(x)]{ 

[3.9] 

If there is a drift, the empirical variogram overestimates the underlying variogram. 

3.7 Nested structures 

Nested structures can sometimes be seen when looking at experimental variograms. 
In Fig. 3.7. the longer range is apparent because the variogram flattens out at that 
distance. The shoner range can be distinguished by the characteristic change in the 
curvature. This change is obvious when the two ranges are quite different. If they 
are not, the change is more gradual and need not be obvious. 

h 
shorter range longer range 

Fig 3.7. Nested structure composed of a shon range structure and a longer one 

Nested structures indicate the presence of processes operating at different scales. 
For example, there may be measurement error at the level of a sample, i.e. for h = 
O. At the petrographic scale (Le. h < 1 cm), there can be variability due to a transition 
from one mineralogical constituent to another. At the level of strata or mineralized 
lenses (i.e. for h < 100m) a third type of variability comes into playas the points pass 
from ore to waste or from ore facies to another. 

3.8 Proportional et1'ect 

A variogram is said to have a proponional effect when its value (particularly its sill) 
is proportional to the square of the local mean grade. This often occurs with 
lognonnally distributed data. The variograms for different zones have the same 
shape but the sill in rich zones is much higher than in poor ones. As the sill often 
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turns out to be proportional to the square of the local mean, the underlying 
variogram model can be found by dividing each of the local variograms by the 
square of the local mean and then averaging them before fitting a variogram model. 

3.9 Hole effects and periodicity 

In between the origin and infinity, the behaviour of the variogram reflects different 
features such as the presence of nested structures or occasionally a hole effect or 
even periodicity. In some cases, the experimental variogram rises above its sill value 
then drops down. As this "hump" in the variogram corresponds to a hole in the 
covariance, the effect is called a hole effect. Sometimes this shape can be explained 
geologically. One such example is the variogram obtained by Serra (1968) from thin 
sections of iron ore from the Lorraine region in France. The calcite crystals tended 
to be separated by intervals roughly proportional to their size, because of the 
concentration process around randomly located seed crystals. This regular, almost 
periodic structure leads to the hole effect. But more generally bumps of this type 
are due to natural fluctuations in the variogram or to statistical fluctuations because 
too few pairs of points were used in calculating the experimental variogram. 

Variograms, like covariances, can exhibit periodic behaviour. Whereas it is 
natural to find periodic phenomena when dealing with time series, this is much rarer 
and more difficult to explain with geological variables. Folded strata could exhibit 
periodicity. But it is more common to find that periodicity is an artefact due to 
human activity rather than Mother Nature. For example, grades obtained during the 
night shift may be statistically different to the day shift. It is important to check that 
the effect is real and not merely an artefact. One case where periodicity can occur, 
is when the ore lies in ridges and valleys, as sometimes happens in sedimentary gold 
deposits. The variograms calculated perpendicular to the ridges and valleys can 
show the periodicity but those parallel to the ridges do not. An example of this is 
presented in Chapter 5. 

3.10 Models for variograms 

Before the variogram can be used to estimate grades or tonnages, a mathematical 
model has to be fitted to it. The reason for this is that variograms have to satisfy 
certain conditions. Otherwise there is always a risk of finishing up with a negative 
variance which would be totally unacceptable. 

3.10.1 Variance of admissible linear combinations 

Since the common estimators are linear combinations of the data (Le. weighted 
averages), we need to be able to calculate their variance. First we consider a 
stationary variable Z(x) with covariance C(h). Let the linear combination be Z* 
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[3.10] 

where ~ are the weights and Xi are the sample locations. By detinition its variance 
is 

Var (Z') = E(Z' _ E(Z' »)2 [3.11 ] 

It is nol difticult to show that if m is the mean of Z(x), E(Z') = m I Ai' Hence 

Ai C(XI - Xl ) + A~ C(X2 - 2) + ... + A~ C(xn - Xn) + 21..11..2 C(XI - X2 ) 

+ ... + 2An_1An C(Xn_l-Xn) 

Consequently 

Var (Z') = I I Ai Ai C(Xi - xi) 
i 

[3.12] 

This must be non-negative whatever the points and whatever the weights. A 
function C(h) satisfying this condition is said to be positive detinite. 

The situation is slightly different when the variable is intrinsic but not stationary. 
In this case the variance of an arbitrary linear combination need not exist. We can 
only be sure that this exists for linear combinations of increments. Combinations are 
said to be "admissible" if the sum of the weights is zero. 

[3.13J 

Clearly any linear combination of increments satisfies this condition since any 
single increment involves the weights +1 and -1. Conversely any combination 
satisfying this condition can be written as a linear combination of increments. Box 
3 gives this proof and the formula for its variance in terms of the weights and the 
variogram model. As the covariance need not exist for intrinsic random functions, 
the formula must be in terms of the variogram. 

[3.14] 

As this variance must be non-negative, variogram models have to satisfy certain 
conditions. For any set of points x}, X2, ... Xk, any set of weights 1..1. 1..2, ... Ak, such 

that L Ai = 0, we require that 
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BOX No 3 : Calculating the variance of admissible linear combinations. 

Firstly we want to show that any linear combination whose weights sum to 0, 
can be expressed as a combination of increments. By choosing an arbitrary 
point as origin, we have: 

So its variance exists and is given by: 

"Ib calculate the covariance of increments we use the identity: 

Var[Z(x) - Z(xj )] = Var[Z(x j ) - Z(O) + Z(O) - Z(xj)] 

Var[Z(x,) - Z(O)] + Var[Z(Xj) - Z(O)] 

- 2Cov [Z(xJ - Z(O), Z(Xj) - Z(O)] 

Hence 2Cov[Z(x;) - Z(O), Z(Xj) - Z(O)] = 

= Var[Z(x i ) - Z(O)] + Var[Z(xj ) - Z(O)] - Var[Z(xi) - Z(x j)] 

= 2y(xi) + 2y(xj) - 2Y(Xi - xj } 

Substituting this into formula 13.16] gives: 

Var I A.; Z(x,) = I I A; Aj [y(x,) + Y(Xj) - y(x; - xj)] 

; j 

The first two terms disappear since I Ai = IAj = 0, leaving: 

[3.15] 

[3.17] 

[3.18] 

[3.191 

Hence the very important result that the variance of any linear combination 
whose weights sum to 0, exists and can be calculated by replacing the 
covariances in Equation [3.12] by -yo 
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[3.20] 

Then -y is said to be conditionally positive definite. This condition is weaker than 
the preceding one for covariances which had to hold for all possible weights, 
because this one only has to hold for sets of weights whose sum is O. Consequently 
the class of admissible variogram models is richer than for covariances. It contains 
the bounded variograms associated with covariances and also unbounded ones 
which have no covariance counterpart. So there is a trade-off between the two 
hypotheses. The intrinsic hypothesis allows us to use a wider range of variograms 
but the weights must sum to O. The range of admissible variogram models is more 
restricted for the stationary hypothesis but any weighting factors may be used. 

3.B Admissible models 

We have seen that in order to ensure that the variance of any linear combination 
never goes negative, only certain functions can be used as models for variograms 
and covariances. Covariances must be positive definite functions; variograms have 
to be conditionally negative definite. 

As it is not easy to recognize functions that have this properly or to test for it, 
it is best to choose variogram models from the range of suitable functions rather than 
try to create them oneself. A list of the common models is given in the next section. 
These can be added to obtain other admissible models because this is equivalent to 
adding independent random functions, but subtraction is not allowed. Nor can they 
be combined piecewise. By this we mean that you cannot choose one model up to 
a cerlain distance then a different one from there onwards as shown in Fig. 3.8. 

f(h) 

NOT ALLOWABLE 

AS A VARIOGRAM 

h 

Fig 3.8. Example of a function that is NOT allowable as a variogram model 

In order to work out whether a cerlain function is or is not positive definite. one has 
to calculate its Fourier transform. 'Ibis is not always simple in I-D but it becomes 
even more difficult in higher dimensional spaces. For more information on how to 
test for positive definiteness see Armstrong and Diamond (1984). 
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To make matters more complicated it is possible for functions to be positive 
definite in one space but not in higher dimensional spaces. For example the 
piece-wise linear function shown in Fig. 3.9. is an admissible variogram in I-D but 
not in two or three dimensions. Exercise 3.11 shows how to construct it in 1-0 while 
exercise 3.10 gives a counter example in 20 with a negative variance proving that 
it is not acceptable in 2-D or higher dimensional spaces. 

o~ __ -. ____ -. ____ .-__ -, __ ~ 
o 1 2 3 4 

Fig 3.9. Piecewise linear model that is admissible in 10 but not in 20 or higher 
dimensions 

Having been warned of the dangers of trying to invent their own variogram 
models, readers may be curious to know how the current variogram models came 
into existence. Basically they were developed by mathematically constructing a 
random function and calculating its variogram theoretically. The resulting model 
must, by construction, be positive definite or at least conditionally negative definite 
in the space in which it was built. Several exercises at the end of the chapter illustrate 
this procedure. For example, exercise 3.13 describes a method for building 
spherical balls enclosing a random number of Poisson points, leading to the 
so-called spherical variogram. 

3.12 Common variogram models 

The following variogram models are admissible. Those with a sill correspond to 
stationary regionalized variables while the unbounded models are associated only 
with intrinsic variables. This list is not exhaustive. 

3.11.1 Nugget effect 

y(h) = 0 h=O [3.21] 

c Ihl > 0 

This model corresponds to a purely random phenomenon (white noise) with no 
correlation between values no matter how close they are. 
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3.12.2 Spherical model 

y(h) = 
c (1 Q1 2 a ! (' :n) I hi < a 

c Ihl >a 
[3.22] 

The spherical model is probably the most commonly used model. It has a simple 
polynomial expression and its shape matches well with what is often observed: an 
almost linear growth up to a certain distance then a stabilization. The tangent at the 
origin intersects the sill at a point with an abscissa 2a11. This can be useful when 
fitting the parameters of the model. 

3.12.3 Exponential model 

y(h) = C(l - exp(-Ihl/a)} [3.23] 

The practical range of this model is 3a, because that is the distance when it reaches 
95% of its limit value. The tangent at the origin intersects the sill at a point with an 
abscissa a. As both the spherical and the exponential models are linear for small 
distances, it is helpful to compare them. Figure 3.10. shows two models with the 
same sills, with the practical range of the exponential equal to the true range of the 
spherical. The differences are quite obvious. The exponential rises more rapidly 
initially but only tends towards its sill rather than actually reaching it. 

a Spherical Model b Exponential Model 

Fig. 3.10. (a) The spherical variogram model with a sill of 1.0 and a range of 1.0 
and (b) an exponential model with a sill of 1.0 and a scale parameter of 0.33 (i.e. 
its practical range is 1.0) 

3.12.4 Power functions 

y(h) = Clhl" with 0 < a:$ 2 [3.24] 

The linear model, y(h) = Ihl, is a special case. 
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a Gaussian Model b Power Models 

Fig. 3.11. (a) The gaussian variogram model and (b) three power function models 
with exponents a = 0.5, 1.0 and 1.5 

3.12.5 Gaussian model 

( Ihl2 ) y(h) = C 1 - exp( -7) £3.25J 

'The practical range is 1.73a. The gaussian model represents an extremely 
continuous phenomenon. Experience shows that numerical instabilities often occur 
when this is used without a nugget effect. 

3.12.6 Cubic model 

This model has a parabolic behaviour at the origin and is generally similar to the 
gaussian model, except that it is not infinitely differentiable. Its equation is 

y(h) = C (7r2 - 8.75r3 + 3.5r5 - 0.75r7») if r < 1 [3.26] 

= C otherwise 

where r = hla. 

3.12.720 hole effect model 

y(h) = C ( 1 - exp( - Irl) Jo (21t r 2 ») [3.27] 

where r = hla, r! = h/A. and Jo is a Bessel function. The value of A. controls the 
magnitude of the hole effect. 
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3.12.8 Cardinal sine model 

This model is one of the rare ones with a hole effect that is authorized in 3D. It 
corresponds to very continuous structures. Its equation is 

y(h) = C ( 1 _ sin r) 
1 rl [3.28] 

where r = hla. When calculating this on a pocket calculator, remember that the 
parameter "r" should be in radians not degrees. Working in degrees, [sin(r)]/r 
oscillates around the value of 3tl180 = 0.0174532. 

Fig. 3.12. The cardinal sine model 

3.12.9 Prismato-magnetic model 

[3.29] 

where r = hla. 

3.12.10 Prismato-gravimetric model 

[3.30] 

where r = hla. The last two models were developed to model different types of 
gravimetric and magnetic anomalies. 

3.13 Simulated images obtained using different variograms 

The variogram models given in the previous section range from very common ones 
like the exponential and the spherical to quite unusual ones like the hole effect 
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models. When most people look at the equations, they are unable to guess how 
regionalized variables having those variograms might behave. Are they very similar 
or do they have obviously different fealures? To highlight the differences between 
the variograms, we have generated one realization (one possible image) for each of 
four types of variograms: the exponential, the spherical, the gaussian and the 
cardinal sine. (Figs. 3.13. to 3.16.) A zero nugget effect was used throughout. These 
variograms all have sills so they correspond to stationary variables. 

The images are 200 pixels x 200 pixels. The EW range (or the practical range) 
was set to 20 pixels whereas the NS one is half that. The darker and lighter patches 
in the figures are elongated with these dimensions on average. For those interested 
in the technical details the simulations were obtained using 400 turning bands and 
the resulting distributions are N(O,l). Simulation methods are beyond the scope of 
linear geostatistics. Details can be found in Journel and Huijbregts (1978) or 
Lantuejoul (1994). 

Comparing the four figures, it is clear that the exponential and the spherical 
variograms lead to "fuzzier" images than the gaussian and the cardinal sine. This 
obvious difference is due to the fact that the spherical and the exponential models 
are linear near the origin whereas the other two are parabolic. Variograms that are 
quadratic near the origin come from highly continuous variables. For a spherical and 
an exponential with the same sill and the same range, the exponential rises faster 
initially, which explains why the simulation obtained using the exponential model 
is slightly less structured than the corresponding spherical. 

If a pure nugget effect had been used to generate a simulation, the resulting 
image would have been totally unstructured, with high and low valued pixelS being 
spread around at random. This leads to very "spotty" pictures with a uniform grey 
colour and no distinct high or low patches. 

It is important to keep the relation between the variogram model and its 
realizations in mind when fitting models to experimental variograms and later when 
kriging. Unless very closely spaced data are available, the geostatistician has to 
choose the shape of the variogram near the origin rather than fitting it 10 

experimental values. So it is important to understand the implications of this choice 
in terms of the continuity of the variable or, on the contrary, its behaviour. 

3.1.4 Exercises 

Variogram Properties. Before fitting models to experimental variograms it is 
important to become more familiar with their properties. 

Ex 3.1 Spherical model. Write down the equation for the spherical model with 
a range of 300m and a sill of 2. Plot its shape for distances up from h = -500m to 
h = +500m, remembering that y( -h) = y(I1). Note the mirror image around the y axis. 

The curve is continuous at the origin but what about its derivative? When we get 
to kriging, we will see that the kriged estimates "inherit" the discontinuities in the 
variogram function and its derivatives. 
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Fig 3.13. Simulation of a variable having all exponential variogram 

Fig 3.14. Simulation of a variable having a spherical variogram 
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Fig :US. Simulation of a variable having it gaussian variogram 

Fig 3.16. Simulation of a variable having a cardinal sine variogram 
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Ex 3.2 Exponential model. Write down the equation for the exponential model 
with a scale parameter of 100m and a sill of 2. What is its practical range? Plot its 
shape for distances up to 5OOm. Compare this model with the spherical model in the 
first exercise. 

Ex 3.3 Tangents at the origin. Find the slopes of the spherical and the 
exponential models given in 3.1 and 3.2 by differentiating their equations with 
respect to h. Find the distance where the tangents at the origin cut the sill. 

Ex 3.4 Gaussian model. Write down the equation for the gaussian model with a 
scale parameter of 100m and a sill of 2. What is its practical range? Plot its shape 
for distances from h= -5OOm to h=+5OOm. As before, the left hand side is a mirror 
image of the right hand side. What is the slope of its tangent at the origin? The curve 
is continuous there but what about its derivative? What about higher order 
derivatives? 

Ex 3.5 Factorizable covariances. Write down the equation for the gaussian 
covariance model with a scale parameter of I and a unit sill, remembering that 

y(h) = C(O) - C(h) 

Use the fact that in 20 h2 equals x2 + y2, to split C(h) into the product of two factors: 
exp(- x2) and exp (_y2). Could this be extended to 3D? When we get to the chapter 
on kriging, we will see that factorizable covariances like this lead to a strange 
"perpendicular" screen effect. 

Ex 3.6 Variograms that are linear near origin. Both the spherical and the 
exponential models are linear at the origin. Write down their slopes at the origin in 
terms of the sill, C. and the parameter, a. 

Suppose that an experimental variogram is linear with a slope of 5.0 for distances 
up to lOrn. Find suitable values of a and C for a spherical model and for an 
exponential one that have this slope. Show that choosing C=50 and a=15 gives a 
slope of 5 at the origin for a spherical. By plotting the corresponding variogram 
determine whether it is effectively linear up to 10m. In fact larger values of both a 
and C are needed. Knowing the slopes at the origin can prove helpful later for fitting 
experimental variograms. 

Calculating the variance of linear combinations. Most estimators used in the 
earth sciences can be written in terms of linear combinations. This includes 
estimators based on polygons or on inverse distance and inverse distance squared. 
The following exercises are designed to give readers practice calculating these 
variances. 

Ex 3.7 Suppose that two sample points, Xl and X2, are 100m apart. Calculate the 
variance of the linear combination: Z* = Z(Xl) + Z(X2) where Z(x) is a stationary 
variable with a spherical variogram with a range of 250m and a sill of 3. 

What would the variance be if the range is 25m instead of 250m? 

What would the variance be if the variogram was a pure nugget effect of 3.0? Why 
is the value the same as when the range is 25m? 
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Ex 3.8 Consider a linear combination: 

where AI> 1..2, 1.3 and ~ are constants and Xl, x2. X3 and l4 are the comers of a 
rectangle with sides of 30m and 4Om. The variogram of Z(x) is a spherical with a 
range of 100m and a sm of 4.0 plus a nugget effect of 1.0. Calculate the variance 
of Z* for the case where /..1 = /..2:::: 1.0 and 1.3 = ~ ::::; -1.0. 

Would it be possible to evaluate the variance of the linear combination if the 
variograrn was linear? Explain why. Would this still be true if the weights were all 
equal to 0.25? 

Ex 3.9 To highlight the necessity of using only admissible models, here is a case 
where a non-standard model has been used. The model and the data layout are 
shown below. The three points form an isosceles triangle with sides of 0.8, 0.8 and 
1.0. After noting that the sum of the weights equals 0, calculate the variance of the 
linear combination: 

1.0 

0.2 

0.8 1.0 

Non-standard variogram Lay-out of points 

The variance of this linear combination is negative because the function used as a 
variogram model is not positive definite or conditionally negative definite (even 
though its shape resembles a gaussian variogram model). 

Ex 3.10 Piecewise linear model in lD. This exercise is designed to highli.ght 
another subtle feature of positive definite functions. They can be positive definite 
in aID space but not in 2D and higher order spaces. We use the piecewise linear 
model to illustrate this point. Exercise 3.11 presents a construction for generating 
this variogram in 10. 
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l.0 y(h) 

Piecewise Linear Model 

C(h) 

Sel up a regular 1m x 1m grid containing 8 x 6 nodes (48 nodes). Let the weights 
be alternatively +1 and -1 so that neighbouring points always have weights with 
opposed signs. Check that the sum of the weights is zero. The variogram and the 
spatial covariance for the piece-wise linear model with a unit sill and a range of-..l"2 
are shown above. Calculate the variance of this linear combination. Hint: the 
calculation is much simpler if one works with covariances because they are all zero 
for distances greater than or equal to -..1"2. 

The fact that there is at least one linear combination with a negative variance proves 
that this model is not authorized in ID. There is no way of "proving" that a model 
is positive definite by testing the variances of specific combinations because there 
is no way of testing them aU. Much more general methods are required. 

Constructing random functions to obtain new variogram models. As it is very 
difficult to test functions for positive definiteness, most new variogram models are 
obtained by a suitable construction. 111ese exercises are designed to present some 
of the simpler ones, starting out from the piece-wise linear model in 1 D. 

Ex J.n Piecewise linear model in ID. The aim of this exercise is to show that the 
piecewise linear model is an admissible variogram in ID. After drawing an origin, 
xo, at random in the interval [0, a], divide the line into segments of length a. A 
random function,Y(x), is constructed by drawing a value for t~ach segment from a 
distribution with mean m and variance 0 2. 'The values are independent from one 
segment to another. 

Xo Xo + a Xo + ka 

'{be probability that two points, x and x+h, chosen at random belong to the same 
interval depends on the distance between them. Show that the probability is 0 if Ihl 
> a and that otherwise it equals: 1 - I hila. 
ShowthatE[Y(x + h) - Y(x)]2 = 0 2 iflhl > a, whereas itis zero otherwise. 

Hence show that the variogram ofY(x) is a piecewise linear model with a sill of 02/a 
and a range of a. 
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Ex 3.12 Exponential model in 10. This exercise is a simple extension of the 
previous one. We constmct a random function having an exponential variogram. As 
before, an origin Xo is drawn at random in the interval roo aJ but this time we divide 
the line into segments whose length is a Poisson random variable with intensity A. 

Y(x) I D _______ J Ln 
Xo 

As before, a random function Y(x) is constmcted by drawing a value for each 
segment from a distribution with mean m and variance (J2. The values are independ­
ent from one segment to another. Show that the variogram is an exponential with 
sill (J2 and scale parameter A. 
Ex 3.13 Spherical model in 3D. In this exercise we constmct a random function 
in 3D having a spherical variogram. Let the space be fined with Poisson points with 
intensity A. So the number of points falling in a volume V is a Poisson random 
variable with parameter f.. V. Its mean and variance are both A V. Moreover the 
numbers of points in two volumes V and V' are independent if the volumes are 
disjoint Let Y(x) be the number of Poisson points faHing in a sphere of radius 0 
centered on point x. Show that its variogram is a spherical model. 

Hint: When the points x and x+h are further apart than 0, the spheres do not intersect 
and so Y(x) and Y(x+h) are independent. When the points are closer together, split 
the two spheres into three disjoint parts as shown below: 

Then if N(V) denotes the number of Poisson points in V, 

E(Y(x + h) - Y(X»)2 = E[(N(V1) + N(V2») - (N(V2) + N(V3»)( 
To complete the proof, it suffices to calculate the volume V2 as a solid of rotation. 

Volume of V2 = ~D3 [1-?~ + 2~3] 
Ex 3.14 Linear model in ID. This exercise is designed to constmct a random 
function having a linear variogram. Let Wi be a set of independent random variables 
that take the values +1 and -1 with equal probability. A regionalized variable Y(n) 
is cOllstmcted for positive integral values of n, by summing the Wi up to n. 

n 

Y(n) = IW, 
Show that Y(n) is not second order stationary because its variance depends on the 
value of n, but that it satisfies the intrinsic hypothesis. Show that its variograrn is 
lincar. 
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4.1 Summary 

Like the preceding chapter, this one is on the variogram. The reader is shown how 
to calculate experimental variograms in ID, 2D and 3D, and how to tit models to 
them. Several exercises are provided. 'The practical problems encountered with 
troublesome experimental variograms are discussed. These include outliers, almost 
regularly spaced data, and so on. 

4.2 How to calculate experimental variograms 

The experimental variogram can be calculated using tbe following formula: 

N(h) 

y'(b) = 2N1(h) 6. rZ(x; + b) - Z(Xj)f [4.1] 

where Xi are the locations of the samples, Z(Xj) are their values and N(h) is the 
number of pairs (Xi, Xi + h) separated by a distance h - those actually used in the 
calculation. It is very easy to apply this formula when the samples are regularly 
spaced in I D such as down a drillhole, along an underground gallery, a transect or 
a seismic profile. Example 1 illustrates the procedure. 

If samples are missing from a regular pattern, their values should not be 
interpolated by averaging the neighbouring values, nor should a zero be inserted in 
its place because these distort the true variability. The square ditlerences are 
calculated for all available pairs. 

If data are not regular, the variograms are calculated for distance classes with 
an associated tolerance, usually 50% because this covers all possible distances. 
Going further, when the data are irregularly spaced in 2D, variograms are calculated 
for angular as well as distance classes. 
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4.3 In the plane 

When data are two dimensional, the variograms should be calculated in at least four 
directions to check for anisotropies. The first step is to choose the variogram lag ami 
its tolerance, then the principal angles and the angular tolerance. 

The procedure then goes as foHows. Taking each point Xi in turn, the program 
calculates the difference Xi - Xj to find out which angular class and which distance 
class the pair belongs to. "The corresponding square difference (Z(Xj) - Z(Xi + h»)2 
is then calculated and added to the subtotal for the appropriate class. The count of 
elements in that class is also increased by 1. When all possible pairs have been 
treated for a given point Xi, the program moves onto the next one. At the end of the 
process the subtotals are divided by twice the number of pairs in which the 
successive origins are chosen. A now-chart for this is shown in Fig. 4.2. 

4.4 In three dimensions 

The procedure given above could theoretically be generalized to three dimensions 
by considering classes of solid angles. But in practice the third dimension usually 
plays a special role. There is often much more variability in the vertical direction 
than in the horizontal, because of the stratification of many natural phenomena. 

Consequently it is usually much more meaningful to calculate the variograms 
in the plane of the strata using the methods des~'ribed in the last section and then 
calculate those perpendicular to this plane. Typically the vertical variograms are 
calculated using the data down each drillhole then the horizontal variograrns are 
calculated in several horizontal directions. If the orebody has been tilted due to 
tectonic action, the variograms are calculated in the plane of the deposit and 
perpendicular to it. 

4.5 Example 1: regular ID data 

Use formula [4.1] to calculate the experimental variogram for the first three distance 
classes for the data given below. 'The samples are regularly spaced every Sm in ID. 

8 6 4 3 6 5 7 2 8 9 5 6 3 

Fig. 4.1. Sample data spaced every Sm along a line, with grades shown 
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( START ) 
T 

READ IN DATA VALUES Z(Xd 

t 
CHOOSE ANGULAR CLASSES AND DISTANCE 
CLASSES FOR V ARIOGRAM 

~, 

Do 1= 1, N-l 
.4~ 

J 

DoJ = 1+1, N 

• ~~ CALCULATE HIJ = XI - XI 
D2 = (Z(Xd - Z(XJ»2 

T 
ADD 1 TO COUNT OF CLASS FOR Hu- ADD D2 
TO V ARIOGRAM CLASSES CORRESPONDING 

TO Hu-

..... --...... 

FOR EACH V ARIOGRAM CLAss DIVIDE 
1: D2 BY TWICE COUNT FOR THAT CLASS 

~r 

( STOP ) 

Fig. 4.2. flowchart showing how to calculate experimental variograms 
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For the first variogram class (5m), there are twelve square differences: 

y'(5) = 2X\2 [22 + 22 + 12 + 32 + 12 + 22 + 52 + 62 + 12 + 42 + 12 + 32] 

= 4.625 [4.2\ 

Show that the values of y'(lO) and '{(IS) are 4.82 and 6.00 respectively. Plotting 
these as a function of distance gives the experimental variogram (Fig. 4.3.). A solid 
line has been used to connect known values; a dotted one, to extrapolate back to the 
origin. The nugget effect could not be higher than 4.0 but could well be less if there 
were a micro-structure with a range of less than 5m. 

:-.. --~ 
2 

O~----------' 
o 5 10 15 

!<'ig. 4.3. Experimental variogram for samples spaced 5m apart. The solid line 
connects experimental values; the dotted one extrapolates back to the origin 

When sample values have a skew distribution (with a long tail to one side) or when 
there are outliers in the data (i.e. unusually high or low values), the presence of just 
a few extreme values can cause trouble. Imagine what would have happened in 
Examp1e 1, if the value of 7% had been 17% or 70% instead. In the tirst distance 
class, the square differences (5-7)2 and (7-2)2 would have become (5-17)2 and 
07-2)2, or even worse, (5-70)2 and (70-2)2. These two terms would completely 
dominate the experimental variogram, making it difficult to interpret it or to fit a 
model to it. This point will be dealt with at the end of this chapter. 

4.6 Example 2: Calculating experimental variograms in 2D 

Table 4.1. shows 56 grades arranged in a unit square grid. Use them to calculate the 
experimental variograms in the four main directions for distances up to 4 lags. For 
each distance, note the number of pairs of points used. All pairs of points a particular 
distance apart in a specified direction should be used, not just those in the same row 
or column. Remember that the distance along the diagonals is a multiple of ...fL. 
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Table 4.1. Regular 2D data for calculating the experimental variograms 

26 22 19 14 16 19 16 14 
23 20 17 20 14 23 21 17 

22 17 18 19 18 25 20 19 
21 15 20 18 20 20 18 13 

19 18 15 15 18 23 22 20 
18 16 10 16 14 18 20 18 
17 14 10 13 13 15 14 17 
15 13 11 10 17 16 15 11 

Table 4.2. Values of the experimental variograms in the four main directions for 
data given above, together with the number of pairs of points 

y(l) N(I) y(2) N(2) y(3) N(3) y(4) N(4) 
E-W 4.74 56 8.49 48 10.28 40 13.27 32 
N-S 5.88 56 9.11 48 9.13 40 10.77 32 
NE- 7.69 49 12.24 36 18.36 25 18.16 16 
SW 

NW- 7.55 49 12.02 36 10.00 25 14.00 16 
SE 

Table 4.2. gives the values of the experimental variograms in the four main 
directions and also the number of pairs of points used in their calculation. The 
variogram is not reliable for distances greater than half the field length. This is why 
it has been calculated for only four lags. Figure 4.4. shows the four directional 
variograms. 

Diagonals 

15 
X E-W 

15 
X 

/ 

10 ~N-S 10 X 

5 5 

0 0 
0 1 2 3 4 5 6 0 1 2 3 4 5 6 

Fig. 4.4. Experimental variograms in 4 directions 
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As there is little difference between them, we consider them to be isotropic. So 
the average experimental variogram for all directions was calculated (Fig. 4.5.). A 
linear model with a slope of about 3 plus a nugget effect of about 3 gives a good fit. 
This example was designed to show how to calculate variograms. In practice, 
variograms usually tum out to be more erratic than these. 

20r-----------------~ 
Omnidirectional 

15 

10 

5 

O'--~---'--....I---'---'--.........J 

o 1 2 3 4 5 6 

Fig. 4.5. Omnidirectional variogram calculated from the regular 2D data, and the 
fitted linear model with a nugget effect of 3 and a slope of 3 

4.7 Variogram doud 

There are two ways of plotting variograms: the standard way shown above where 
the average square difference is plotted against distance or alternatively as a cloud 
of square differences each plotted against its distance. Chauvet (1982) called this 
the variogram cloud. The advantage of the standard plot is that it synthesizes all the 
information into one point per distance class, but in so doing. tbe detail is lost. And 
this detail can be very helpful in understanding the variogram. 

To illustrate the concept, the variogram cloud bas been calculated for the data 
in Example 1. For the first distance class there were 12 square differences: 4, 4, 1, 
9, 1,4,25.36, 1, 16, 1 and 9. For the next two distance classes, there were 11 and 
10 pairs respectively. To be compatible with the variogram, these values were 
halved before being plotted. Figure 4.6.3 shows the resulting variogram cloud. llle 
experimental points sit in vertical columns because the data are regularly spaced 
every Sm. Only 6 crosses are apparent in the first distance class because there are 
only 6 distinct values for the half squares. While most of these squares are small, 
a few are quite large. So their histograms for each distance class are skew. 

To illustrate the impact of outliers, the cloud was recalculated for the case 
mentioned earlier where a value of 17% occurs instead of 7% (Fig. 4.6.b). 
Compared to the original cloud on the left, the vertical scale on the right is four times 
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larger. For each distance class, the largest two square differences (i.e. the highest 
two crosses) correspond to pairs involving the outlier. 

• 
20.0 100. 

• • 
75. 

+ 

10. 50 . 
• • • -- ........... 25. 
• • f---~"'-O. o. t 11 

0.0 5.0 10.0 15.0 
0.0 5.0 10.0 15.0 

4 a b 

Fig. 4.6. Variogram clouds calculated using the 13 regularly spaced data (a) from 
Example I and (b) the same data when a value of7% has been replaced by an outlier 
of 17%. Note the change in the vertical scale between the two ligures. In both cases 
some crosses represent several values (e.g. 1.0 for a lag of 5m) 

4.8 Fitting a variogram model 

This is best seen from practical examples. Experience has shown that the analytic 
form of the model does not matter very much as long as its major features of the 
phenomenon are respected. In order of importance these are: 
- the nugget effect, 
- the slope at the origin, 
-the range, 
- the sill. 
- the anisotropies. 

The behaviour at the origin (both the nugget effect and the slope) plays a crucial role 
in the fitting of the variogram because it has a tremendous influence on the results 
of the kriging and also on the numerical stability of the kriging system. The slope 
can be assessed from the first three or four variogram values; the nugget effect can 
be estimated by extrapolating back to the origin. The fmt variogram value is often 
obtained from too few pairs of points to be reliable. Additional drillholes at short 
distances can be helpful so as to get a better idea of the nugget effect. 

The range can usually be assessed visually. The sill is set at the value where the 
variogram stabilizes. For stationary variables this should coincide with the overall 
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variance but sometimes this is not true because of the presence of long range trends. 
If there is more than one range the intermediate ranges can be distinguished visually 
because the variograrn has a change in curvature at these points. Modelling 
anisotropies requires more experience. In general a good fit can be obtained with 
the sum of two or three models. Using more than this increases the subsequent 
computing costs considerably and should be avoided. The fitting is done by trial and 
error, using a graphic terminal. 

People often ask why we do not use least squares or other automatic methods 
to fil variogram models. There are three reasons for this. Firstly the model must be 
a positive definite function (otherwise the variance could turn out to be negative). 
Polynomials obtained by least squares regression would rarely satisfy these 
conditions. Secondly least squares assumes that sample points are independent 
observations, which is clearly not true of the experimental variogram. It consists of 
squares differences of combinations of values. ]birdly the behaviour of the 
variogram very close to the origin (i.e. for distances shorter than the first lag) is not 
known and yet it is vital and least squares does not take account of this. Experience 
and judgment are required. The first problem could be overcome by fitting only 
positive definite models, but this still does not solve the other two problems. 

4.9 Troublesome variograms 

Experimental variograms found in practice are often much more erratic than the 
examples presented in textbooks and journal articles. Since the causes of potential 
problems are extremely numerous and varied, it would be impossible to present 
them all. Armstrong (1984) shows some of the more common ones. Here are some 
more examples. 

4.9.1 Outliers 

As was seen in the exercises on calculating experimental variograrns, the presence 
of even one outlier can lead to a highly erratic variogram. In a study on coal from 
two seams in the Bowen Basin in Australia (Annsltong, 1980) the variograms for 
three of the variables (seam thickness, ash content and FSI) were very similar for 
both seams but the sulphur variograms were totally different. (Fig. 4.7.). This was 
rather surprising. A closer examination revealed that the data from the top seam 
contained two extremely high sulphur values among a group of 207 values. (These 
can be seen quite clearly on a histogram). The [rrst step was to check whether these 
values were correct, by asking the geologist to inspect the remaining half-core. In 
fact, the samples come from a high sulphur area and the cores showed visible pyrite. 
So the values are real. After these two abnormal values were removed the variogram 
dropped back to about one fifth of its previous values and looked just like the sulphur 
variogram for the other seam. Removing additional points made no significant 
difference to the variogram. 



Experimental Variograms 55 
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4 

2 Variogram for lower seam 
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o 80 160 240 320 

Fig 4.7. 'Three variograms for sulphur content in two coal seams The top one came 
from top seam with 2 outliers included, the other variograms came from the lower 
seam and the top seam after removing the outliers 

In this case the solution was quite simple: eliminate the outliers. 'This was possible 
for two reasons: tirstly because the outliers lie in a geographically distinct area that 
should be treated separately from the rest, and secondly because high sulphur coal 
is less valuable than low sulphur coaL 

However in other cases (notably highly skew distributions such as gold or 
uranium grades) it is not quite so easy to find a good way of estimating the 
variogram. The high grade samples are not usually in a separate area. They are 
usually mixed in amongst lower grade material. More importantly the small 
percentage of high grades often makes the difference between opening the mine and 
not doing so. Eliminating the outliers or cutting them back to an arbitrary value is 
not a good solution. 

Several "robust" methods of calculating the variogranl have been suggested 
(Cressie and Hawkins, 1980; Armstrong and Deltiner, 1980). This subject was one 
of the major topics of discussion at the NATO geostatistics workshop held at Lake 
Tahoe in September, 1983 (See Verly, 1984). 

4.9.2 Pseudo-periodic hiccups 

The ash variogram calculated for a lag of 40m for coal from the Bowen Basin in 
Australia illustrates the problem of "pseudo-periodic hiccups" (Fig. 4.8.a). At first, 
the two rather strange peaks at h= 150m and h==280m might seem to be a sign of some 
sort of periodicity in the coal but this is not physically likely given the nature of coaL 
Although it is not obvious initially, the samples lie on an almost regular grid. 
Plotting the histogram of the distances between pairs of points for each. distance 
class shows that this was clearly the case. (Fig 4.8.h.) In this case the solution is quite 
simple. All we need do is to change the step length. Calculating the variograms for 
100m distance classes smoothed out the bumps. 
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o 100 200 300 
a 

100 200 300 400 500 

b 

Fig 4.8. <a) Erratic experimental variogram for ash content in coal, (b) the histogram 
showing the number of pairs of points for each variogram lag on right Note the peaks 
in the histogram (160m & 320m) 

4.9.3 Artefacts 

The next two examples have been included to point out that many of the problems 
with variograms are due to "operator error" rather statistical problems with the data. 
Figure 4.9. shows a remarkable "saw-tooth" variogram. The variable under study 
was highly skew, like gold or uranium. A substantial percentage of values below the 
recording threshold had been recorded as zero. Since the data looked lognormal it 
seemed advisable to take logs. To avoid problems with the zeros these were 
arbitrarily set to 0.00001 and so became -5.0 after the log transformation (here to 
base 10). As all the other logs lay in the range from -3.0 to +3.0, the -5.0's were 
then extreme values and their locations completely determined the shape of the 
variogram. In this case, the solution was simple: set the below cutoff values to 0.001 
rather than 0.00001, in which case their log is -3.0. 

6 

4 

2 

o~--------------------~ 
o toO 200 300 

Fig 4.9. : Erratic saw tooth variogram 
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The second example is on the same lines. In this case the problem was caused by 
the presence of a number of zero values for seam thickness. lbese could indicate 
that the seam had pinched out in this region but as this seems unlikely, the data were 
re-examined. This revealed that the zero seam thickness corresponded to missing 
values for both the top and bottom of the seam. As a value of --1 had been assigned 
to all missing values, and as the student doing the study forgot to include a test for 
missing values in his program to calculate seam thickness, the subtraction of -1 
from -1 resulted in a goodly number of zeros, which determined the form of the 
variogram. 

These mistakes are rather silly. On reading them everyone naturally feels that 
he would not make such a mistake but experience shows that these types of errors 
are much more common than most of us care to admit. What is more the only way 
to find out their cause and treat them is by carefully investigating the data. It would 
be absolutely fatal to apply a "robust" variogram method to the data to sort out the 
problems with the variogram. Fortunately computer technology now allows us to 
work with linked windows. So it is possible to visualize several graphics (such as 
the base map, the histogram and the variogram) simultaneously to find out what is 
causing the erratic behaviour. 

4.10 Exercises 

Ex 4.1 Missing values. Figure 4.10. shows 13 sample locations spaced Sm apart. 
lbe grades are available at 12 out of 13 points, the other grade is missing. Show that 
there are only 10 pairs of point<; for the first lag, and that the value of the y*(S) ::: 
4.7. Calculate the experimental variogram for the next two lags and plot it 
Sometimes people mistakenly put a zero in the place of the missing value. Calculate 
the first three lags of the experimental variogram and compare it to the previous one. 
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Fig 4.10. Regular ID data with 1 value missing 
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Ex 4.2 Outliers. The figure below shows 13 sample locations spaced Sm apart, 
with one grade (90) much larger than the others. Calculate the experimental 
variogram for the first three lags and plot it. To see the impact of the outlier, compare 
this variogram to the one obtained earlier (Fig. 4.3.) 
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Fig 4.11. Regular 1 D data containing an outlier 
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Ex 4.3 Variograms in 2D. The table below gives 35 grades on a regular 100m x 
100m grid. Calculate the experimental variograms in the two principal directions 
for up to 300m. Is this variogram isotropic? 

Table 4.3. Thirty-five grades on a regular 100m x 100m grid 

3.6 2.8 4.1 4.6 5.3 3.8 4.2 

3.6 3.5 5.2 4.5 6.1 4.4 4.0 

5.1 3.8 4.9 3.3 5.7 6.2 6.3 
4.2 4.0 5.6 4.2 4.9 5.3 4.4 

4.6 5.7 6.1 5.4 4.7 5.2 6.0 
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5.1 Summary 

Several case studies showing how to carry out a structural analysis are presented in 
this chapter. Firstly, the principal decisions that have to be made by the 
geostatistician are reviewed. Are the data stationary? Are they isotropic? Should we 
work with the variables themselves or their accumulations? Should the study be 
carried out in 2D or 3D? 

The first case study is a relatively simple 3D study of an iron ore deposit. As the 
horizontal and vertical variograms are well structured, it provides a clear illustration 
of a straightforward variographic analysis. The second study concerns an Archaean 
gold deposit that is being mined by opencut methods. So the grades of closely 
spaced blastholes are available in addition to the more widely spaced exploration 
drillholes. The third deposit presented is a sedimentary gold deposit with a periodic 
variogram in one direction because the gold was deposited by stream action. In 
contrast to the other two deposits, this one is only about 1m thick and so the study 
was carried out in 2D rather than 3D. 

5.2 Steps in a case study 

The first phase of any geostatistical study is the structural analysis; that is, the study 
of the main features of the regionalization. The three main steps in this are firstly, 
the preliminary checking oftne data and getting a feel for the problem, secondly the 
calculation of the experimental variogram and thirdly fitting a mathematical model 
to the experimental variogram. As the second and third steps were dealt with in the 
previous chapter, we will concentrate on the first one. Box 4 summarizes the three 
main steps in a structural analysis and shows how it fits into the broader framework 
of a case study. 
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5.2.1 Step 1: Collect and check the data 

After the data has been collected and put into the computer, it has to be checked 
thoroughly to see that it is correct and representative of what is being studied. This 
means that any numerical errors in the data or in the coordinates have to be 
corrected, and some elementary statistics should be calculated. But more 
importantly, the geostatistician has to familiarize himself with the data and the 
problem to be solved. Most of the major errors in geostatistical studies occur at this 
point because the person doing the study did not understand the background to the 
problem correctly, or overlooked some of its essential features. At the outset of the 
study, if you have not been involved in the project since its inception, it is important 
to tind a geologist or an engineer who worked with the sampling program and find 
out: 
1. what type of sampling procedure (or procedures) was used, 
2. what sample volumes were collected, what types of analyses were carried out and 

in which laboratories, 
3. whether there were any changes in the procedures used during the exploration 

campaigns. For example, were different drilling companies used at different 
times? Were different types of gamma logging devices used at different times? 

4. whether the area is geologically homogeneous, whether it contains major faults, 
5. whether there has been preferential sampling of high grade areas. 

If any of these factors is missed at the beginning of a study, the work may well have 
to be repeated when they are discovered. These basic checks have always been vital 
at the outset of any ore reserve calculation, but they are even more important 
nowadays because in many countries, people carrying out these tasks are legally 
responsible for any errors and omissions in their work. Geostatisticians working in 
companies or as independent consultants should think carefully about the 
implications of "due diligence" to ensure that their work is in compliance with the 
changing legal situation. A brief discussion of this is given in Appendix 2. 

5.2.2 The decisions to be made 

Initially a series of decisions has to be made which guide the whole of the study. 
Firstly the variables and the geographical zones to be studied must be defmed. Then 
the geostatistician has to decide: 
1. whether the variables are stationary, 
2. what their support is, 
3. whether they are additive, 
4. whether to work with the variables themselves or their accumulations, and 
5. whether to carry out the study in 2D or 3D. 

Stationarity. In Chapter 2 the question of determining whether a regionalized 
variable could be considered stationary or not was discussed. So we will not go over 
it here. 
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BOX No 4 : Steps in a case-study. 

Step 1: Collect and check data. 

If you were not actively involved from the start of the project, frnd those who 
were and ask them about 

• the types of sampling and analyses used and any changes in procedure, 

.. different geological zones, faulting etc, 

• preferential sampling, etc. 

At the outset a series of major decisions has to be made. 

.. Whether to work with grades in 3D or with accumulations in 2D. 

• The limits of area to study, the support of the variables and whether they 
are stationary, 

Basic statistics (means, variances, correlations, histograms and scatter 
diagrams) are calculated. Look for 

• outliers or abnormal values 

• nonhomogeneous data (mixed popUlations) 

Step 2: Calculate experimental variograms. 

Step 3: Fit a variogram model. 

Step 4: Kriging or simulation 

Support. The geostatistical term "support" refers to the size and shape of a volume. 
Diamond drillholes and mining blocks have quite different weights and volumes 
(kilograms compared to hundreds of tons of ore). So although the mean grades 
should be the same, their variances are quite different. Diamond drillholes and 
percussion holes could have the same diameter, and yet the statistical characteristics 
of the data need not be the same. 

Additivity and accumulations. In almost an applications in geostatistics the 
variables studied have to be additive. (One of the rare exceptions is when the 
objectives of the study are limited to contour mapping). Otherwise, the variables 
must be additive; that is, the mean over a certain zone must be the arithmetic mean 
of all the values inside it. This point can best be seen from an example. 

Suppose we wanted to find the average reef thickness and the gold grade from 
two cores, one with a 2m thick intersection and with a grade of 5 git, the other with 
a 3m thick intersection with a grade of 10 git.Clearly the average thickness is 2.5m, 
but the average gold grade is not the arithmetic mean 

5 ~ 10 = 7.5 g/t [5.1J 
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Core No I 

n 2m 

U 5 glt 

Fig 5.1. Two cores of different lengths 

Rather it is the weighted average: 

2 x 5 + 3 x 10 = 8 g/t 
2 + 3 

Core No 2 

3m 

10 g/t 

[5.2J 

The arithmetic average of gold grades (7.5 g/t) would give an entirely false estimate 
of the grade that could be mined from this area. Hence the need to use the product 
of the thickness times the grade. This is called the accumulation. 

A geostatistician would normally carry out the study on the accumulation and 
the thickness, and at the end make the change back to the ordinary variables by 
dividing the kriged accumulation by the kriged estimate of the thickness. 
Alternatively he might cokrige the accumulations and the thickness and then divide 
to get grade estimates. Another point to note is that if the density of the ore varies 
from place to place, it would be wiser to use the accumulation products: grade by 
thickness by density and thickness by density. 

Working in 2D or 3D. Deposits can be split into two broad categories depending 
on their geometry and the mining method. The flrst one consists of relatively thin 
deposits such as coal seams or the gold reefs while the second consists of thicker, 
more massive deposits which are divided into blocks of constant height for mining. 
In the first case, the whole mineralized thickness is extracted so there is no vertical 
selectivity. Consequently the study is carried out in 2D using accumulations rather 
than grades. In the second case, as the mining blocks have a constant height, the 
grades themselves are additive and so the study is carried out in 3D on the grades, 
using information from the levels above and below the one of interest. Open cut 
mines are a good example of this. In between these two extremes there is a range 
of orebodies such as thick seams where vertical selectivity is possible, and 
underground mines where stopes have irregular shapes. Here we limit ourselves to 
the basic cases. Examples of more complicated ones can be found injoumal articles. 

5.2.3 Standard statistics 

As geostatistics assumes that the data come from a homogeneous population, it is 
important to apply a few simple statistical tests before calculating the experimental 
variogram. The means, variances and correlations should be calculated. The 
histograms of the values should be examined carefuHy to check for outliers and to 
see if there is more than one mode. If there are several peaks the data should be 
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rechecked to make sure that they do come from a homogeneous population. After 
this they should be plotted graphically to check for non-homogeneous regions or for 
locally high or low values. Sometimes abnormal values can be picked up visually 
even though they do not show up on the histogram. While these tests are rather 
time-consuming, they are nevertheless vital. It is better to spend a little more time 
at the beginning than to have to recommence the study. 

5.3 Case studies 

Three case studies will be discussed; one on iron ore and two on precious metals. 
The ftrst concerns an iron ore deposit with about 40 vertical drillholes. The cores 
were cut into 15m high sections which were analysed for several quality variables 
(silica, alumina, loss on ignition and sometimes manganese content) as well as iron 
content. As this book deals with univariate geostatistics, the case--study will focus 
on the primary variable, iron content. Those who are interested in multivariate 
estimation can consult the book by Wackernagel (1995). This study was carried out 
in 3D for two reasons: fmtly because it is massive rather than seam-like and 
secondly because the deposit will be mined as an openpit using 15 m high benches. 

The second study which was carried out by M. Harley as his CFSG project. i It 
deals with an Archaean gold deposit that is being mined by opencut methods. 
Whereas the ftrst deposit was relatively easy to estimate, the second one was more 
complex. Its geometry is more complicated and the distribution of the grades (their 
histogram) is quite skew. Another difference between these two studies is that in this 
case two sets of data were available: the initial exploration drillholes and the 
blastholes. The third study was carried out by M. Thurston as his CFSG project. It 
is also on a gold deposit. Unlike the previous studies, this one was done in 2D. As 
the gold in the Witwatersrand was laid down by stream action, the variograms in the 
directions parallel and perpendicular to the current are different. The latter one 
shows periodicity. 

5.4 An iron ore deposit 

The deposit under study is still at the feasibility stage but will be mined as an openpit 
with 15m high benches. The area of interest contains about 40 vertical drillholes; 
their layout is shown in Fig. 5.2.8. A total of 485 core sections 15m long were 
analysed for several quality parameters such as silica content and alumina content, 
as well as their iron ore grade. Here we will consider only the Fe grade. 

i The CFSG (Cycle de Formation Specialisee en Geostatistique) is a 9 month 
postgraduate course that trains geologists and engineers to be specialists in 
mining or petroleum geostatistics. 
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Fig 5.2. (a) Base map showing the layout of drillholes; (b) histogram of 485 Fe 
grades from 15m core sections. As is usual for iron ore, the grade histogram is 
negatively skew with a tail of small values to the left 

5.4.1 Vertical variogram 

The vertical variograms were calculated down the holes using a lag of 15m for 
distances up to 135m. Table 5.1. lists the variogram values and the number of pairs 
of points for each distance class. As expected the number of couples decreases with 
increasing distance, and secondly the variogram is well structured (Fig 5.3.a). 
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Fig 5.3. (a) Vertical variogram and (b) the corresponding variogram cloud. Note the 
change of scale on the vertical axis 
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Table 5.1. Experimental values of the vertical variogram 

Lag 15m 30m 45m 60m 75m 90m 105m 120m 135m 

Pairs 388 329 284 247 209 187 169 153 139 

Y 2.75 3.57 3.82 4.49 4.56 4.97 4.77 4.80 5.13 

5.4.2 Variogram cloud 

Before fitting a model to this, the variogram cloud was calculated (Fig 5.3.b). The 
dotted line indicates the sample variance (4.5); the continuous line is just the 
classical variogram shown on the left. The (half) squares differences range in value 
from virtually zero to 80 (i.e. nearly 20 times the variance). Although the vast 
majority of couples occur at distances that are multiples of 15m, a few do not. In 
those cases, one of the samples making up the pair was shorter than the standard 
I Sm; in fact, these come from the bottom of a drill hole where it hit bedrock. 

5.4.3 Fitting a model to the vertical variogram 

Now to fit a model to the vertical variogram. Figure 5.3.8 shows that it stabilizes 
at a height of about 4.5 at a distance of 65-70m, which gives the total sill and the 
range. Extrapolating back to the origin gives a nugget effect of at most 2. This 
suggests trying a nugget effect of 2.0 plus either a spherical with a sill of 2.5 and 
a range of about 65m or the equivalent exponential. Figure 5.4.8 shows that a good 
fit is obtained with a nugget effect of l.8 plus a spherical with a range of 65m and 
a sill of2.7, but that the corresponding exponential fits badly (Fig. S.4.b). 

5 . ...-...... _ ............... _ ........ ~_"I'II 5 ........ ,.......,.......,.....,.... ....... """1"""..,.....,.. 

1. 1. 

o.~ ...... ~-~-~~~~ O. 20. 40. 60. 80. 0.~ ............. -~-~--....... ""lI O. 20. 40. 60. 80. 
a b 

Fig 5.4. Two attempts at fitting the vertical variogram; b a nugget effect of 1.8 plus 
a spherical with a range of65m and a sill of2.7, and a, the equivalent exponential 
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This combination of a spherical plus a nugget effect is not the only model that 
would fit properly. The nugget effect could be replaced by any structure having the 
same sill and a range ofless than 15m. To illustrate this, Fig. 5.5. compares a model 
consisting of two sphericals with ranges of 10m and 65m and sills of 1.8 and 2.7 
respectively with the spherical model earlier. It would, of course, be possible to use 
a short range structure plus a nugget effect provided their sills sum to 1.8. 
5. ______ ...... __ ~_ ... 

20. 40. 
a 

60. 80. 

5. _________ - __ 

1. 

On~.~~--~~~~~ 
u 20. 40. 60. 80. 

b 

Fig 5.5.: Two models which both fit the experimental variogram; (a) two sphericals 
with ranges of 10m and 65m and sills of 1.8 and 2.7 respectively and (b) a nugget 
effect of 1.8 plus a spherical with a range of 65m and a sill of 2.7 

5.4.4 Horizontal variograms 

The next step is to choose the parameters for calculating the horizontal variograms. 
The base map (Fig 5.2.) shows that the spacing between drillholes is approximately 
80m. In order not to miss any anisotropies, four variograms were calculated along 
the directions, E-W, N-S, NE-SW and NW-SE, with an angular tolerance of22.5° 
so as to give complete coverage. One more parameter, the vertical slicing height, 
also has to be chosen. A value of 15m ensures that only horizontal couples are 
included. Figure 5.6.a shows that the four directional variograms are isotropic and 
can be grouped into a single variogram (Fig 5.6.b). Not surprisingly the latter is 
better structured. 

5.4.5 3D variogram model 

When the variogram model is used in kriging, we will require its value for oblique 
vectors, that is, for distances with horizontal and vertical components (not just a 
horizontal component or a vertical one). Consequently we need a 3D variogram 
model not just separate horizontal and vertical ones. 
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Fig. 5.6. (a) Four directional variograms in the horizontal plane. As there is no 
anisotropy these were averaged (b) and a model was later fitted 

As the sills are approximately the same (Fig. 5.7.), a model with geometric 
anisotropy can be used. As a nugget effect of 1.8 seems appropriate horizontally as 
well as vertically, the vertical model consisting of this nugget effect plus a spherical 
with a sill of 2.7 and a range of 65m was used as the starting point. Several attempts 
were made to fit this to the horizontal variogram just by varying the anisotropy ratio 
but the curvature was not right. However a good fit was obtained by splitting the 
spherical into two components with different anisotropy ratios. Figure 5.7. shows 
the experimental variograms in the horizontal and vertical directions together with 
the fitted model. Table 5.2. shows the parameters of the fitted model. which will be 
used in the case study on point and block kriging in Chapter 9. 

6.p-----~----~------~----~ 
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O. 200. 400. 600. 
Fig. 5.7. Experimental variograms in the horizontal and vertical directions and the 
fitted 3D model 
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Table 5.2. Parameters of fitted variogram model which is isotropic in the horizontal 
direction but not in the vertical 

Sill Horizontal Vertical 
Range Range 

1st Spherical 1.2 80m 65m 

2nd Spherical 1.5 400m 65m 

5.5 Second case-study: an archaean gold deposit (M. Hadey) 

Archaean gold orebodies are common in many regions: Western Australia, Central 
and West Africa, Brazil, Southern India and Guyana. Like most such deposits, this 
one is being mined by open pit methods. The orebody strikes almost north-south, 
dipping to the east at about 70°. It ranges in thickness from 10m to 6Om. 

During the exploration campaign, about 170 holes were drilled and samples 1m 
long were taken for analysis. As the mining benches are 5 m high, the sample grades 
were regularized over this height. Even after regularization, the histogram of gold 
grades was quite skew with the maximum value being about 20 times the average. 
Difficulties could therefore be expected when interpreting and modelling the 
variOgrrullS. The experimental variograms calculated in the principal directions 
(down hole, down dip and along strike) shown in Fig. 5.9.d, e, f confirm this. 

As the mine is now in production. blasthole samples are available on a 3 m x 5 
m grid. Their length is also 5 m. Figure 5.8. shows the histogram of about 7000 
blasthole grades. Their coefficient of variation is 1.13. Their variograms were 
calculated in the three principal directions. Whereas the drillhole variograms were 
highly erratic, these are much better structured (Fig 5.9.a, b, c). This is because the 
spacing is close enough to reveal the short range structures. 

0.3 

0.2 

0.1 0.1 

0.0 

Fig. 5.S. Histogram of bIas thole grades 
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Fig. 5.9. Experimental variograms for an Archaean gold deposit: from closely 
spaced blastholes (a, b and c) and from exploration drillholes (d, e and f) 
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Table 5.3. Short and long ranges of the blasthole variogram model in the three main 
directions 

Direction DownHole Down Dip Along Strike 

Short Range Sm 10m 30m 

Long Range 18m 15m 120m 

The ranges of the variograms are different in the various directions, so a model 
with geometric anisotropy was fitted. It consisted of 10% nugget effect, 40% short 
range spherical plus 50% long range spherical. The ranges of these two spherical 
structures are listed below for the three main directions. 

5.6 Third study: a Witwatersrand gold deposit (M. Thurston) 

The data for this study come from a sedimentary gold deposit. They are the gold 
accumulations in cmg/t corresponding to 15m x 15m blocks; that is, the original 
channel sample data have been averaged for each of the blocks. This reduces the 
quantity of data to be handled from several thousand values to several hundred and 
also smoothes it out. As is common with precious metal deposits, the distribution 
of the values is skew (Fig. 5.10.). 

20~----------------~ 

10 

o 

Fig. 5.10. Histogram of gold accumulations 

The experimental variograms of the gold accumulations were then calculated in 
four directions. The principal two (parallel to the current and perpendicular to it) 
are shown in Fig. 5.11. The NE-SW one has a longer range (about 220m), and so 
indicates the direction of greatest continuity for the deposit. The other one has a 
shorter range (about 75m) and also dips down at 150 to 160m and at 300 to 320m. 
As the gold in this deposit was laid down by the action of water, this indicates that 
the current flowed NE-SW. This confirms what the mine geologists already knew. 

Another interesting feature is the periodicity in the direction NW-SE (the one 
with the shorter range). The variogram reaches a maximum at a distance of about 
75m, drops to a minimum at 150m, rises again and drops to a second minimum at 
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about 300m. This is due to parallel channels in the streams that deposited the gold. 
The direction NW-SE cuts across these channels which are parallel and occur 
regularly every 150m in this area. Whereas the geologists knew the flow direction, 
they had not realized that the channels were 150m apart on average. So the detailed 
variogram study added to their knowledge. 

2 2 

1 1 

NE-SW O~ ________________ ~ NW-SE O~~ ______________ -

o 100 200 300 400 o 100 200 300 400 

a b 

Fig. 5.11. Directional variograms of the gold accumulations; (a) parallel with the 
direction of the current and (b) perpendicular to it 

Having said that, the next question is to decide whether to choose a variogram model 
that incorporates the periodicity. For kriging, we only use data up to about 100m 
from the block to be estimated. So the variogram model only has to fit up to this 
distance. A model with geometric anisotropy with a range of 80m in the direction 
NW-SE, and a range of 200m NE-SW was appropriate. A spherical model with these 
ranges and a nugget effect equal to about 35% of the total sill gave a good fit. So 
as far as kriging is concerned, there was no real point in modelling long range 
features like the periodicity. 

Lastly as the data were approximately three-parameter lognormally distributed, 
the experimental variograms of the log were also calculated for comparison with the 
raw variograms (Fig. 5.12.). The shapes are generally similar to the raw variograms 
but the fluctuations are less accentuated. The variogram of the logs is more stable 
numerically, and shows the range and the sill more clearly. 

OT---.----.---.---.---.----.---.----.---~ 
o 100 200 300 400 

Fig 5.12. Variogram of the logs of the gold accumulations 
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6.1 Summary 

This chapter deals with the effect of the support of a regionalized variable (Le. its 
physical shape and volume) on its histogram and its variogram. In an introductory 
exercise, the histograms and the basic statistics are calculated for two support sizes: 
1m x 1m blocks and 2m x 2m blocks. Although the means of the two distributions 
are identical, the variance of the larger support is much smaller and its histogram 
isalmost bell shaped whereas the other one is skewed. 

The formulas for the variance of a point within a block and of one support v 
inside another V are then given. Krige's additivity relation is proved. Then we see 
how the regularized variogram is related to the point support variogram. An exercise 
illustrates the effect that regularizing has on the variogram. 

6.2 The support of a regionalized variable 

In many practical situations a regionalized variable is measured as the average over 
a certain volume or surface rather than at a point. The basic volume on which a 
regionalized variable is measured is called its support. Changing its support leads 
to a new regionalized variable which is related to the preceding one but which has 
different structural characteristics. For example the grades measured on 2 inch cores 
(i.e. with a 50 mm diameter) have a higher variance than those measured on larger 
diameter cores, or on blocks or bulk samples. The problem is to know how one 
variable is related to the other. In other words, what can we say about the grade of 
blocks knowing the grade of cores? The answer will be given in two stages. First 
we consider the dispersion of the values as a function of the support. Then we see 
how their variograms are related. 
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6.2.1 Dbipersion versus block size 

To illustrate the effect of support, we consider the data from the introductory 
example in Chapter 1. Table 6.1 gives the grades of the 64 adjoining 1m x 1m blocks 
and also the average yields for the sixteen 2m x 2m blocks obtained by averaging 
4 adjacent 1m x 1m blocks. These values came from about 1000 millet yield values 
studied by Sandjivy (1980). As expected, the means of the data are the same (201) 
except for differences due to roundoff. But the variances are not. The variance for 
the 2m x 2m blocks is 16,641 which is smaller than that of the 1m x 1m blocks 
(27,592). If the values were statistically independent the variance for the larger 
support would be Y4 of the other one. Because of the correlations it is higher. 

Figs. 6.1. and 6.2. show that the shape of the histogram has changed too. The 
second one is less skew. The implications of this change are very important in 
mining. In selective mining only those blocks with a grade above a cutoff can be 
mined profitably. So it is vital to be able to predict the proportion of ore above a 
cutoff. As was shown in Chapter 1 when the polygonal method is used for reserve 
estimation, the grade of the sample inside the polygon is taken as the estimate for 
the whole polygon. This leads to equating the histogram of core grades to that of 
blocks, and hence to serious errors in estimating the recoverable reserves because 
the histograms are quite different, as can be seen by comparing Figs. 6.1. and 6.2. 

Fig. 6.1. Histogram of the grades of the 64 1m x 1m blocks 

10% 

700 

Fig. 6.2. Histogram of the grades of the 162m x 2m blocks 
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Table 6.I.Grades of (a) the sixty-four 1m x 1m blocks and (b) the sixteen 
2m x 2m ones 

735 325 45 140 125 175 167 485 

540 420 260 128 20 30 105 70 

450 200 337 190 95 260 245 278 

180 250 380 405 250 80 515 605 

124 120 430 175 230 120 460 260 

40 135 240 35 190 135 160 170 

75 95 20 35 32 95 20 450 

200 35 100 59 2 45 58 90 

a 1m x 1m blocks 

505 143 88 207 

270 328 171 411 

102 220 154 263 

101 54 44 155 

b 2m x 2m blocks 
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6.3 Variance of a point within a volume 

We now go on to see how to evaluate the variance of blocks given the variogram 
of samples. For the sake of generality, the supports will be called v and V. If the data 
are 2-D, these would be areas rather than volumes. In our model. the variable under 
study is considered as a realization z(x) of a random function Z(x). If all the values 
within the volume V were available it would be possible to find the mean over this 
volume and also the variance of the values within this volume. The mean is 

[6.11 

Similarly the variance of the values within the volume V is given by 

S2 (0 I V) = ~ t (z(x) - my )2 dx [6.2] 

Here 0 denotes a point i.e. something with a zero volume. If we let the realization 
vary, the variance of z(x) within V can be obtained as the expected value of s2 (OIV) 
over all possible realizations: 

0 2 (OIV) = E [S1 (OIV)] [6.3J 

It can be shown that this variance is related to the yariogram by the formula: 

0 2 (OIV) = ~2 f f y(x - y) dx dy [6.4] 

This integral is the average obtained by varying x and. y independently throughout 
the volume V. It is therefore denoted by Y(V. V). This gives 

0 2 (0 I V) = y(V, V) [6.5] 

In practice y(V, V) is calculated by discretizing the block V. Exercise 6.1 at the end 
of the chapter shows readers how to program the calculation. 

6.4 Variance of v within V 

We now consider a new random function defined as the spatial average inside a 
yolume v: 

Zy(x) = ~ t Z(x + t) dt [6.6] 
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The aim is to find the dispersion of this new variable Zv(x) as it moves over a larger 
volume V. Typically v could represent a core while V could be a hlock, or v could 
be a selective mining unit and V could be the whole deposit. 

Fig. 6.3. Small block v centered on point x inside the volume V 

The variance of v within V is denoted by (J2 (vIV) and is given by: 

0' (vlv) ~ E (~ Iv (Z~x) - m,)' dx) 

Expanding this gives: 

(J2 (vIV) = ~2 I I y(x - y) dx dy - ;2 J I y(x - y) dx dy 

v v v v 

yCV I V) - y(v, v) 

6.5 Krige's additivity relation 

[6.7] 

[6.8] 

Combining the results [6.5] and [6.8] gives an equation called Krige's additivity 
relation. 

(J2 (vIV) = y (V,V) - Y (v,v) = (J2(OIV) - (J2(Olv) [6.9] 

This can be generalized to any three volumes v, V and V' where: v eve V': 

(J2 (vIV') = (J2 (vIV) + (J2 (VIV') [6.10] 

For example, v could be a core section, V a block and V' a large panel or the whole 
deposit. In that case the formula can be interpreted as "the variance of a core section 
within the deposit is equal to that of a core within a block plus the variance of a block 
within the deposit". We now check this experimentally for the millet data given 
earlier. Here v corresponds to aIm x 1 m block while V corresponds to a 2m x 2m 
block. 
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From before we have: 

0 2 (v I V') = 0 1 lxl 27,592 

02 (VIV') = 022x2 = 16,641.1 

[6.H] 

[6.12] 

The value of 02 (vIV) can be calculated experimentally as the variance of the four 
small blocks with each larger one. '[bis gives 10,951. It is easy to verify that this 
value equals 27,592 - 16,641 and hence satisfies the additivity relation. In fact this 
is true for all cases where the small blocks v exactly nn the next size block up, here 
V. 

6.6 Exercise: stockpiles to homogenize coal production 

Often the grade of the run of mine coal arriving at the entry to a coal wash plant or 
a power station fluctuates too much. The problem is to decide whether it would be 
economically worthwhile to blend the coal in stockpiles so as to homogenize its 
quality. Linear geostatistics can be used to calculate the variability (the variance) 
of the average value of blocks of certain sizes. This assumes perfect mixing. 

Suppose that the ash content of coal has a spherical variogram with a range of 
300m and a sill of 5.0. Each day the company mines a block 60m x 100m (denoted 
by v); each week six adjoining blocks are extracted by strip mining. The width of 
the strip is determined by the length of the boom on the dragline and is 6Om. So V 
is 60m x 600m. Evaluate y(v, v) and y(V, V), and hence work out the variability of 
one day's production in that of a 6 day working week. 

6.6.1 Solution 

The first step is to calculate y(v, v) and y(V, V). 'lbere are two ways of doing this, 
either by writing a small computer program or by reading the appropriate values 
from standardized charts. Exercises 6.1 and 6.2 indicate how to apply these 
methods. The results are 

y(v,v);::;: 1.05 and y(V,V) "" 3.40 

Now it is easy to calculate the dispersion variance 02 (vIV). 

02 (vIV):;:: y(V,V) - y(v,v) = 2.35 

[6.13J 

[6.14) 

The corresponding standard deviation (the square root) is 1.53. Using m ± 20 as an 
approximate confidence interval, the daily averages will usually be within about ±3 
units (i.e. 2 x 1.53) of the weekly average. A more precise answer could be obtained 
by conditionally simulating the deposit and carrying out a mining scenario on the 
numerical modeL See for example, Chica-Olmo and. Laine (1984) and Deraisme 
and de Fouquet (1984). But this is out<;ide the scope of this book. 
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6.7 Change of support: regularization 

Let Z(x) denote a random function defined on a point support. Its average over a 
volume V defines a new random function Zv(x) with support V. It can be shown that 
the variogram of this new regularized variable is: 

yv(h) = Y(V, Vh) - y(V, V) [6.15] 

where Vb denotes the support V moved through h (translated by the vector h), and 
y(V,Vb) represents the average value of the variogram between an arbitrary point 
in Vb and another in V. 

h • 

V 

Fig. 6.4. Volume V translated through a vector h to volume Vh 

When the distance h is small compared to the size of V, the distances from an 
arbitrary point in V to an arbitrary point in Vb can vary considerably. For example. 
if V is a rectangle of length I. then the horizontal distances go from h - I to h + l. 
However when the distance h is large compared to the size of V, the distances are 
very close to h. Consequently the mean variogram value y(V, V b) is approximately 
equal to y(h). So we obtain the relation: 

Yv(h) = y(h) - y(V, V) [6.16] 

Point Sill 

Fig. 6.S. Point support variogram and the regularized variogram 

6.8 Exercise: calculating regularized variograms 

The data available for reserve calculations do not always all have the same support 
size. For example. some drillholes may be 8" in diameter whereas others are 2" in 
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diameter. It is then important to be able to calculate the variograms corresponding 
to the two supports. As an exercise, we calculate the variogram models for 2m x 2m 
and 3m x 3m blocks given that y(V, V) == 11,150 for 2m x 2m blocks and y(V,V) ::::: 
13,900 for 3m x 3m blocKs. 

6.8.1 Solution 

For 2m x 2m blocks 

YR (h) = Ylxl (h) - 11,150 [6.17] 

For 3m x 3m plots 

YR (h) = Ylxl (h) - 13,900 [6.18] 

Consequently the theoretical sills of the regularized variograms are 16,450 and 
J 3,700 respectively. Fig. 6.6. shows the three experimental variograms. Their sills 
are in close agreement with those calculated theoretically. 

27,600 

16,450 

13,700 

1m x 1m blocks 

2m x 2m blocks 

l<'ig. 6.6. Experimental variograms for all three support sizes 
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6.9 Exercises 

To do these exercises, one has to be able to calculate the values of y(V, V). There are 
two ways of doing this: by writing a small computer program to discretize V or by 
llsing standardized tables such as Ihose given by Journel and Huijbregts (1978) 
pp125-147. The first exercise outlines a suitable computing procedure while the 
second one shows how to use the tables. 

Ex 6.1 Calculating y(V,V) by discretizing the block. This. exercise outlines a 
procedure for calculating Ihe average variogram value by discretizing the block V. 
First the number of grid nodes along each axis has to be chosen because this 
determines the coordinates of discretized points. 

• • a a • • • • 

D D DaD a • • 

a ~Xig a a • a a 
X· 

aaaa i.aa 
D D a a DaD D 

The procedure consists of a doubJe do-loop which takes every pair of points in turn, 
calculates the vector distance between them, evaluates the corresponding 
variogram value and sums these. At the end the total is divided by the square of the 
number of discretized grid nodes to obtain the average variogram value. 

The choicc of the number of grid nodes is critical. Too few nodes and the average 
will not be accurate; too many nodes and the computing time explodes. For 
example, if a square is discretized into 100 x 100 points; there are 104 points and 
lOS variogram terms to calculate. Typically using between 25 and 100 poims 
suffices in 2D, and up to 200-300 in 3D. 

Write a computer routine to calculate y(V, V) and y( v, v) where V is a ] OOm x 100m 
block and v is a 10m x 10m block and where the variogram is 
(a) a spherical with a range of 100m and a sill of 3.0, 
(b) an exponential with a practical range of 50m and a sill of 3.0, 
(c) a pure nugget effect with a sill of 3.0. 

Start the calculations using a 2x2 discretization and work up to lOxlO noting the 
stabilization in the value ofy(V,V) and the increase in the computer time. 

Ex 6.2 Calculating y(V,V) by using the tables. This exercise is designed to 
illustrate the use of standardized tables that can be found in texts like Journel and 
Huijbregts (1978). Charts 4 and 5 (p128-9) give the standardized values ofy(V,V) 
for the spherical with unit range and unit sill, for 2D and 3D blocks respectively. 
Similarly for Charts 14 and 15 (p 138-9) for the exponential. The key to using these 
charts is to convert the block size into multiples of the range (or the scale parameter 
"a" for the exponential) and then read the values off the table. 
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for example, if the block is 100m x 100m and the variogram is a spherical with a 
range of 200m and a sill of 3.0, then the block is equivalent to 0.5 x 0.5 ranges. The 
chart gives a value of 0.37S. Multiplying by the sill gives 

y(V,V) == 3.0 x 0.375::: 1.12S 

Use the charts to calculate y(V,V) and y(v,v) where V is a 100m x 100m block and 
v is a 10m x 10m block and where the variogram is 
(a) a spherical with a range of 100m and a sill of 3.0. 
(b) an exponential with a practical range of SOm and a sill of 3.0, 
(c) a pure nugget effect with a sm of 3.0. (Hint: range = 0). 

Compare your results with those obtained in the previous exercise. 

Ex 6.3 Calculating y(V,V) theoretically. In some very simple cases y(V,V) can be 
calculated by integration, using equation [6.4]. Let V be a core section of length d 
(in lD). 
(a) If the variogram is linear with slope C, show that y(d,d)::: C d/3. 

Remember that y(h) ;;:: Ohl. 
(b) Calculate Y(d.d) for the case where the variogram is an exponential with a sill 

of C and a practical range of 3. 
(c) Calculate y(d,o) for the case where the variogram is a pure nugget effect with 

a sill ofC. 

Ex 6.4 Dispersion variance. Use the values of y(V,V) and y(v,v) found above to 
calculate the dispersion variance of 10m x 10m blocks inside a zone of size 100m 
x 100m for the cases where the variogram is 
(a) a spherical with a range of 100m and a sill of 3.0, 
(b) an exponential with a practical range of sOm and a sill of 3.0, 
(c) a pure nugget effect with a sill of 3.0. (Hint: range::: 0). 

Ex 6.5 Dispersion variance. A small mining company extracts 4 blocks of size 
10m x 10m x Sm from its open pit each day. The mine manager can choose to take 
adjoining blocks (i.e. 40m x 10m x Sm) or blocks from four different parts of the 
mine which are far enough apart to be considered independent. The problem is to 
predict the daily variance of the mean grades for the two methods. The material 
being mined has a spherical variogram with a range of 100m and a sill of 3.0. 

Ex 6.6 Regularized variograms. The copper grade for Sm long core sections has 
a spherical variogram with a vertical range of SOm, a sill of 0.1 and a nugget effect 
ofO.OS. As the bench height during mining will be ISm, the data will be regularized 
over this height. We want to calculate the vertical variogram for this new variable. 
Firstly calculate y(d,d) where d is a ISm core section, then sketch the variograms 
for Sm and 15m core sections on the same graph. 
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7.1 Summary 

This chapter presents the theory of kriging. Kriging is an estimation method that 
gives the best unbiased linear estimates of point values or of block averages. Here 
"best" means minimum variance. 1bree types of kriging estimators are discussed: 
ordinary kriging (OK) used when the mean is unknown, kriging the unknown mean 
value and simple kriging (SK) used when the mean is known. 

The equations for these three estimators are derived for the stationary case, and 
are extended to the case of intrinsic variables for ordinary kriging. The additivity 
theorem which gives the links between the OK and SK estimators is proved. For 
ordinary kriging, the fonnula for the slope of the linear regression of the true grade 
on its estimate is given, and its importance in relation to conditional unbiasedness 
is discussed. Lastly, kriging is shown to be an exact interpolator. 

7.2 The purpose of kriging 

Sampling provides accurate infonnation at data points. However this does not tell 
us what is happening in between them. We need an accurate way to estimate the 
values at intennediate points or the averages over blocks. The accuracy of the 
estimates depends on several factors: 
1. the number of samples and the quality of the data at each point. 
2. the positions of the samples within the deposit. Evenly spaced samples achieve 

better coverage and thus give more information about the deposit than clustered 
samples do. 

3. the distance between the samples and the point or block to be estimated. It is 
natural to rely more heavily on neighbouring samples, rather than on more distant 
ones. Similarly we expect the accuracy to be best in the vicinity of the samples 
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and to deteriorate further away. The dangers of extrapolating outside the zone 
sampled need not be spelled out here. 

4. the spatial continuity of the variable under consideration. It is easier to estimate 
the value of a fairly regular variable than one which fluctuates wildly. For 
example, for a given sample layout, the estimates of the copper grade are more 
precise than those of gold. 

"Kriging" is an estimation method which takes account of all these factors. It was 
named after Dr D.G. Krige, a South African mining engineer, who first developed 
a moving average technique for estimating gold grades to remove the regression 
effect. Prof. G. Matheron improved on this and the new method was called kriging. 
In essence, it is a wayof' tin ding the best linear unbiased estimator (in the sense of 
least variance). That is, we choose the weighted average of the sample values which 
has the minimum variance. 

7.3 Deriving the kriging equations 

The problem is as follows: we have N data values Z(XI), ... Z(XN) at our disposal and 
we want to estimate a linear function of the variable Z(x). For example we might 
want to estimate its value at a particular point, Z(xo), or its average over a certain 
region. (Some other linear functionals such as the gradient can also be estimated by 
kriging.) To avoid having to write out all the cases separately, we denote the quantity 
to be estimated by: 

Zy = ~ Iv z(x) dx [7.1 ] 

The volume V could be the whole deposit, or a mining block, or it could be as small 
as a single point in the case of point estimation. It could even be an irregular shape. 
See Box 5 for more information on kriging irregular shapes. 10 estimate Z(V), we 
consider a weighted average of the data: 

[7.2J 

where A.i are the weighting factors. By convention the star will be used to denote the 
estimated value as opposed to the real but unknown value. The problem is to choose 
the weighting factors in the best way. This is where we make use of the geostatistical 
model. We consider the regionalized variable: 

'Ine weights are chosen so that the estimator is: 
1. unbiased: E[Z ~ - Zv] = 0 

[7.3] 
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2. minimum variance: Var[Z ~ - Zvl is a minimum. 

This variance will be called the kriging variance. 

7.4 Different kriging estimators 

In the ftrst instance we assume that the regionalized variable Z(x) is stationary and 
that its mean, m, is unknown. Kriging with an unknown mean is called ordinary 
kriging, which is abbreviated to OK. We first derive the system of equations for 
ordinary kriging for the stationary case in terms of the variogram and then the 
covariance. before indicating how to extend these results to the intrinsic case. 

BOX No 5 : Can irregular blocks be kriged? 

Some people think that only regular blocks can be kriged. But this is completely 
incorrect. TIle kriging equations are quite general. The target "V" could be as 
small as a point or as large as the whole deposit. Most often it is a regularly 
shaped block, but it could be an irregular shape such as an area marked out for 
blasting. 

Block to be 
estimated 

The only problems arise when discretizing V in order to calculate y(V,V) and 
y(x, V). With a regular shape it is easy to choose a grid size that guarantees a 
reasonable number of discretized points inside the zone to be estimated. This 
is more difficult with irregular shapes. As can be seen from the two figures 
below, a slight change in the grid spacing dramatically changes the number of 
nodes inside the zone. 
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The next step is to see how to estimate the unknown mean m. After that we will 
see what happens to the kriging estimator if the mean, m, is known. This is called 
simple kriging and is abbreviated to SK. In all these cases a set of linear equations 
called the kriging system has to be solved to obtain the kriging weights and the 
kriging variance. 

7.S Ordinary kriging 

Unbiased ness. The variable Z(x) is assumed to be stationary with mean m. Its mean 
at every point is equal to m and so is the mean of any block. That is, 

E[Z(x)] = m = E[Zv] [7.4] 

Most estimators are weighted moving averages of the surrounding data values; that 
is, they are linear combinations of the data: 

[7.5J 

The mean of the estimation error [Z ~ - Zv] is just 

[7.6] 

In order to be unbiased, the expected error must be zero, so either m == 0 or the kriging 
weights must add up to 1. In the first case the mean is known. (This leads to simple 
kriging). If m is unknown then the weights must sum to 1.2 

Minimum variance. The variance of the error [Z ~ - Zv] can be expressed in 
terms of either the covariance or the variogram: 

0 2 = II A).'jC(Xj,X j ) + C(V,V) - 2 I AjC(Xi,V) 

2 I Ai y(x i, V) - I I A i A j y(x j, x j) - y(V, V) [7.7] 

where Y(Xi, V) is the average of the variogram between Xi and the volume V, i.e. 

y (x i, V) = ~ Iv y(x i-X) dx 

2 The idea that the kriging weights must sum to 1 rather than 0 sometimes 
causes confusion. The sum of all the weights is still zero because there is the 
weight of -1 in front of Z(V) in the expression for the estimation error. 
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As was seen in Chapter 6, y(V,V) is the average of the variogram between any two 
points x and x' sweeping independently throughout the volume V. 

Dx V 

x' 
• 

'{(V, V) J2 f f y(x - x') dx dx' 

In the same way C(Xi,V) and C(V,V) are the averages for the covariance. In order 
to minimize the estimation variance under the constraint that the sum of the kriging 
weights must be equal to I, we introduce a Lagrange multiplier", into the expression 
to be minimized. Since the sum of the weights must be 1.0, adding the term in 1.1. does 
not change the value of the expression. 

<P = Var(Z ~ - Z v) - 2", (I A j- 1) 
[7.8] 

The partial derivatives of the quantity are then set to zero. This leads to a set of N+ 1 
linear equations called the kriging system. Box 6 shows the details of the 
differentiation step. When written in terms of the variogram model the kriging 
system is: 

N 

I A j Y (x i, xi) + '" 
j=1 

1 

1, 2, ... N 
[7.9] 

The minimum of the variance which is called the kriging variance, is given by: 

J [7.101 

Clearly the equations could also have been obtained in terms of the covariance by 
minimizing the frrst form of [7.7]. The kriging system is then: 

I Aj C(x;,Xj) + 1.1.' = C(x;,V) 
j-I 

LA; = 1 
; 

i = 1, 2, ... N 
[7.11] 
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BOX No 6 : Deriving the ordinary kriging equations 

The esssential step in deriving the kriging equations is minimizing the 
expression for the estimation variance: 

cp = 2 L Ai y(x;, V) - L L Ai Aj y(x j , x) - y(V, V) + 2f.t(1 - L Ai) 

This is done by differentiating with respect to each of the unknowns and setting 
the partial derivatives to zero. Here we show this in detail for the case where 
there are 3 samples. The procedure is the same in the general case where there 
are N samples. If we let Yij = y(xi, Xj) and YiV = Y(x i , V), then 

cp = 2A1 V\ V + 2A2 Y2V + 21..3 Yw - ( A~ Y\1 + Ai Y22 + A~ Y33 

+ 21..\ A2Y\ 2 + 2A\A3 Y13 + 2A2A3Y23 ) - y(V, V) 
+ 2f.t (1 - 1..\ - 1..2 - 1..3 ) 

Differentiating with respect to A. gives 

acp _ [ ar- = 2 Y I V - 21..\ Y \\ + 2A2 Y \ 2 + 21..3 Y 13 + 2f.t I 
\ 

o 

Hence 

Al YII + 1..2 Y\2 + A3 Y13 + f.t = V1V 

Similarly differentiating with respect to A2 and A3 gives: 

1..\ Y12 + 1..2 Y22 + 1..3 Y23 + f.t Y2V 

AI Y13 + 1..2 Y23 + 1..3 Y33 + f.t = 'f3v 

Lastly differentiating with respect to f.t gives 

A\ + 1..2 + A3 = 1 

Consequently the kriging system is: 
3 

L Ai Y (x i'X j) + f.t = Y (x i' V) 
j~1 

1, 2, 3 

= 1 

In the general case, one would have to differentiate with respect to each of the 
N unknown weights, and the sums in the kriging system would go from 1 to N 
rather than from 1 to 3. Otherwise the principles are just the same. 
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The two Lagrange multipliers are related by ~ I = - IL. The corresponding 
kriging variance is given by: 

[7.12] 

To solve the system, it is convenient to write it in matrix form: AX = B. 

YNI YNl 

1 1 

Ify is an admissible model and if there are no multiple points, the matrix A is always 
non singular. Its inverse A -I exists. So a solution exists and it can be proved that 
it is unique. The uniqueness is important because it is used later to link the different 
types of kriging. The kriging variance can be written: 

oi = XT B - 'f(V, V) (XT = X transposed) [7.14] 

Beware the matrix A itself is not positive definite. 

7.6 The OK equations for intrinsic regionalized variables 

In the preceding section the OK equations were derived for the case of a stationary 
regionalized variable. What happens if the regionalized variable Z(x) is intrinsic but 
not stationary? In the definition of intrinsic variables we saw that the underlying 
idea was to work only with increments rather than with the variable itself. In 
particular, two hypotheses were made: 

E (Z(x + h) - Z(x») = 0 

Var[Z(x + h) - Z(x») = 2y(h) 

[7.15] 

[7.16] 

where y(h) depends on h but not on x. So under this hypothesis the estimation error 
[Z ~ - Zv] is an increment provided that the sum of weights is l.0, and 
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consequently its expectation and variance exist and can be calculated. From this 
point on, the procedure is the same. 'The variance of the estimation error is 
calculated and is minimized. 'This leads to the same OK system ill terms of the 
variogram as before. This is one of the reasons why we use the intrinsic hypothesis 
rather than just stationarity. 

7.7 Exercise: Ordinary kriging of a block 

OZ3G oZ, 

• Z4 

Fig. 7.1. Data configuration with the block to be estimated 

The shaded block (200m x 200m) is to be kriged using 5 samples on a regular 200m 
grid. Suppose that the regionalized variable is stationary with an isotropic spherical 
variogram with a sill of 2.0 and a range of 250m. To make it possible to do the 
calculations with a pocket calculator, the values of y(V,V) and y(V,x) are given. 

y(V, V)= 1.13 [7.17] 

7.7.1 Solution 
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The terms in the matrix are found by calculating the distances between the points 
and then evaluating the corresponding variogram values. For example, for Y(X2, X3), 
the distance between the points is 2O<N2. As this is greater than the range, the value 
equals the sill. The resulting system is: 

0 1.89 1.89 1.89 1.89 1 Al 0.88 

1.89 0 2 2 2 1 A2 1.86 

1.89 2 0 2 2 1 A3 :::: 1.86 
[7.19J 

1.89 2 2 0 2 1 A4 1.86 

1.89 2 2 2 0 A5 1.86 

1 1 1 1 1 0 ~ 1 

This can easily be solved to give: 

Al == 0.60 

A2 == A3 ::::: "-4 :::: A.s = 0.10 [7.20] 

!l:::: 0.12 

So the estimate of the average value over the square is: 

Z* = 0.60 ZI + 0.10 (Z2 + Z3 + 24 + Zs) [7.21] 

The estimation variance is given by: 

oi = I Ai '(V,x;) + !l - '(V, V) = 0.26 [7.22] 

The only tricky point when setting up kriging matrices comes from the nugget 
effect. In the case above, if there had been a nugget effect of 1.5 in addition to the 
spherical structure, all the nondiagonal terms would be increased by 1.5 but the 
diagonal terms remain O. Conversely when the system is written in terms of 
covariances, the diagonal terms equal the total sill including the nugget component 
but this is absent from nOlldiagonal terms. 
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7.8 Kriging the value of the mean 

In ordinary kriging the objective was to estimate a linear function of the 
regionalized variable such as the grade at a point or the average grade over a block. 
Here the objective is to estimate the value of the unknown mean m. If we use the 
index m to distinguish the weights in this estimator from those in the previous one, 
then the estimator can be written as 

N 

m' =LAmiZ(XJ 
i~l [7.23] 

As before this estimator must be unbiased and minimum variance. In order to be 
unbiased the estimation error must have an expected value of O. That is, 

N 

E [m' - m] = E [L Ami Z(X i ).- m] = 0 
i=l 

As the mean of Z(x) is m, this implies that 

[7.24] 

The variance of the estimation error is 

Var 1m' - m] ~ va{ ~ 1.; Z(x;) - m ] 

= L L Ami Amj C (Xi,X j ) [7.251 
i 

As in ordinary kriging, this variance is minimzed subject to the constraint on the 
weights by using a Lagrange multiplier. The kriging equations are therefore 

L A mj C (x i ,x i) = 11 m 
j~l 

1 

i = 1, 2, ... N 

[7.26] 

The corresponding kriging variance can be calculated. Interestingly, this gives a 
meaning for the Lagrange multiplier in this case. 

OK 2 = Var (m' ) = !J. m 
[7.27] 
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7.9 Simple kriging 

We are now going to derive the kriging system when the mean m of the regionalized 
variable is known. Firstly we consider a regionalized variable Y(x) with zero mean. 
Clearly the initial regionalized variable is obtained from this as Z(x) = Y(x) + m. 
Our estimator of Y(x) is going to be 

N 

Y~ = I A/ Y(xJ [7.28] 
j~1 

We use primes to distinguish the simple kriging weights from the ones for ordinary 
kriging and from those for kriging the mean. As before this estimator must be 
unbiased and minimum variance. In order to be unbiased the estimation error must 
have an expected value of O. That is, 

E [y~ -y.] ~ E [t. ).: y(.;) - y.] ~ 0 [7.29] 

As the mean of Y(x) is 0, this estimator is automatically unbiased. So there is no 
condition on the sum of the weights. The variance of the estimation error is 

Var [Y~ - Yv] = E [I A/ Y(Xj) Yv]2 

= I L A;' A/ C(xj,Xj ) + C(V, V) 2 2'>;' C(Xj' V) [7.30] 
j i i 

As there is no condition on the sum of the weights, there is no need for a Lagrange 
multiplier. Consequently the kriging system is just 

L A/ C(xj,Xj ) = C(xj , V) 
j~l 

i = 1, 2, ... N 

The corresponding kriging variance, is given by: 

[7.31 ] 

[7.32] 

Solving the kriging system [7.32] gives the kriging weights and hence the estimator 
of Y v. The estimator of Zv can be deduced from this by replacing Y(x) by Z(x) - m. 
This gives 

Z ~ = Y ~ + m = I A' j [Z(x j) - m I + m 

= LA/ Z(Xj) + m [I - IA;'] = Ii..;' Z(Xj) + m AM [7.33] 
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The teon AM is called the weight of the mean in simple kriging. 
Simple kriging is rarely used in day to day practical applications because the 

mean is rarely known. It is sometimes used in large mines such as in South Africa 
where the mean of each area is known because the region has been mined for many 
years. It is also used when kriging transformed data (e.g. after a gaussian 
anamorphosis) when the mean has been set by the transformation to a known value, 
usually zero; for example, in disjunctive kriging. But one of the most important 
reasons for studying simple kriging is that the weight of the mean provides one of 
the best criteria for testing the quality of a kriging. More information on these 
quality criteria will be given in Chapter 8. 

Looking at the estimator [7.33] it is clear that the form of the estimator has 
changed. Compared to ordinary kriging and kriging the mean, it is no longer just a 
linear combination of the data. A constant teon has been added. lbis is important 
when kriging is considered in teons of projections (Journel, 1977). 

7.10 The additivity theorem 

In the preceding sections we saw how to estimate variables when the mean was 
known (simple kriging) and when it was unknown (ordinary kriging). We also saw 
how to estimate the value of the mean in the second case. It is interesting to see how 
these three estimators are linked. It turns out that substituting the kriged estimator 
for the mean m into the expression for the SK estimator gives the OK estimator. The 
proof is given in Box 7. As part of the proof two interesting results appear. These 
are 

[7.34] 

[7.35] 

The first of these provides an interpretation of the Lagrange multiplier for OK in 
teons of the weight of the mean in SK and the Lagrange multiplier for kriging the 
mean. The second equation shows that the ordinary kriging variance can be split into 
two parts: the first is the simple kriging variance when the mean is known, the 
second is the variance of the estimator of the mean multiplied by the square of the 
weighting factor of the mean in simple kriging. The second term gives a measure 
of the loss of accuracy caused by not knowing the true mean. 
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BOX No 7 : Proof of the additivity theorem 

Starting out from the SK estimator 

Z~ = 2)'i' Z(x;) + m AM 

we replace m by its kriged estimator m*. If AM denotes the weight of the mean 
in simple kriging 

Z~ = I Z(x;) lA;' + AMAmd [7.36] 

At first this does not look like the OK estimator. But as the OK estimator is 
unique, if this satisfies the OK equations, it must just be another expression for 
it. We now show that [7.36] does satisfy these equations. Firstly we check that 
the sum of the weights is 1.0. Summing these gives 

I [A i' + A M A m i) = I A;' + AM = 1 [7.37] 

since I Ami = 1. Now we show that the equations [7.11] 

I Ai C(Xi,X j ) = C(X j , V) - IJ.' j = 1, 2, .. N [7.38] 
i=1 

are also satisfied. After substituting A ' i + AM Ami in place of A i the first 
term becomes: 

I( Ai' + AM Ami) C(X;,Xj) 

= IA'i C(Xj,X j ) + IAM Ami C(Xj,X j ) [7.39] 

From the SK system, the first term is C(xj , V). Similarly from the kriging 

system for the mean [7.26] the other term is AM IJ. m' Consequently 

I [ A;' + A MAmi ] C(xj,X j ) = C(xj,V ) + AM flm 
i=1 

[7.40] 

So by setting A M 11 m = - IJ.' = 11, it is clear that these weighting factors 
do satisfy the equations. So expression [7.36] satisfies all the OK equations. 
Lastly by substituting Ai = A;' + A M Ami into the expression for the kriging 

variance, a new expression is obtained for the OK kriging variance: 

O~K = O~ + (AM)2 Var (m·) [7.41] 
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7.11 Slope of the linear regression 

In the introductory exercise at the beginning of the book, the true block grades were 
plotted against the estimated grades for several estimation methods including the 
polygonal method and kriging. For a perfect estimator, Z~ would always equal Zv 
but this is not possible in practice. The next best situation would be to have 
estimators that are conditionally unbiased; that is, 

E [Zv I Z~] = Z~ [7.42] 

This means that the regression of Zv on Z~ must be linear with a slope of 1.0. 

True = Estimated 

Estimated Grade Estimated Grade 

a b 

Fig. 7.2. Regressions of the true grades against the estimated ones, (a) conditionally 
unbiased and (b) conditionally biased 

It is important to note that although kriging is by definition globally unbiased since 
E[Z~ - Zv] = 0, it is not necessarily conditionally unbiased. In this section we 
will see that assuming that the regression is linear, simple kriging is always 
conditionally unbiased but ordinary kriging is not. 

The slope of the linear regression of Zv on Z~ will be calculated for the OK 
estimator. In practical cases the distributions of Zv and Z~ are rarely known; so the 
true shape of the curve E[Zv I Z~ ] considered as a function of Z~ is unknown. The 
linear regression slope can nevertheless be used to see how far the OK estimator is 
from conditional unbiasedness. It is wellknown that the slope, p, of the linear 
regression is given by 

p = Cov [Zv. Z~] / Var [Z~] [7.43] 

For simple kriging, 

Z~ = 2).'; Z(x;) + m [1 - I A';] [7.44] 

and consequently 
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COy [Zv, Z~] = I A'i C (x j, V) 

Var [Z~] = I IA'j A'j C(Xj 'Xi) [7.45] 

From the SK equations, these two terms are equal. Consequently the slope is 1.0.3 

Similarly for ordinary kriging 

COy [ Zv, Z~ J = I Ai C(x;, V) 

VaT [ Z~] = I I Ai Aj C(Xj,Xj) [7.46] 

But as IAi C(Xj, V) = I IA j Aj C(xj,X j ) + Il 

Cov IZv, Z~] + !l = Var [Z~] 

and hence the slope p of the linear regression of Zv on Z~ is given by 

Cov [ Zv, Z" ] 
P = 

(Cov [ Zv, Zy ] - !!) 

[7.47] 

[7.48] 

Here the value of the Lagrange parameter has been calculated from the kriging 
system written in terms of covariances. The sign reverses if the variogram form of 
the equations is used. In general the slope is less than 1.0. This result concerning the 
slope of the linear regression of the true grade on the estimate will be used to guide 
us in the next chapter in choosing how large a kriging neighbourhood to usc. 

7.12 Kriging is an exact interpolator 

When some estimation methods (e.g. trend surfaces) are used to estimate the value 
of a regionalized variable at a data point, the resulting estimate is not necessarily 
equal to the sample value. Methods which always return the sample value as the 
estimate at sample points are said to be exact estimators. The simplest way to show 
that kriging is an exact interpolator is via an example. 

Continuing the OK example in which 5 data points were \.Ised to krige a 200m 
x 200m block, suppose we now want to estimate the value at one of the sample points 
(say the central one) from the available data including that point. It is easy to see 
that the matrix on the left hand side is exactly the same as before. Only the vector 
on the right hand side changes. The new system is 

3 This also shows that the kriging error Zv* - Zv is orthogonal to the estimator 
Zv*. This result is needed later in order to condition simulations. Secondly it is 
important when kriging is considered in terms of projections. 
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0 1.89 1.89 1.89 1.89 1 Al 0 

1.89 0 2 2 2 1 A2 1.89 

1.89 2 0 2 2 1 ..1.3 1.89 - [7.49] 

1.89 2 2 0 2 1 ..1. 4 1.89 

1.89 2 2 2 0 1 ..1.5 1.89 

1 1 1 1 1 0 fl 1 

1l1is can easily be solved to give: 

Al = 1.0 

A2 = A3 = "-4 = A5 = 0 [7.50) 

1'=0 

The corresponding kriging variance is zero. 1l1is result should not be surprising. It 
is intuitively clear that the estimate that minimizes the estimation variance is just 
the sample value itself. This property relies on the fact that the terms in the flr'St row 
and column are equal to the corresponding terms in the right hand vector. 

If a constant (e.g. a nugget effect representing measurement error) had been 
added to all the variogram terms in the matrix and in the vector, it could be filtered 
out of them all by using the row of 1 s in the last row of the matrix. 

Sometimes people confuse this property of the kriging estimator with the 
variogram crossvalidation procedure. Please note that in the case considered here 
the point to be estimated is included in the data set, whereas when kriging is used 
to crossvalidate the variogram model. the data point of interest is dropped out of the 
data set while its value is re-estimated. The crossvalidation technique is discussed 
in more detail in the next chapter. 

7.13 Geometric exercise showing the minimization procedure 

The aim of this exercise is to provide a geometric illustration of the relationship 
between ordinary and simple kriging. To keep things simple, we assume that only 
two samples are available in order to krige the grade of a block V. The reason for 
taking only two samples is that it is easy to plot functions of two unknowns. For 
simplicity, the regionalized variable representing the grade is considered to be 
stationary and its covariance C(h) has a unit sill. 
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7.13.1 Quadratic form to be minimized 

The weights for any type of kriging are obtained by minimizing the estimation 
variance under the appropriate conditions. As estimation variances are quadratic 
functions of the weights, they are called quadratic forms. The general estimation 
variance that has to be minimized when there are two samples, is 

Ai C(l,l) + Ai C(2,2) + 2A] 1.2 C(1,2) + C(V,V) 

- 2AI C(l, V) - 21.2 C(2, V) 

where CO,l) = C(2,2) == 1. This can be written as 

[7.51] 

a ~T (AI - a)2 + (Az - b)2 + 2c (AI - a) (1102 - b) + d [7.52] 

where 

a = 

b 

c = 

co, V) - C(1,2) C(2, V) 

1 - C(1,2)2 

C(2, V) - C(l,2) C(l, V) 
1 - C(1,2)2 

C(1,2) 

[7.53] 

[7.54] 

[7.55] 

and where d is a suitably chosen value. Fig. 7.3. shows two ways of visualizing the 
estimation variance as a function of the weights. The 3D graphic shows that it is a 
basin shaped surface. From the equation. the minimum obviously occurs when the 
weights take the values a and b respectively, and then its value is d. Readers can 
solve the SK systems to check that a and b are just the SK weights and that d is the 
SK variance. The iso-variance contour lines (on the left) are a projection of the 
"basin". 

a 

Fig. 7.3. On the right, a 3D represemation of the estimation variance as a function 
of the weights; on the left, the corresponding isovariance contour lines 
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Fig. 7.3. On the right, a 3D representation of the estimation variance as a function 
of the weights; on the left, the corresponding isovariance contour lines 

(1,0) 

Fig. 7.4. Line representing the OK constraint AI + 1..2 = 1 has been superimposed 
on the isovariance contour lines. The coordinates of the point where it tangents one 
of the ellipses are the OK weights. 

Having visualized the minimization for simple kriging we now go on to ordinary 
kriging. Because of the unbiasedness condition the weights must now sum to 1, i.e. 
AI + 1..2 = 1. Fig. 7.4. shows the line 1..2 = 1 - AI joining the points (0,1) and (1,0) 
which represents this constraint. The minimum occurs at the point where this line 
tangents one of the ellipses. The corresponding values of the weights are just the OK 
weights, and the height at that point is the OK variance. As this is not usually the 
bottom of the basin, the height at that point is higher than the bottom. In other words, 
the OK variance is equal to or greater than the SK variance. This can also be seen 
via the equation. Substituting 1..2 = 1 - Al into the quadratic form gives 

21.. i (1 - c) - 21..1 (a - b + 1 - c) + d - 2 
[7.56] 

This can be rewritten as 

[7.57] 

From this, it is clear that the minimum estimation variance occurs when the fIrst 
weight is: 

( a - b ) Al = 2 (1 _ c) + 0.5 [7.58] 

Readers can check that this is just the fIrst OK weight written in another form. 
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7.l4 Exercises 

Ex 7.1 Pure nugget efrect. Suppose that we have samples at two points (1,0) and 
(2,0) and want to estimate the value of the regionalized variable at an arbitrary point 
(x,y). The variogram is a pure nugget effect with a sill of 1.0. Calculate the ordinary 
kriging weights and the kriging variance. Deduce what the weights would be if there 
were N samples. 

The weights would all be equal. So the kriged estimate would just be the arithmetic 
average of the sample values. Kriging cannot provide any more detail because even 
adjacent points are uncorrelated. The data are only used to estimate the overall mean 
of the regionalized variable. 

What would happen in this case if the value of the mean was known and simple 
kriging was used? 

Ex 7.2 Spherical variogram. As before we have two samples at the points (1,0) 
and (2,0) and we want to estimate the value at an arbitrary point (x,y). But this time 
the variogram is a spherical with a sill of 2.0 and a range of 0.75. Show that the 
ordinary kriging weights are given by 

A = 1 + Y20 - YIO 
1 2 2Y12 

and [7.59] 

where Y20 and YlO denote the variograrn values between one of the sample points 
and the target point and Y12 denotes the variogram value between the sample points. 

Draw a circle of radius 0.75 (i.e. the range) around each sample point. Outside that 
zone there is no further correlation between the target and the samples, and both 
weights are equal to 0.5. The results are the same as for a pure nugget effect. All that 
can be estimated is the overall mean. 

Ex 7.3 Exponential variogram. As before there are two samples at the points (1,0) 
and (2,0) and we want to estimate the value at an arbitrary point (x,y). This time the 
variogram is an exponential with a sill of 2.0 and a scale parameter of 1. Calculate 
the ordinary kriging weights and the kriging variance. Repeat the calculation for the 
case where the sill equals 4, keeping the scale parameter the same. Although 
doubling the sill doubles the kriging variance, the kriging weights remain the same. 

Ex 7.4 Linear variogram - Markovian lack of memory. As before there are two 
samples at the points (1,0) and (2,0) but the variogram is a linear with an arbitrary 
slope. The objective is to estimate the value of the regionalized variable at a point 
(x,O) lying along the x axis. Show that if the target point is to the left of the first point, 
(1,0), its ordinary kriging weight is 1.0 and the other one is zero, and conversely to 
the right of the second one. 

This can be extended to the case where there are many samples in a line. If the target 
point lies to the left of the first point, the weight of the first point is 1 and the others 
are zero. Similarly to the right of the last one. Only the closest point has a nonzero 
weight. It is as if the others were "forgotten". All the available information is 
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condensed into the closest sample. See for yourself what happens if the target point 
lies in between the samples. Note: these effects only happen in ID. 

This property is called the Markovian property. It is well known in time series, 
particularly in finance. For example, the last quoted share price is considered to 
reflect all previous infonnation. The same type of effect is used in option pricing 
in the Black & Scholes model. 

Ex 7.5 Factorizable variograms - perpendicular screen effect. As before there 
are two samples at the points (1,0) and (2,0). But this time, the variogram is a 
gaussian with a unit siJI and a unit scale parameter. The objective is to estimate the 
value of a regionalized variable at a point (l,y) lying vertically above or below the 
ftrSt sample. Show that the simple kriging weight of the second point is zero. Only 
the point directly below/above the target gets any weight. This result depends on the 
fact that the gaussian can be factorized into two components. 

C(h) = exp [ - ~~] x exp[ - ::] where h2 = x2 + y2 [7.60] 

Show that the result is also true for the factorized exponential covariance: 

C(h) = exp[ - I~I] x exp [ - I~I] where h2 [7.61] 



8 Practical Aspects of Kriging 

8.1 Summary 

'This chapter is designed to give an overview of the practical aspects of kriging: 
negative kriging weights, the impact of the choice of the variogram model on the 
kriging weights, crossvalidation, the screen effect and last but not least, some 
criteria for testing the quality of a kriging. 

8.2 Introduction 

This chapter concentrates on the practical aspects of kriging. Some theoretical 
results are introduced (e.g. the idea that kriging weights can be negative) but the 
thrust of the chapter is of a more practical nature. Most of the concepts treated are 
presented through examples. 

The first section deals with the question of negative kriging weights which can 
lead to negative kriged estimates. The two common situations when these negative 
weights tend to arise are when points are clustered or when highly structured 
variogram models are used (e.g. a gaussian model with no nugget effect or a power 
model with an exponent greater than 1.0). Examples showing both cases are 
presented. 

In the second section, the influence of the variogram model on kriging is 
discussed. The shape of the variogram near the origin is shown to be critical. 
Variograms with different proportions of nugget effect (i.e. as a percentage of the 
total sill) or with different shapes (linear vs quadratic) give rise to quite different 
kriging weights and kriging variances, and hence to different looking kriged maps. 
Having said this, it is important to note that superposable models give rise to 
(virtually) identical kriging systems and hence to similar kriging weights and 
variances. So kriging is, in this way, stable against minor differences in the 
variogram models. 
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The third section deals with the screen effect. When the variogram model is well 
structured (long range, small nugget effect), infonnation near the target effectively 
screens out the influence of more distant data. The kriging weights of outer points 
are zero or negligible. However with a poorly structured model the screen effect is 
"lifted" , and so a much larger kriging neighbourhood is required. Increasing the size 
of the neighbourhood leads to a drop in the kriging variance and to a significant 
improvement in the estimator. 

The fourth section is on symmetry in the kriging configuration. In practice, data 
are often on a regular grid. If a symmetncallayout of the data relative to the target 
is used, some of the weights will be equal. Recognising this at the outset can allow 
geostatisticians to regroup sets of kriging weights, thus reducing the size of the 
kriging system and hence the computer time required. 

The fifth section presents some criteria for testing the quality of a kriging 
configuration. The most obvious one, the kriging variance, often proves to be 
relatively insensitive. Two other parameters, the weight of the mean in simple 
kriging and the slope of the linear regression. are more helpful. particularly when 
selecting the size of the kriging neighbourhood. 

The last section treats the question of cross-validating variogram models. Points 
are removed one by one from the data set. The absent point is rekriged. If the 
variogram model is in good agreement with the data. the kriged estimates should 
be close to the true values. Several statistics for quantifying "closeness" are 
discussed. 

8.3 Negative weights 

It is important to realize that while kriging variances should never be negative, 
kriging weights can be. (Negative kriging variances can result from using a 
variogram model that is not positive definite or from programming errors e.g. in 
discretising blocks). The following example shows two simple cases where negative 
weights arise. The first involves two highly structured variograms (a gaussian and 
a power model with an exponent of 1.5) while the second involves a cluster of points. 

Example 1. Suppose that samples have been taken at 4 points Ph P2• P3, and P4 that 
are regularly spaced 1m apart on a line. The value at their midpoint Po is to be 
estimated. The locations of the points are shown in Fig. 8.1. 

Po P3 P4 
• • • • • 

Fig 8.1. Location of the four samples Ph P2• P3• and P4 and the target Po 
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For comparison purposes, four variogram models were used to krige the point. 
These were 
1. a power function model with exponent 1.5 (i.e. y(b) = Ibl1.s), 
2. a gaussian with a distance parameter a = 0.8 and a sill of 1.0 and no nugget effect, 
3. a gaussian with a distance parameter a = 0.8, a sill of 0.75 and a nugget effect of 

0.25 (i.e. a total sill of 1.0) and 
4. a spherical model with a range of 1.38 and no nugget effect. 

The practical range of a gaussian is fj times its range; here 1.38. The spherical has 
the same range but is linear at the origin instead of quadratic. Table 8.1. gives the 
kriging weights corresponding to these variograms. By symmetry the weights for 
P2 and P3 are identical, as are those for PI and P4• 

Table S.l. Kriging weights corresponding to the four variogram models The 
numbering of the weights is the same as in Fig. 8.1. 

Kriging Model to Gaussian Gaussian Spherical 
weight power 1.5 + Nugget No Nugget No Nugget 

Al -0.047 -0.083 0.008 0.010 

A2 0.547 0.583 0.492 0.490 

Kriging var. 0.201 0.227 0.563 0.590 

The weights for the outer points are negative for the first two models (the power 
model with exponent 1.5 and the gaussian with no nugget effect) because these are 
highly structured models. In contrast to this the last two models (the gaussian with 
25% nugget effect and the spherical) are less well structured and consequently do 
not result in negative weights. When choosing a variogram model it is important to 
realise that a model that is quadratic at the origin (particularly with no nugget effect) 
corresponds to a more structured phenomenon than one that is linear at the origin. 
Consequently it is more likely to give rise to negative weights and hence to negative 
kriged grades (which are not desirable in mining). 

Example 2. In this example we consider clustered points. Having some closely 
spaced points can help in estimating the behaviour of the variogram near the origin 
but these points can cause problems of numerical stability when inverting the 
kriging matrix. 

Suppose we want to estimate a square 100 x 100m given 5 samples, one at each 
of the corners of the block and one in the centre of the block. Later a sixth sample 
is added close to one of the corners. Let the variogram be a spherical model with 
a range of 200m and a sill of 2.0. Note that this model is linear at the origin and is 
therefore less likely to produce negative kriging weights than would a gaussian, a 
cubic or a power model with an exponent above 1.0. 
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(-50,50) ....----'II1II.(50,50) 

l1li(0,0) 

(-50,-50) l1li----1l1li(50,-·-50) 

III (51,-50 

Fig 8.2. Layout of sample points relative to the target block 

Table 8.2. gives the kriging weights for the 5 and 6 point data configurations. As 
there is no nugget effect the kriging weights for 4 of the points change very little 
from the 5 point to the 6 point configuration. The sum of the weights for the fifth 
and sixth points is (roughly) equal to the fifth weight in the 5 point configuration. 
The sixth point even receives a negative weight. There is also little change in the 
kriging variance in this case from the 5 to the 6 point configuration. So we see that 
for structures with no nugget effect, the results obtained using 6 points are very 
similar to those obtained by regrouping the last two points. One advantage of 
regrouping the points is that it avoids having an extra row and column in the matrix 
which can sometimes lead to numerical instabilities. 

Table 8.2. Kriging weights and kriging variance for a spherical model for a 5 point 
and a 6 point configuration 

Kriging Weight 5 points 6 points 

(0,0) 0.436 0.436 

(-50,-50) 0.141 0.141 

(-50,50) 0.141 0.141 

(50,-50) 0.141 0.141 

(50,50) 0.141 0.152 

(51,51) - -0.011 

Kriging Variance 0.085 0.085 

10e results would have been quite different if there had been a significant nugget 
effect. The weighting would be spread more evenly over an available data points. 
Adding an extra point would also have led to a marked drop in the kriging variance. 

These simple examples show two cases where negative weights occur: when the 
model is highly structured (e.g. quadratic at the origin) and when the points are 
clustered. We see that when a less structured model such as a spherical, is chosen 
or when some nugget effect is introduced the negative weights tend to disappear or 
at least be attenuated. Those who are interested in finding out more about this 
problem can consult Barnes (1984) and Chauvet (1988). 
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8.4 How the choice of the variogram model aft'ects kriging 

8.4.1 Similar looking variograms 

In the section on fitting variograms, the importance of the choice of the nugget effect 
and of the shape of the variogram near the origin was stressed. No sophisticated 
statistical techniques were proposed for fitting models because it is possible to 
obtain several (visually) similar models that give equally good fits to the 
experimental variogram. Provided these models all have the same behaviour near 
the origin the resulting kriged estimates will be very similar, and so will their kriging 
variances. This is because the rows and columns in the kriging system are virtually 
identical. 

To illustrate this consider the following two visually similar variogram models: 
firstly an exponential with a sill of 2.06 and a distance parameter a=3Om (and hence 
a practical range of about 100m) and secondly the sum of two sphericals both with 
sills of 1.0 and with ranges of 40m and 100m respectively. Suppose that the 
objective is to krige a square block 100m by 100m from 5 data points (the four 
comers of the square and the centre). Table 8.3. shows how similar the kriging 
weights and the kriging variances are for the two models. 

2 

1 

0-------------' 
o 25 50 75 100 

a 

2 

1 

0"-------------' 
o 25 50 75 100 

b 

Fig. 8.3. Two visually similar models; (a), the sum of two sphericals with ranges 
of 40m and 100m and sills of 1.0, (b), a single exponential with a distance parameter 
of 30m and a sill of 2.06 

Table 8.3. Kriging weights and kriging variance for two visually identical models, 
when used to krige a 100m by 100m block 

Kriging Weights Exponential Sum of 2 Sphericals 

Center Point 0.338 0.339 

Each Comer 0.165 0.165 

Kriging Variance 0.285 0.299 
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8.4.2 The effect of the choke of the nugget effect 

The choice of the value of the nugget effect is extremely important since it has a 
marked effect on both the kriging weights and the kriging variance. The problem 
when choosing the nugget effect is that there is often no way of knowing the 
behaviour of the variogram at the origin, or at least for distances less than the fIrst 
point on the experimental variogram. Unless some additional closely spaced holes 
are available, the geostatistician must guess the shape of the variogram near the 
origin. So it is important to understand the impact that the choice of the model has 
on the results of the kriging. This example is designed to illustrate the effect the 
model has on the kriging weights and the kriging variance. 

21---..... _-_ .--....-l. 

1 

OL-------------~ 
o 200 400 600 

a b 

Fig. 8.4. Two models respecting the experimental variogram values but with 
different short scale behaviour; (a) a spherical with a range of 200m and a sill of2.0, 
and (b) a pure nugget effect of 2.0 

Fig. 8.4 shows two possible models fItted to an experimental variogram which had 
already reached its sill by the fIrst point. Taking the extreme cases, it could be 
modelled by (I) a spherical variogram with a sill of 2.0 and a range of 200m (zero 
nugget effect) or (2) a pure nugget effect with a sill of 2.0 Unless we have some 
prior knowledge about this type of variable there is no way of knowing whether to 
use the pure nugget effect model or the more structured one, or anything in between. 

-Z2 

oz,G oZ, 
Fig 8.5. A 200 x 200m block to be kriged from 5 samples 

Suppose that we want to estimate a 200 x 200m block using the central sample plus 
the next 4 data on a regular 200 x 200m grid. (N.B. The kriging exercise in the 
previous chapter had the same data confIguration but the range of the variogram was 
250m instead of 200m). 
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Table 8.4. Kriging weights and kriging variances for 5 point configuration 

Kriging Weights Pure Nugget Effect Spherical 

Center Point 0.20 0.540 

Each Outer Point 0.20 0.115 

Kriging Variance 0.40 0.290 

The kriging weights and the kriging variances are shown in Table 8.4. The 
difference between the two kriging variances is striking. With a pure nugget effect 
it is much higher than for the other model. The effect on the kriging weights is more 
subtle. The pure nugget effect model gives equal weight to all points and hence less 
to the central sample and more to the peripheral ones whereas the structured model 
attributes a relatively high weight to the central sample. Since the lower nugget 
effect model gives less weight to the central sample, it leads to smoother contour 
maps, which is not intuitively obvious. This will be illustrated in Chapter 9. 

The 5-point configuration used here is unrealistically small. In practice a much 
larger neighbourhood would be chosen. It is interesting to see what happens as this 
neighbourhood is enlarged. The next step up would be to 9 points on a regular 200 
x 200m grid. Table 8.5. shows the kriging weights and variances for this new 
configuration. 

Table 8.5. Kriging weights and kriging variances for 9 point configuration 

Kriging Weights Pure Nugget Effect Spherical 

Center Point 0.11 0.51 

Each Inner Point 0.11 0.08 

Each Outer Point 0.11 0.04 

Kriging Variance 0.22 0.26 

Compared to the 5-point neighbourhood, there are marked changes in the 
kriging weights and the kriging variance for the enlarged neighbourhood, for the 
pure nugget effect model but not for the spherical model. As will be seen in the next 
section on the screen effect, the points close to the target effectively screen out more 
distant ones when the variogram is wen structured but not for poorly structured 
models with a high nugget effect or with a short range. 

8.S Screen Effect 

Sampling programs often produce hundreds or thousands of data values. From a 
computational point of view it would clearly be prohibitive to use them all to 
estimate each block. Common sense suggests that the estimates will be almost as 
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precise if only the neighbouring data are taken into account. The question is to know 
how many points to include. A general rule is to take only the frrst few aureoles (i.e. 
rings) around the target if the variogram is well structured, that is, if the nugget effect 
is relatively small. The reason for this is that the frrst few aureoles screen out the 
effect of more distant samples. This can best be seen from an example. 

• • • • • 
• • • • • • • • 

• ·8 • • 
• • • • • • • • 

• • • • • 
8 b 

Fig. 8.6. Block with 1 aureole of data (8), 2 aureoles of data (b) 

Suppose that we want to estimate a 200m x 200m block centered on a sample, using 
data on a 200m x 200m grid. The number of samples can be increased from 1 (the 
central one), to 9 (1 aureole) and then to 25 (2 aureoles). Once the variogram model 
is known, the kriging weights and the kriging variance can be calculated for each 
data configuration. Clearly each time more samples are added the kriging variance 
will decrease (or stay the same). To illustrate how the screen effect works, three 
cases are considered: spherical variograms with a sill of 2.0 and ranges of 250m and 
100 m respectively, and thirdly a pure nugget effect of 2.0 (which could be thought 
of as a spherical with a zero range). Figure 8.7. shows the kriging weights for the 
9 point and 25 point configurations for the three variogram models. 

For the well structured spherical model (range 250m, at the top of the page) most 
of the weight is concentrated on the centre point and the four closest points. 
Consequently increasing the number of points to more than 25 does not lead to any 
significant improvement in the kriging variance. As the weights do not change 
much, nor does the estimated value. So there seems little point in using more than 
the closest few data in this case. In contrast to this when the variogram is poorly 
structured (pure nugget effect or a spherical with a short range) the kriging variance 
continues to drop as more samples are added and the weights for the outer points 
do not tend to zero quickly. So in this case a larger kriging neighbourhood is 
required. Please note that even points outside the range from the block to be 
estimated can have nonzero OK weights. They are not necessarily zero. 
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Spherical Range = 250m, Sill =2. 0.8 0.8 0.5 0.8 0.8 

2.6 8.2 2.6 0.8 1.2 7.0 1.2 0.8 

8.21 56.71 8.2 0.5 70 1 ~Ol 7.0 0.5 

2.6 8.2 2.6 0.8 1.2 7.0 1.2 0.8 

0.8 0.8 0.5 0.8 0.8 

Ok2 =0.22 Ok2 =0.20 

Spherical Range = 100m, Sill =2. 3.3 3.3 3.3 3.3 3.3 

9.4 9.4 9.4 3.3 3.3 3.3 3.3 3.3 

9.4 B 9.4 3.3 3.3 ~ 3.3 3.3 

9.4 9.4 9.4 3.3 3.3 3.3 3.3 3.3 

3.3 3.3 3.3 3.3 3.3 
Ok2 =0.35 Ok2 =0.25 

Pure Nugget Effect, Sill =2. 4.0 4.0 4.0 4.0 4.0 

11.1 ILl ILl 4.0 4.0 4.0 4.0 4.0 

lUG 11.1 4.0 4.0GJ 4.0 4.0 

ILl ILl 11.1 4.0 4.0 4.0 4.0 4.0 

4.0 4.0 4.0 4.0 4.0 

Ok2 =0.22 Ok2 =0.08 

Fig. 8.7. Kriging weights and kriging variance for configurations with 1 or 2 
aureoles of data, for three variogram models 
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8.6 Symmetry in the equations 

When kriging was fIrst developed, computer facilities were poor. Inverting large 
matrices in order to solve large sets of linear equations was very time consuming. 
This led geostatisticians to look for ways of reducing the size of kriging systems. 
One way is by taking account of symmetry in the system. For example, the exercise 
on ordinary kriging given in the previous chapter involved kriging a block using 5 
data, four of which are set symmetrically outside the block. These four weighting 
factors are clearly identical . 

. z,G .z, 

-Z! 

Fig. 8.8. A symmetric data confIguration 

These four samples can be regrouped and considered as a single unit S with a single 
weighting factor. Each of the individual samples will get one quarter of this. If the 
fIrst kriging weight is associated with the central point Z .. and the second weight 
with the group S, the kriging system can be rewritten as: 

y(Zl,ZI) 

y(Z). S) 

1 

y(Zl'S) 

y(S,S) 

1 

1 

1 

o 

y(Zl'V) 

y(S, V) 

1 

[8.1) 

As it is not obvious how to calculate the various variogram values, this will be 
presented in detail. 

y(Z). Zl) = 0 • y(Zl' V) = 0.88 [8.2] 

y(ZI' S) = ~ [ y(Z) , Z2) + ... + y(Zl,Z5)] 1.89 [8.3] 
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= i [ y(O) + 2 y(100J2) + y(200)] = 1.5 

y(S, V) = i [y(Z2' V) + ... + y(Zs. V)] 

= y(Zz' V) = 1.86 

TIlls leads to solving a 3 x 3 system instead of a 6 x 6 one: 

o 1.89 1 0.88 

1.89 1.50 1 1.86 

1 1 o 1.00 

The solution is Al = 0.60, As:= 0.40 and I.l.:= 0.12 and hence: 

z* ;;::: 0.60Z1 + 0.40 (Z2 + Z3 + Z4 + zs) 14. 

[8.4] 

[8.5] 

[8.6] 

[8.7] 

Of course, OK 2 is the same as before. Here we have succeeded in reducing the system 
from 6 x 6 to 3 x 3 without any loss of precision. Since the time taken to invert a 
matrix is roughly proportional to the cube of the size of the system, halving the size 
effectively reduces the time and hence the cost to about one eight of its original 
value. This clearly represents a considerable saving. 

Having seen that the size of the kriging system can be significantly reduced in 
some cases without loss of precision, it is important to be able to distinguish 
symmetric configurations from those which might at first glance appear to be 
symmetric. For the weights to be identical, the data points must be symmetric with 
respect to each other and to the point or block to be kriged. In the next configuration 
the data points are symmetric with respect to each other but not to the block. 

"Z2 

• Z3 • Zl .. Zs D 
.. Z4 

Fig 8.9. A symmetric data configuration with the block off center 

Another case that often leads to mistakes is when the data and the block are 
symmetric relative to each other but when the variogram model is anisotropic. 
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Suppose that the data configuration is as shown on the left of Fig. 8.10., but that the 
variogram model has a range of 500m in the NS direction compared to 250m in the 
EW direction. After taking account of the anisotropy the dimensions in the EW 
direction are twice those in the NS direction. Consequently, the weights for Z3 and 
Zs are identical and so are those for ~ and ~. But the four weights are no longer 
identical. This has to be kept in mind when regrouping data points. 

• Z2 • Z2 

• Z3 G • Z5 => ·Z3 G • Z5 

.z. • Z4 

Fig. 8.10, The kriging configuration before and after taking account of the 
anisotropy 

8.7 Testing the quality of a kriging configuration 

Looking at how the kriging weights and the kriging variance evolve as the number 
of points is increased gives us some idea of what size neighbourhood is optimal. But 
experience has shown that the kriging variance is a fairly insensitive parameter for 
testing the quality of a kriging configuration. The weight of the mean in simple 
kriging and the slope of the linear regression of the true grade on the estimated value 
tum out to be far more sensitive quality control parameters and hence more useful. 
The additivity theorem in Chapter 7 proved that the OK estimator could be written 
as 

[8.8] 

where m* is the kriged estimate of the mean, and that the OK variance can be split 
up into the SK variance plus a term that depends on the weight of the mean in SK 
and on the kriging variance of the estimate of the mean: 

(J ~K = (J iK + (A M) 2 Var (m' ) [8.9] 

The first equation shows that when the weight of the mean in simple kriging A M is 
low (near 0), the estimated grade depends mainly on the local values of Z(x), i.e. 
the data in the kriging configuration and not on the estimate of m. So the degree of 
stationarity required is less. In addition the OK estimator and the SK estimator are 
closer. 

The second equation shows that when the weight of the mean in SK is low the 
OK variance is close to the SK variance. Little precision is lost in having to estimate 
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the mean. Conversely when it is high, the OK variance is markedly higher than the 
SK variance. Rivoirard (1984, 1987) has shown that the less information that is 
available in the kriging neighbourhood, the greater the importance of the mean. So 
this parameter gives an indication of how sparse the data are relative to the 
variogram model and also to what extent the hypothesis of stationarity will be relied 
upon. 

8.7.1 Example: Adding extra samples improves the quality of the estimate 

In South African gold mines, blocks of about 20 x 5m are estimated from channel 
samples on an approximately 5 x 5m grid. In general the closest three rows of 
samples are used. Sometimes an extra row of samples next to the block is available. 
Clearly using additional samples close to the block will improve the quality of the 
estimate but by how much? Figure 8.11. shows the two possible layouts. 

20m 20m 

15m . . . . . 15m 

• • • • • • • • • • 

• • • • • • • • • • 

• • • • • • • • • • 

Fig. 8.11. The two sample layouts considered 

Suppose that the variogram is spherical with a sill of 1.0 and a range of 20m. The 
kriging variance for the ftrst layout is 0.368 compared to 0.114 for the second one. 
The slope of the linear regression rises from 0.531 to 0.863, while the weight of the 
mean in SK drops from 0.623 (which is high) to 0.255. All three quality parameters 
show that the inclusion of an extra row of samples leads to a marked improvement 
in the quality of the estimator. 

8.8 Cross-validation 

As several different variogram models can often be fttted to an experimental 
variogram, one would like to know which is the "best". Cross-validation is often 
used for this. The procedure consists of eliminating one data point from the set 
temporarily and then kriging its value using the remaining samples as data. If this 
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is repeated for all the points (or for a representative subset of them) we obtain a 
series of estimation errors for each data point and for each variogram model. If the 
variogram suits the data, the mean of the estimation errors and the mean of the 
standardised estimation errors should be zero, and the variance of the standardised 
estimation errors should be 1.0. 

Let Z;j denote the kriged estimate of the ith point obtained using the j'h 

variogram model and let (Jrj be the kriging variance. If its true value is Zi' then the 
corresponding estimation error Z~j - Zj. That is, we would expect: 

E (Z~. - Z.) = 0 
I) I [S.lO] 

E I) I = 0 ( Z~· - Z ) 
(Jij [S.II] 

Var I) I = 1 ( Z~· - Z· ) 
(Jij [S.12] 

This leads us to calculate the following statistics: 

[S.13] 

[S.l4] 

[S.15] 

As all these statistics are strongly affected by any extreme values (i.e. by outliers) 
it might be preferable to use robust forms of these. But no matter whether robust or 
ordinary statistics are used, it is not common for all three statistics to show the same 
model as being "the best". So a choice has to be made. 

There are practical problems in using this technique with drillhole data because 
when one sample is removed and re-estimated, the resulting kriged estimate 
depends mainly on the nearest samples (i.e. those vertically above and below). 
Consequently cross-validation only tests the goodness of fit of the vertical 
component of the variogram and not the rest of the model. 
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9.1 Summary 

The case study in Chapter 5 presented the structural analysis for an iron ore deposit. 
We now show how to use the fitted 3D variogram model to krige point values then 
block grades. As the model has a high nugget effect. a large kriging neighbourhood 
is required. The fourth section shows what happens when smaller neighbourhoods 
are used. The last section illustrates why it is not advisable to krige small blocks 
from sparse samples, in order to calculate the recoverable reserves. 

9.2 Iron ore deposit 

The data available to krige this deposit consists of nearly 500 15m core sections 
coming from about 40 vertical drillholes. The fitted variogram model consists of a 
nugget effect of 1.8 plus two anisotropic spherical structures. Their sills and their 
ranges in the horizontal and vertical directions are shown in Table 9.1. 

In the mining industy block estimation is more common than point estimation 
which is used sometimes as the input for contouring packages. In this chapter we 
will illustrate the use of both point and block kriging, Comparing the result .. 
highlights the effect of the size of the support. The first step in kriging is to choose 
the grid size. 

Table 9.1 Parameters of fitted variogram model which is isotropic in the horizontal 
direction but not in the vertical 

Sill Horizontal Vertical 
Range Range 

Nugget effect 1.8 - -

1st Spherical 1.2 80m 65m 

2nd Spherical 1.5 400m 65m 
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9.2.1 Grid size for kriging 

As the drillholes are about 80m apart, the horizontal dimensions of the grid to be 
kriged were set at 100m x 100m. The height of grid cells has been set to ISm because 
this is the length of the core sections. The resulting grid consists of 19 cells (EW) 
x 12 cells (NS) x 36 vertical levels. It is not advisable to krige very small blocks (say 
10m x 10m horizontally) or blocks which are shorter than the core section length 
(ISm). The reasons for this will be given in detail later in the chapter. 

9.3 Point kriging using a large neighbourhood 

Having fixed the dimensions of the kriging grid, the next step is to choose the 
parameters for the kriging neighbourhood. As the model has 40% nugget effect, it 
is not well structured and so a large neighbourhood containing many points is 
required. After some preliminary testing it was decided to use a neighbourhood 
containing a minimum of 8 samples and an optimum of 80 samples. The search 
ellipse was limited to a horizontal radius of sOOm and a vertical one of 300m. In 
section 9.S we will show what happens when a small neighbourhood with only a 
few samples is used for kriging. 

Figure 9.1. shows the contour lines for one level (number 14) which is near the 
middle of the deposit. The outer blocks that are hatched have not been kriged at all 
because insufficient data were found in the neighbourhood. Figure 9.2. shows the 
kriging standard deviation map. No labels have been put on the isolines because they 
were difficult to read but it is clear that the kriging standard deviation is bigh at the 
edges of the area and low where the samples are more dense. Table 9.2 gives the 
basic statistics of the kriged estimates and the corresponding kriging standard 
deviation. 

9.4 Block kriging using a large neighbourhood 

The same size neighbourhood was used to krige blocks of size 100m x 100m as for 
point kriging. One difference between kriging points and blocks is that the blocks 
have to be discretized in order to calculate terms like y(V,x) and Y(V,V). Here a 6 
x 6 x I discretization was used. As the core length equals the block height. the 
vertical discretization had to be I. 

Figures 9.3. and 9.4. show the kriged estimates and the corresponding kriging 
standard deviations while Table 9.3 gives the basic statistics. The overall shape of 
the contour lines is the same as for point kriging. Comparing the statistics of the 
kriged values for blocks with those for points we see that the average grades for the 
whole area are identical but that the minimum value for the kriged points is lower 
than for the blocks. Conversely the maximum for the points is higher than for the 
blocks. That is. the histogram of the kriged block estimates is tighter around the 
mean than the one for points. 
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Table 9.2 Basic statistics of kriged point estimates and the corresponding kriging 
standard deviations 

Number Minimum Maximum Mean StDev 

Point 7501 52.91 59.12 56.84 0.704 
Estimates 

Standard 7501 1.655 2.380 2.127 0.103 
Deviation 

Fig. 9.1. Contour lines for level 14 obtained for point kriging using 8 angular sectors 
with an optimum of 80 samples, and a minimum of 8 samples 

Fig. 9.2. Contour lines for the kriging standard deviation for level 14 obtained for 
point kriging 
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Table 9.3 Basic statistics of kriged blocks and the corresponding kriging standard 
deviations 

Number Minimum Maximum Mean StDev 

Block 7501 53.27 58.97 56.84 0.605 
Estimates 

Standard 7501 0.720 1.636 1.238 0.166 
Deviation 

Fig. 9.3. Contour lines for level 14 obtained for block kriging using 8 angular 
sectors with an optimum of 80 samples, and a minimum of 8 samples 

Fig. 9.4. Contour lines for the kriging standard deviation for level 14 for block 
kriging 
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The difference between the standard deviations for the points and the blocks is quite 
startling. The best estimates for points have a standard deviation of 1.655 whereas 
it is 1.636 for the worst blocks. lbis is because it is much easier to estimate the 
average value over a large volume accurately than a very small one. 

9.5 Point kriging using smaller neighbourhoods 

In section 9.3 a large neighbourhood containing many points was used for point 
kriging. It is instructive to see what happens when a smaller neighbourhood 
containing only a few points is used. Figure 9.5. shows the contour lines obtained 
using only the closest three samples. Clearly something has gone wrong, but what? 
Before going into detail, we should note that there are fewer hatched blocks in the 
corners. More blocks have been kriged this time because fewer samples are required 
in a kriging neighbourhood before the grid node could be estimated. 

Fig. 9.5. Contour lines obtained for point kriging using only three samples 

9.5.1 What is causing the ugly concentrations of lines? 

In order to work out what has gone wrong, we focus on four adjoining grid cells in 
an area where there is an ugly concentration of isolines. These are rows 2 to 5 in 
column 12 of level 14. Table 9.4 gives the coordinates of the three samples used in 
kriging each cell. together with their values and the weighting factors. In three out 
of the four cases, all the samples come from a single drillhole. The exception occurs 
where the closest drillhole stops just above level 14. The bottom sample from it is 
used together with two samples from the next closest driJlhole. The kriged estimate 
and the corresponding standard deviation are also given for each grid node. Note 
how erratic the kriged grades are. 
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Table 9.4 Coordinates, kriging weights and values of the samples effectively used 
for kriging four selected grid nodes 

Block (12,5,14): Kriged estimate::: 54.83, kriging standard deviation == 2.14 

X coord Y coord Zcoord Weight Value 

1st Sample -1450 -995 17.25 35.1% 56.6 

2nd Sample -1450 -995 18.75 32.4% 56.9 

3rd Sample -1450 -995 15.75 32.4% 51.05 

BRock (12,4,14): Kriged estimate::: 53.68, kriging standard deviation == 2.27 

X coord Y coord Z coord Weight Value 

1st Sample -1475 -1092 17.25 32.3% 55.0 

2nd Sample -1475 -1092 15.75 33.8% 54.25 

3rd Sample -1475 -1092 18.75 33.8% 51.85 

Block (12,3,14): Kriged estimate == 55.05, kriging standaard deviation == 2.27 

X coord Y coord Zcoord Weight Value 

lSI Sample -1494 -1195 20.25 35.3% 51.6 

2nd Sample -1295 -1236 17.25 36.6% 57.0 

3rd Sample -1295 -1236 18.75 28.1% 56.5 

Block (12,2,14): Kriged estimate == 58.75, kriging standard deviation::: 2.33 

X coord Y coord Z coord Weight Value 

lSI Sample -1319 -1330 17.25 44.1% 58.9 

2nd Sample -1319 -1330 18.75 21.9% 58.6 

3rd Sample -1319 -1330 20.25 28.0% 58.65 

Table 9.5 summarizes the numerical values of the kriged estimates for the grid nodes 
in level 14 from rows 2 to 5, from columns 10 to 14. The four target cells lie in the 
central column. Looking at these values it is easy to see why there is such a dense 
concentration of isolines in the region. As the target grid node moves, the drillhole 
effectively being lIsed as data for kriging changes. These jumps cause abrupt 
changes in the kriged estimate and hence the unsightly concentrations of isoHnes. 
Problems oftrus type were first identified by Renard and Yancey (1984) when tlley 
were kriging the top of an oil reservoir lIsing seismic data lying on straight line 
profiles. 'They realized that the erratic jumps in output values occurred as "noisy" 
sample points moved into and out of the moving kriging neighbourhoods. 
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Table 9.5 Kriged grid node values for rows 2 to 5. columns 10 to 14 in level 14. They 
were obtained using only 3 samples 

55.38 54.83 54.83 53.95 54.03 

55.66 53.82 53.68 55.47 

57.41 53.34 55.05 56.61 56.57 

53.72 55.03 58.75 58.76 

9.5.2 How to eliminate these concentrations of contour lines 

In order to eliminate these patterns in the contour lines. more sample points have 
to be included in the kriging system. but just increasing the total number of samples 
is not enough. For example if the number were increased to 5 or 9 samples. the 
closest points would still come from a single driHhole and the problem would not 
be solved. We need to ensure that samples from several drillholes are incorporated 
into the kriging system. One simple and convenient way to do this is by using 
angular sectors. Figure 9.6. shows eight angular sectors centered on grid cell (12, 
4, 14). 

-500. 

-1000. 

-1500. 

-2000. -1000. 
-500. 

\ 
)( 

1----l-"lIf'--0-.4-1-.---*"'t------'+--.........,.-lOOO. 

)( 

)( 

L...._-2-'0-oo-.-------==="""-===----_-lOLO-O-.· ~ -1500. 

J<'ig. 9.6. Target grid cell (12. 4, 14) with the area around it split i 1110 8 angular sectors 
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As the maximum search radius was set to 500m earlier, samples outside this are not 
taken into account. The circle shows how big this area is. The crosses in the figure 
mark the position of samples on the same level. The numbers represent the kriging 
weights, expressed as a percentage, for the samples that were effectively taken into 
account. Samples on other levels would also have been used. 

After the number of sectors has been specified, the kriging routine locates and 
uses the closest sample or samples in each sector and uses these. The user can 
usually specify how many empty sectors can be tolerated. A second attempt at 
kriging the grid nodes was made using 4 angular sectors each containing at least 3 
samples (Fig. 9.7.). 

Fig. 9.7. Contour lines obtained for point kriging using 4 angular sectors each 
containing at least 3 samples. 

These results are clearly an improvement over those obtained using only three 
points but are not good enough. There are still some concentrations of contour lines. 
The contour map given initially (Fig.9.1.) was obtained using 8 angular sectors, 
which is a common choice. It is much more satisfactory. This example shows how 
important it is to include enough samples in the kriging system. 

9.6 Kriging small blocks from a sparse grid 

One of the main uses of geostatistics in the mining industry has been to estimate the 
block grades during the feasibility and prefeasibility stages of project evaluation. 
At this stage the available data is usually widely spaced. In order to design the mine, 
planners often krige very small blocks. It is then tempting to count up the blocks 
above various cutoff grades so as to estimate the recoverable reserves. The aim of 
this section is to show how dangerous and misleading this can be. 

The problems of kriging small blocks have been well known for many years. 
Many authors including Journel and Huijbgrets (1978), David (1977,1988), Royle 
(1979) and Clark (1982) have pointed out that the kriged grades are much smoother 
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than the real grades of the small blocks would be. Ravenscroft and Armstrong 
(1990) illustrated this for a Witwatersrand-type gold deposit. Blocks of size 2m x 
2m were kriged using data on a 10m x 10m grid. For reasons of confidentiality, the 
grades were scaled to have a mean of L Figures 9.8.a and b show the histograms 
of the true block grades and the corresponding kriged grades taken from that paper. 
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Fig 9.S. Histograms of (8) the true block grades and (b) the kriged estimates 
obtained from widely spaced samples, from Ravenscroft and Armstrong (1990) 

Although both histograms have the same mean (1.0), they have different shapes and 
different variances. As expected, the variance of the kriged estimates was smaller 
than that of the true block grades. Consequently the grade tonnage curve calculated 
from the kriged block grades is quite different from the real one. This shows that 
kriging should not be used for estimating the grades of small blocks from widely 
spaced data. In fact linear estimators in general should not be used for this. That 
includes inverse distance and inverse distance squared methods. 

More sophisticated methods are required for estimating recoverable reserves. 
These can be split into two broad categories: 
I. conditional simulations, and 
2. nonlinear estimators such as indicator kriging and disjunctive kriging. 

As the scope of this book is limited to linear geostatistics, we shall not go into these 
methods. Readers who are interested in nonlinear methods such as disjunctive 
kriging can consult Matheron (1976), Mareehal (1975) or Rivoirard (1994). Those 
interested in indicator kriging can consult Isaaks and Srivastava (1989) or Journel 
(1983). 

Over the past 15 years the use of simulation methods has taken off in the 
geostatistical community. Applications to many different fields can be found ill the 
proceedings of recent conferences. See for example the volumes edited by Baafi and 
Schofield (1997), Armstrong and Dowd (1994), Dimitrakopoulos (1994) and Soares 
(1993). 
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9.6.1 What size blocks can be kriged? 

Having stressed that it is not advisable to krige small blocks from sparse data, it is 
natural to want to know how small the blocks can be. Experience has shown that it 
is best to keep the blocks approximately the same size as the separation between 
samples. At the outside, the horizontal dimensions of the blocks can be half those 
of the sample grid. In the iron ore case study it would lead to a minimum size of 
blocks of 40m x 40m x 15m or 50m x 50m x 15m. That is, four times as many blocks 
would be kriged as there are data. 

Another point to note when kriging blocks of this size is their location relative 
to the samples. Figure 9.9.ashows a plan view of samples on a regular 100m x 100m 
grid together with blocks half that size. Each block has one corner touching a 
sample. So if the same kriging neighbourhood is used for all blocks, they would all 
have the same kriging variance. This would not be true of the layout shown in Fig. 
9.9.b. Blocks containing a sample in the centre would have a low kriging variance; 
those marked with (2) would have a higher variance and those marked (3) would 
have a very high variance because they are far from samples. A person looking at 
a map of kriged gf'ddes obtained using the second layout would not necessarily guess 
that some of the estimates were much better than others. So it is important to look 
carefully not only at the block size but also the layout. 
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Fig. 9.9. Two possible layouts for blocks of size 50m x 50m relative to samples on 
a 100m x 100m grid. In (a) all blocks have the same kriging variance whereas in (b) 
those marked (2) and (3) have a higher variance than the ones containing a central 
sample. Layout (a) is therefore preferable 



10 Estimating the Total Reserves 

10.1 Summary 

Once a suitable prospect has been found, an exploratory drilling campaign is carried 
out to establish the limits of the mineralization (if they are not already known), and 
to detennine the total ore tonnage and the average grade. As well as knowing the 
total reserves, it is very important to know how accurate the estimates are. Provided 
there are not too many samples, kriging can be used to estimate the reserves and the 
kriging variance will give a measure of its accuracy. However when there are too 
many points to invert the kriging system a different approach is required. 

This chapter presents several approximations for estimating the variance 
associated with the total reserves when kriging cannot be used. The variance 
depends on whether the limits of the orebody are known a priori or not. After 
presenting the concept of extension variance, the first part of the chapter treats 
different approximations for evaluating the global estimation variance while the 
second half considers the question of "optimal" drilling grids. 

10.2 Can kriging be used to estimate global reserves? 

Up to this point we have seen how kriging can be used to give local estimates of point 
or block values. So it is natural to ask whether it can be used to estimate global 
reserves; that is, the reserves contained in the whoie deposit or a large part of it. In 
general the tenn "global estimation" refers to the estimates made early in a project 
during the feasibility study when only widely spaced samples are available. During 
production many more samples are available, for example from blastholes or 
channel samples. 

Two different situations have to be distinguished: (1) when there are relatively 
few data and (2) when there are a large number of points (say more than several 
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hundred points). In the ftrst case kriging can be used but the problems of inverting 
the matrix preclude it in the second. 

One way of attacking the problem in the second case would be to divide the 
region into zones containing less than say 100 to 200 points and krige the zones 
separately. This would give an accurate estimate of the mean grade. However it still 
leaves the problem of how to calculate the global variance unsolved. It would be 
tempting to sum (or average) the individual kriging variances but this gives the 
wrong answer. David (1973) describes a theoretically sound way of recombining the 
variances but it is very complicated. At the feasibility study stage a simpler method 
is required. If the samples are evenly spaced, the global reserves can be estimated 
by using the arithmetic mean of the grades. 

This chapter presents several methods for assessing the associated estimation 
variance. Two approximations (direct composition of terms, and the use of line and 
slice terms) will be discussed. The problem of estimating the reserves within an area 
known to be mineralized will be treated before going on to discuss the case where 
the geometry of the deposit is also unknown. But frrst we show how to calculate the 
extension variance of a sample since this is used in what follows. 

10.3 Extension variance 

Suppose that we want to estimate the average grade inside a region V; that is, we 
are interested in the integral: 

Z(V) = ~ Iv Z(x) dx 
[10.1] 

Suppose that the only information available is the average value for a small volume 
v. Typically V is a mining block or a panel and v is a drillhole or some other type 
of sample. So we have to estimate Z(V) from Z(v) where: 

Z(v) = ~ f Z(x) dx 
[10.2] 

It seems natural to take the value of Z(v) as the estimated value of Z(V). What error 
is made in doing this? First of all, if Z(x) satisftes the stationary or the intrinsic 
hypotheses, Z(v) is an unbiased estimator of Z(V). We need to be able to calculate 
the variance of extending the grade ofv into V. It is sometimes denoted by oHv, V) 
or oi for short. 

Conceptually it is simply the variance of estimating Z(V) by Z(v). In 
geostatistics, the term "extension variance" is usually reserved for the case where 
a block is being estimated from its central sample. The more general term 
"estimation variance" is used in more complicated situations where several samples 
are taken into account. The theoretical value of the extension variance is given by: 
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(J ~ (v, V) = ;V I. Ivy (x - y) dx dy 

- ;2 I. {Y (x - x') dx dx' - J2 t ivY (y - y') dy dy' [10.3] 

Consequently 

(J ~ (v, V) = 2Y(v, V) - '{(v, v) - '{(V, V) [10.4] 

where '{(v, V), '{(v, v) and '{(V, V) are the average variogram values when the end 
points of the vector h sweep independently through V and v respectively. 
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Fig. 10.1. Meaning of the average variogram tenns 
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The fonnula [l0.4] holds for any shape of v and V. In particular v does not have to 
be included in V. The factors influencing the extension variance are: 
- the regularity of the variable (through y), 
- the geometry of V, 
- the geometry of v, 
- the location of v relative to V. 

This Connula can be rewritten as: 

(J~(v, V) = [y(v, V) - '{(V, V)] - ['((v, V) - '{(v, v)] [10.5] 

This makes it clear that the variance decreases when 
- the sample v is more representative of the region V to be estimated. In the limit 

when v = V, (J~ (v, V) = O. 
- the variogram is more regular, i.e. the variable is more continuous. 

Another obvious but nevertheless important property of the extension variance is 
that it involves the variogram and the geometry of the area to be estimated but not 
the actual sample values. This was also seen with the kriging variances and the 
kriging weights. 
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10.4 Relationship to the dispersion variance 

People tend to confuse the dispersion variance 0 2 [vIV] with the extension variance 
o~(v, V). The dispersion variance has a physical meaning; it measures the 
dispersion of the samples of a given volume v within another volume V. In contrast 
to this the extension variance is an operational concept characterizing the error 
associated with a particular sampling pattern. Theoretically, the two types of 
variance are related in the following way: the dispersion variance is the average of 
the extension variance when the sample v takes all possible positions within V. 

We now go on to calculate the total reserves (and the average grade) for large 
regions known to be mineralized. 

10.5 Area known to be mineralized 

Suppose that the area is known to be mineralized throughout and that the deposit 
is two dimensional (e.g. a coal seam or a gold reef). For simplicity's sake it is 
represented as a rectangle but the same procedure can be applied to any shaped 
region. 

10.5.1 Direct composition of terms 

In the first instance, we assume that the samples are on a regular or a nearly regular 
grid. To estimate the total ore tonnage we multiply the area of the region by the 
average seam or reef thickness (here average means the arithmetic average). Tests 
involving kriging using a large number of samples on a regular grid have shown that 
the weighting factors are very close to lIN where N is the number of samples. So 
our estimator is just: 

[10.6] 

The corresponding estimation variance is 

riv ~ f Y(Xj - y)dy - ~2 f f y(y - y')dy dy' - J2 I I Y(Xj - x) [10.7] 

IfN is large, this formula becomes very unwieldy. So an approximation to it is made 
based on the assumption that the sum of the covariance terms between extension 
errors is zero. In Fig. 10.2. there are N squares each with a sample at its center. Let 
Z(Vj) be the true but unknown average over the ilh square. 
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Fig. 10.2. Grid containing regular samples 

As the average over the whole area is just the average of the individual squares, the 
error made in using the average of the samples as the estimator is then: 

[10.8] 

That is, it is the average of the partial errors. To simplify the calculations we now 
assume that the sum of the covariance terms between these is zero. Checks made 
by David (1973, 1977 p20l) have shown that this is quite a good approximation. 
Consequently the estimation variance is 

( 
I(Zj - Z( V;)) 1 

OhT = Var N = N2 I Var(Zj - Z(Vj» [10.9] 

Now Var (l.j - Z(Vi» is just the variance of extending the central value to the whole 
square Vi. As all the squares are the same size, 

[10.10] 

This provides a simple way of estimating the total reserves and of evaluating the 
estimation variance in terms of the variogram function. (Note: the same method can 
also be applied when the blocks Vi are not all the same size. See 10umel and 
Huijbregts (1978) pp 415-417 for details). 

This method is based on the direct composition of terms. It is valid only when 
blocks are roughly square. If the ratio of the length to the breadth is more than about 
3: I the composition by line and slice terms described in the next section should be 
used. When deciding which approximation principle to use, the anisotropy in the 
variogram must be taken into account. The ratio of length to breadth should be 
calculated in terms of the variogram range rather than distance units. For example 
in Fig. 10.3. if the samples are actually on a square grid (a) but the variogram has 
an anisotropy ratio of 2.1 the sample configuration after taking account of the 
anisotropy is elongated as is shown in (b). 
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Fig. 10.3. (a) Original grid, (b) grid after taking account of anisotropy 

10.5.2 Composition by line and slice terms 

The method presented above is used when the samples are evenly spread in space. 
It is not suitable if the data are much more dense in one direction than in the other, 
as for example happens in seismic surveys, sonar mea..<;urements of fish stock or 
sometimes in underground development sampling. When data are closely spaced 
along lines that are widely spaced, another approximation method must be used to 
calculate the estimation variances. It involves combining the errors made when 
extrapolating the sample values along the lines, and then extrapolating the line 
values out into the slices around them. 

Fig. lOA. illustrates the case for two proilles. The area under study has been 
sampled along two profiles d l and (h. If the distance between samples along the lines 
is s, there are n l = ellis samples in the first line. If there are more than two profiles, 
the separation between them is assumed to be constant. Slices of that width are 
drawn centered on the profiles. Here they are denoted by VI and V2. SO the whole 
area V is the union of the slices. 

As usual we let Z(V) be the true but unknown grade of the whole area V. Let Z( Vi) 
and Z(di} be the true grades of the slice Vi and the line section di. At first we asswne 
that the line sections have been analysed accurately, so we know Z( di) exactly. To 
estimate Z(V) we have to weight each Z(d) by its area Vi' As the distance between 
profiles is constant, vl/d l = V2/d2 and we have 

z * (V) 

[IO.!l] 
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Fig. 10.4. Two profiles (slices) of length d, and d2 

In the same way the true but unknown grade Z(V) is 

Z(V) 
IVj Z(Vj) 

j 

- ----

}~ 
V = VI +V2 

[10.12] 

So the estimation error is the weighted average of the elementary estimation errors, 
that is, of Z(dj) - Z( Vj) : 

I dj [ Z(d;) - Z(Vj) 1 
Z'(V) - Z(V) = j [10.13] 

By the approximation principle the estimation variance is 

Idf (J ~ 
(J~ = Var[Z'(V) - Z(V)] = 

j 

[10.14] 

where (J~ is the elementary extension variance of the central line section to its slice 
of influence. Note that these are weighted by the squares of the lengths dj. 

More realistically the line sections are obtained by averaging the sample grades 
along the line section. As the samples are equally spaced, the average of the nj 
samples is used to estimate Z*( d j): 

Z'(dJ = I Z(Sk) / nj 
k 

[l0.15] 

The total estimation error Z'(V) - Z(V) can be split into two terms. 



134 Estimating the Total ReselVes 

L d; [Z(d; ) - Z(v; )] 

Ld; 
+ [1O.16J 

The left hand tenn corresponds to the extension of the line sections to the 
surrounding slices while the right hand one corresponds to the extension of the 
samples to the line section. If we let Z( Silt) and Z*( Silt ) be the true and the estimated 
grades of the kth sample in the ith section, then the second tenn can be rewritten as 

L d; In; L [Z * (Sjk) - Z(Sjk)] 
; k [1O.17J 

As usual the sum of the covariances is considered to be zero so we can sum the 
variances. We finally get: 

L d~ o~ L d~ 0 2(0, s)/n; 
; + --'-; --=;-----
[Ld;F [L dd2 

If N denotes the total number of samples (N = L n;) then 

Ldf o~ 
; 02(0,S) 

+ N 

[l0.18J 

[1O.19J 

So the total estimation variance is the composition of a slice tenn that accounts for 
the extension of the line sections to the slice and a line tenn 

02(0,S) 
N 

[10.20] 

that accounts for the error made when extending the samples to the line section. We 
shall now go on to describe how to calculate the estimation variance when the whole 
of the zone is not known to be mineralized. 

10.6 When the limits of orebody are not known a priori 

In some cases the limits of the orebody are not known beforehand from the geology. 
So they have to be determined from the drillhole data as infonnation becomes 
available. This uncertainty about the geometry of the orebody introduces a second 
source of error, called the geometric error, which must then be added to the one 
described previously. 
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Fig. 10.5. Data layout showing mineralized holes and waste ones 

Fig. 10.5. shows a region containing 48 drillholes. Seventeen hit the orebody 
(indicated by a 1), the rest did not. The simplest way to define the extent of the 
orebody is as the union of all the grid squares with positive results. 

Matheron (1971 a and b) developed a formula for the ratio of the geometric error 
to the square of the mineralized area A: 

(J~ = ..l. [Nz + 0061 (Nl)2 ] [10.21] 
A2 N2 6 . N2 

where N is the number of positive samples (here 17). The parameters N 1 and N2 are 
found by counting the vertical and horizontal sides in terms of grid squares. To be 
more exact Nt and N2 are obtained by dividing the total number of grid squares in 
each direction by 2. Note Nt must be greater than or equal to N2. In the example 
there are 12 horizontal sides and 10 vertical ones. So Nt = 6 and N2 = 5, giving 

:~ = 1~2 [~ + 0.06 (~2 ] [10.22] 

This turns out to be (6.6%)2. which is not very high. 
One point to note when counting Nt and N2. is that all the indentations in the 

border must be counted. including the perimeter of internal holes. Fig. 10.6. 
illustrates this point. Lastly the geometric error must be incorporated into the 
estimation variance. Some care is required when doing this. For details see the 
worked examples given in Journel and Huijbregts (1978) pp428 - 438. A similar 
formula exists for 3D cases. 
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Fig. 10.6. Data layout showing mineralized holes and waste ones 

Fig. 10.6. shows a configuration with a waste zone in the center of the ore. lbis 
complicates the counting of Nt and N2. Working in the vertical direction first, the 
total number of grid squares in the outer border is 16 whilst that of the bole is 6, 
giving a total of 22. Similarly parallel to the borizontal direction, the total perimeter 
is 26 (20 + 6). lbis means that Nt is 13 and N2 is 11. The rest of the calculation 
follows as before. 

10.7 Optimal sampling grids 

Once we know how to calculate the estimation variance we can work out the optimal 
drilling grid for a particular variable. Here "optimal" means the grid which gives 
the required estimation variance for the fewest drillholes (or samples), and hence 
at the lowest cost. For an isotropic deposit, a regular square grid should be used. 
When there is anisotropy, the ratio of the spacing between samples along the axes 
should be in proportion to the ratio of anisotropy. 

Suppose that we want to estimate the average seam thickness and the average 
grade (here we will consider the sulphur content in coal) in a 4 km x 4 km area. For 
argument's sake the seam is assumed to exist throughout the area and the 
regionalization is isotropic. It would be possible to drill 16 holes on a lkm grid, or 
64 on a 500m grid and so on, as shown by Fig. 10.7. 
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Fig. 10.7. Two possible drilling grids 

Suppose that the thickness variogram is spherical with a range of 1500m and a sill 
of 1.0 and that the sulphur variogram is also spherical with a range of 200m and a 
sill of 0.4. 

10.7.1 For the lkm grid 

The extension variances can be worked out using tables or a small program. Here 
the values were found to be: 

oi(Olv) = 0.27 
::;; 0.38 

So the estimation variance is: 

oi = 0.27/16 :=:: 0.0169 
= 0.38/16 = 0.0238 

10.7.2 For the 500m grid 

for thickness 
for sulphur 

for thickness 
for sulphur 

These calculations were repeated for the 500m grid giving: 

oi = 0.0020 for thickness 
= 0.0055 for sulphur 

To make meaningful comparisons between the estimation variances for two 
variables, the coefficients of variation were calculated. That is, the standard 
deviations were divided by the mean. It is often helpful to plot the coefficient of 
variation against the number of drillholes on a bi-Iogarithmic scale. 

To get a rough idea of the accuracy, the interval, the mean ± twice the standard 
deviation, can be taken as an approximate 95% confidence interval. For the 1000 
m grid, the thickness values are accurate to ± 6.6% whereas the sulphur values 
are only accurate to ± 61.2%. These values reflect the ranges of the two variogram 
models (1500m compared to 300m). Consequently even if this sampling grid was 
optimal for thickness, it would not be anywhere near precise enough for sulphur. 
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Table 10.6. Relative precision for sulphur content. and seam thickness for the two 
possible drilling grids 

Grid Size 

lOOOm 500m 

Thickness 0.033 0.011 

Suplhur Content 0.309 0.148 

The optimal drilling pattem also depends on the size and, to a lesser extent, on the 
shape of the region to be estimated. Above all, the dominant factor determining the 
estimation variance is the total number of drillholes (samples) rather than the 
distance between them. Consequently although a 1000 m grid might be optimal for 
one variable for a certain area, it would not be dense enough for a smaller area and 
would be unnecessarily expensive for a larger one. 

When the limits of the orebody are not known at the outset of the campaign, it 
is best to drill on a fairly wide grid at first and to infill as the limit'> become known. 
In that case the estimation variance and the optimal spacing cannot be determined 
at the outset since the effect of the geometric error depends on the size and shape 
of the mineralized area. 

10.8 Exercises 

Ex :10.1 Fifty vertical holes were drilled on a regular 200m x 200m grid to estimate 
the global reserves for a coal seam in a zone l000m x 2000m that is known to be 
mineralized. The variogram for seam thickness is a spherical with a range of 500m 
and a sill of 3.25. Which approximation principle should be used to calculate the 
global estimation variance? Calculate its value. 

Ibe variogram for ash content consists of a spherical with a range of 250m and a 
sill of 4.65 plus a nuggest effect of 1.35. Calculate the global estimation variance 
for ash content too. 

As only 50 drillholes are involved, it would have been possible to have used kriging. 
You can recalculate the estimation variances in this way and compare the values 
obtained with those given by the approximation principles. 
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Ex 10.2 Eighty vertical holes were drilled on a regular 200m x 200m grid to 
estimate the global reserves for an alluvial gold deposit in a zone 1600m x 2000m 
that is known to be mineralized. The variogram for the gold accumulation is an 
anisotropic spherical model with a sill of 5. The anisotropy is geometric with the 
longest range of 500m in the NS direction and with the shortest range of 100m in 
the EW direction. Which approximation principle should be used to calculate the 
global estimation variance? Calculate its value. 

Ex 10.3 In a seismic survey of a square area 4km x 4km, the variable of interest was 
measured every 10m along 4 profiles. Calculate the global estimation variance, 
given that the variogram is an exponential model with a range of 500m and a sill 
of 10.1 plus a nugget effect of 3.9. 

Ex 10.4 A mining company is carrying out an exploration campaign to determine 
the limits of mineralization for an alluvial deposit. They have dug SO pits on a 
regular 50m x 50m grid (Fig. 1O.S.). The Is indicate pits that hit mineralization 
while the Os shows nonmineralized ones. The geologist in charge of exploration 
wants to calculate the variance of the geometric error. Work out the values of N, N 1 
and N2, and hence calculate the variance. 

Note that this figure is almost the same as Figure 10.6., except that the central waste 
zone has been removed. Compare the value obtained here for the geometric 
variance with the one obtained earlier. 
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Fig. 10.8. Location of exploration pits. The Is show pits that hit mineralization 



Appendix 1: Review of Basic Maths Concepts 

Al What maths skills are required in linear geostatistics? 

Four types of basic mathematical skills are needed in linear geostatistics (i.e. up to 
variograms and kriging): 
1. being able to calculate the means and variances of random variables (and later 

of regionalized variables), 
2. being able to use single and double summations rather than write out long lists 

of variables 
3. being able to differentiate in order to find the minimum of a function, and 
4. being familiar with matrix notation for simultaneous linear equations. 

As the third and fourth topics are common in mathematics, readers will have no 
trouble finding suitable textbooks on these. So we will only review the first two 
points. 

At.t Means and variances 

In geostatistics we use linear combinations (i.e. weighted moving averages) of the 
data to estimate the values of the variable at points or the averages over blocks. For 
example, a typical linear combination is 

Z~ = A.Z. + A2Zz + ... + AIOZIO 

Kriging optimizes the choice of the weights by minimimzing the estimation 
variance. So we need to be able to express variances as a function of the weights, 
1...,1..2, .. ·1..10 , and later, of the variogram model as well. To start with you need to 
know the mean and variance of the linear combination: 

Var[Z~] = Ai Var[Z.l + A~ Var[Z2] + ... + 1..;0 Var[ZIO] + 
+ 21... 1..2 Cov[Z., Z2] + ..... + 21..9 1..10 COV[Z9, ZIO] 
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These results are wen known in statistics. The proofs can be found in statistics 
textbooks. From there we go on to cal.culating the mean and variance of the 
estimation error. If our aim is to use the linear combination given earlier to estimate 
the value of the variable at point Xo, then the estimation error is 

Z~ - Zo = AIZ. + AzZz + ... + AlOZIO - Zo 

This is just the previous linear combination with an extra term (with a weight equal. 
to -1) added. So its mean and variance are 

E[Z~ - Zo] = A.E[ZI] + A2E[Z2] + ... + AIOE[ZIO] - E[Zo] 

Var[Z~ - Zo] = Ai Var[Zd + A~ Var[Z2] + ... + Aio Var[ZiO] + 12Var[Zo] 

+ 2)... A2 Cov[Z., Z2J + ..... + 2A9 AIO COV[Z9' ZlOJ 

- 2Ao Al Cov[Zo, Zd - ..... - 2Ao AIO Cov[Zo, ZIOJ 

In Chapters 2 and 3 we will see how to eval.uate these variances for regional.ized 
variables rather than random variables by using the variogram or the spatial. 
covariance to take account of their layout in space. Then in Chapter 7 we win see 
how to minimize these variances. 

Al.2 Single and double summations 

The equations for the expected val.ue (mean) and the variance are long and 
unwieldy. It would be much better to have a shorthand way of writing them without 
having to list a1.1 the terms. Summations were invented to do this. The Greek letter 
I: (pronounced sigma) is used to denote a summation. Using this convention, the 
expected val.ue can be written as a single summation: 

10 

E[Z~l = I Ai E[Zi] 
i= 1 

In a similar way, the sum of the variance terms can be written as 

10 

I A~ Var[Zi] = Ai Var[Zj + I..~ Var[Z.zl ... + I..io Var[Zw] 
i=l 

Lastly we need an abbreviated way of writing the sum of a1.1 the covariance terms. 
As each one contains two subscripts, a double summation over two variables is 
required: 

9 !O 

I I ~'i Aj Cov(Z., Zj) = 2(1.. 1 1..2 Cov[ZI> Zz] + ..... + 1..9 1..10 Cov[Zg, ZIOn 
1=1 j:>i 
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More care is required with the double summation. Some exercises on single and 
double summations are provided to allow you to get familiar with them. 

AI.3 Exercises using summations 

Ex L Expand the summations given below: 

S N 

LAi Zj , 
1=1 

L A~ Var[Z;J , 
i=l 

Ex 2. Expand the following double summations: 

Ex 3. Show that: 

Ex 4. Show that: 

N N L L Ai Aj Cov[Zj, Zj] 
i=l j=l 



Appendix 2: Due Diligence and its Implications 

A2.1 Stricter controls on ore evaluation 

Over the recent years many mining projects have failed, and the lending institutions 
and shareholders have lost their money. So the stock exchange regulations and in 
some countries the corporate law have been made much stricter. One of the common 
causes of project failure has been inaccurate estimations of the reserves, generally 
overly optimistic appraisals. In some cases those who have lost their money have 
sued the initial company to get their money back. 1bis can lead to the expert who 
has done the ore evaluation being called to justify his results. As can be seen from 
the article by Williamson-Noble and Lawrence (1994), in Australia errors or 
misrepresentations by an expert in public statements such as in share prospectuses 
are severely punished: a fine of up to $20,000 plus 5 years jail for the individual. 
The only legally acceptable defence is "due diligence". 

A2.2 Due dHigence 

Due diligence means appropriately attentive care. Experts have to be able to show 
that they carefully checked the input data and used background information (such 
as geological interpretations) in a suitable way, and that they carried out the study 
in accordance with a suitable set system of procedures with appropriate quality 
controls. But what does this mean for geostatisticians? 

Before giving some guidelines as to this, we should remind everyone that when 
a mining project fails, the control of the company generally passes from the 
directors to legally appointed receivers who are on the lookout for scapegoats. The 
inability to provide clear documentary evidence as to how the study was carried 
would make it very difficult for a consultant to argue that he worked with "due 
diligence". 1bis is why we insist that students at Fontainebleau maintain a logbook 
for their case-studies. 

A2.3 The logbook 

(1) The logbook should be a bound volume not a spiral bound exercise book. 
Preferably the pages should be numbered. You should write in black ink rather than 
blue ink or pencil. 
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(2) Never tear pages out of your logbook. If you make a mistake, cross out the 
relevant section in red, put the date of the change and write down the reasons. 

(3) Each day as you start work you should write the date (including the year) at the 
point where you start work. Then you note each computer operation that you carry 
out.. For example when calculating an experimental variogram, note the exact set 
of data used including the selection name, the variogram lag, the angles chosen, the 
tolerances (angular and distance), etc. so that you could exactly duplicate the 
variogram calculation at a later date - even 5 years later. It is not uncommon for 
the Centre to get requests from mining companies to provide them with duplicate 
copies of data files, working notes or reports which they themselves have lost. Up 
until now we have succeeded in doing this. 

(4) At the outset of the study you will have been given a lot of information about 
the orebody (maps showing drillhole collar locations, geological sections, reports 
on the geologists' interpretation, ... ). Carefully note exactly what information was 
provided in your logbook and again at the beginning of your report; e.g. the maps 
sheet numbers, their dates etc. The geological interpretation of the deposit changes 
with time, so you should note what it was when you start the study and any 
subsequent modifications during the study. 

(5) Sometimes during the study, changes will be made to the data set. Points can be 
eliminated or new ones added. Note these in your logbook and send the client a fax 
or a memo confmning what you have done. Phone messages are easily forgotten or 
lost. Take the precaution of confirming in writing. Glue a photocopy of the faxl 
memo into your logbook. The original (or a copy) should be retained in the standard 
filing system for outgoing letters. 

(6) During a study you will accumulate lots of computer printouts; some are useless, 
others are very important. Some of these (the statistics on data sets) should be glued 
into your logbook because this helps specify exactly which data were actually used. 
The other important ones should be carefully stored (with their dates and maybe a 
note in the corner) in a file. Be sure they do not get crushed so that you can photocopy 
them for the final report. 

These are just some suggestions on how to set up and organize a logbook. The list 
is by no means exahaustive. If you come across any points that have been missed, 
I would appreciate hearing about them. 
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